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With the large-scale development of electric vehicles, the accuracy of electric
vehicle charging load prediction is increasingly important for electric power
system. Accurate EV charging load prediction is essential for the efficiency of
electric system planning and economic operation of electric system. This paper
proposes an electric vehicle charging load predicting method based on variational
mode decomposition and Prophet-LSTM. Firstly, the variational mode
decomposition algorithm is used to decompose the charging load into several
intrinsicmode functions in order to explore the characteristics of EV charging load
data. Secondly, in order to make full use of the advantages of various forecasting
methods, the intrinsic mode functions are classified into low and high frequency
sequences based on their over-zero rates. The high and low frequency sequences
are reconstructed to obtain two frequency sequences. Then the LSTM neural
network and Prophet model are used to predict the high and low frequency
sequences, respectively. Finally, the prediction results obtained from the
prediction of high frequency and low frequency sequences are combined to
obtain the final prediction result. The assessment of the prediction results shows
that the prediction accuracy of the prediction method proposed in this paper is
improved compared to the traditional prediction methods, and the average
absolute error is lower than that of ARIMA, LSTM and Prophet respectively by
7.57%, 8.73%, and 46.02%. The results show that the prediction method proposed
in this paper has higher prediction accuracy than the traditional methods, and is
effective in predicting EV charging load.

KEYWORDS

electric vehicles charging load, prophet prediction model, neural network, variational
mode decomposition, time series prediction

1 Introduction

At present, the problems of environmental pollution and energy resource crisis are
becoming more and more serious. Oil-fueled automobiles are causing serious environmental
pollution and high energy consumption. Electric vehicles (EVs) offer cleaner energy and
environmental advantages over petrol vehicles, effectively alleviating problems such as
energy resource shortages and severe air pollution (Wu and Zhang, 2017). Consequently,
EVs have been widely promoted globally, and in China, the government has vigorously
advanced the construction of public and private EV charging stations (Gao and Zhang,
2011). However, a significant number of EVs connecting to the power grid can also have an
impact on the power grid. According to (Das et al., 2020), EV charging equipment may cause
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harmonic pollution to the grid, and the clustering effect of EV
charging will have a significant impact on distribution networks.
Chen and Huang (2019) demonstrates that the disordered charging
of huge numbers of EVs will have impact on the safety and reliability
of electric power system. At the same time, since the effective
prediction of EV charging load is a prerequisite for the analysis
of the impact of EV charging on the power grid, it is of great
significance to conduct accurate EV charging load prediction (Yin
et al., 2023).

Significant progress has been made in research on EV charging
load predicting all over the world. EV charging load predicting can
be divided into two categories: statistical model-based predicting
methods and deep learning-based predicting methods (Yin et al.,
2023). The methods based on statistical models are relatively simple,
computationally efficient, and have faster prediction speeds (Luo
et al., 2019). Selvi and Mishra (2021) utilizes a functional linear
regression model to predict the day-ahead power load. Bahrami et al.
(2014) employs a short-term power load prediction model that
combines wavelet transform with grey model, and the high
frequency component of the load is effectively eliminated, and
the prediction accuracy is improved. de Oliveria and Oliveria
(2018) forecasts medium-term electricity load using an
autoregressive integrated moving average model (ARIMA) with a
seasonal trend decomposition model combining weighted
regression. Luzia et al. (2023) forecasts Brazilian electricity
demand with ARIMA combined with Wavelet Transform and
Fourier Transform. Wang (2022) utilities ARIMA combined with
BP neural network to predict per capita coal consumption of China.
The above-mentioned models can achieve rapid predictions for
simple time series with high accuracy. However, these models
have poor robustness and perform less effectively in predicting
power loads with abrupt variations.

Deep learning-based prediction methods can overcome the
limitations of statistical model-based methods in predicting
complex sequences. Nikolaev et al. (2019) predicts wind power
generation using recurrent neural network (RNN). However,
RNN may encounter issues such as vanishing or exploding
gradients during the training process, which can affect the
prediction accuracy. Bouktif et al. (2018) predicts electricity
consumption in a particular city with Long Short-Term Memory
(LSTM) neural networks. They further optimized the time lag
features of the LSTM network using genetic algorithms (GAs).
LSTM networks address the problems of vanishing and exploding
gradients that occur in RNNs. Liu et al. (2019) utilizes support vector
machines (SVMs) to predict electricity load and employs empirical
mode decomposition (EMD) for denoising the power load data.
Wang et al. (2021) proposes a short-term electricity load predicting
model based on a locally random sensitivity deep autoencoder
(D-LiSSA). The model utilizes a nonlinear fully connected
feedforward neural network as the regression layer and utilizes
the learned hidden representations from D-LiSSA to enhance the
generalization ability of the model.

While deep learning-based prediction methods are effective in
handling nonlinear problems, their performance is influenced by the
quality of input data. In real-world scenarios, EV charging loads are
affected by many factors like electricity prices, temperature, date and
so on. Forecasting using only a single forecasting method can have
an impact on forecasting effectiveness (Luo et al., 2019). Therefore, it

is necessary to preprocess the data using appropriate methods and
employ ensemble predictionmodels for forecasting the preprocessed
data. To address this, Lu et al. (2019) utilizes convolutional neural
networks (CNNs) to extract feature vectors from a massive amount
of electricity load data and uses them as inputs to an LSTM neural
network to obtain load predictions. However, this approach only
utilizes superficial features of the data and does not perform deep
analysis. Time series data can be divided into components with
different characteristics using certain methods. The effect of disjoint
features on prediction can be avoided by predicting the partitioned
components. Therefore, Yang et al. (2021) decomposes the
photovoltaic power output into components with different
frequencies with Variational Mode Decomposition (VMD) and
uses LSTM to predict them, then, integrates predicting results to
get the final predicting result. In a similar manner, Wang et al.
(2020) uses a deep echo state network (DESN) to establish
prediction models for each component obtained through VMD,
and the predicting results are integrated to get the result. However,
these methods do not consider the characteristics of each
component during the predicting process and solely used a single
model to predict each component. In order to get better predicting
result, researchers have divided the components obtained through
VMD decomposition of electricity load data into high-frequency
and low-frequency sequences (Cai et al., 2022; Yu et al., 2022). Cai
et al. (2022) employes gate recurrent units (GRUs) and temporal
convolutional networks (TCNs) to predict the high-frequency and
low-frequency sequences, respectively. Then reconstructs the final
predicting result. Similarly, Yu et al. (2022) utilizes GRUs and
ARIMA models to predict the high-frequency and low-frequency
sequences separately and combines the predicting results to obtain
the result. These ensemble prediction methods consider the
characteristics of each component, leveraging the advantages of
different prediction models for high and low frequency sequences.
Compared to utilizing a single prediction model, these approaches
enhance the prediction accuracy. However, the ARIMA algorithm
requires more background knowledge and parameter tuning,
making it more complex. Moreover, when dealing with missing
data, manual imputation and handling are necessary for the ARIMA
algorithm. On the other hand, the Prophet algorithm overcomes
these drawbacks of the ARIMA algorithm and is better suited for
medium-scale time series data forecasting.

Based on the above analysis, an EV charging load predicting
method based on VMD and Prophet-LSTM is proposed in this
paper to improve the prediction accuracy of EV charging loads.
Firstly, for mining the characteristics of EV charging load data,
the load data is decomposed into several intrinsic mode
functions (IMFs) using VMD algorithm. Secondly, to fully
leverage the superiorities of each prediction model, the IMFs
are divided into high and low frequency sequences using zero-
crossing rates, and each sequence is reconstructed individually.
Then the high and low frequency sequences are predicted using
LSTM neural networks and the Prophet model, respectively.
Finally, the predicting results for high and low frequency
sequences are combined to get the final predicting result.
Evaluation of the predicting results shows that the predicting
method proposed in this paper achieves improved prediction
accuracy compared to traditional methods. The average
absolute error of the proposed method is lower than ARIMA,
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LSTM, and Prophet prediction models by 7.57%, 8.73%, and
46.02%, respectively.

2 Decomposition of EV charging load

2.1 VMD

The VMDmethod is a technique for estimating individual signal
components by solving a variational optimization problem in
frequency domain (Dragomiretskiy and Zosso, 2014). This
method can decompose complex unstable sequences into IMFs
with finite bandwidths, denoted as ui(t), where i � 1, 2, 3,/k,
and the central frequencies ωi of each IMF are determined
during the decomposition process, the parameter k above denotes
the number of IMFs after decomposition.

The principle of the variational problem is that the decomposed
sequence is a finite bandwidth modal component with a central
frequency. The original sequence is decomposed into k sub-
sequences, and the sum of all sub-sequences is guaranteed to be
the original sequence, while the sum of the estimated bandwidths of
the sub-sequences is minimum. The constrained variational
problem is shown as follows:

min
ui{ }, ωi{ }

∑k
i�1 ∂t δ t( ) + j/πt( )*ui t( )[ ]e−jωtt
������ ������2

2
{

s.t.∑k
i�1ui − f

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where k represents the number of desired mode components to
be decomposed; ωi{ } and ui{ } represent the central frequency of
the i-th decomposed mode component and i-th component after
decomposition, respectively; δ(t) denotes the Dirac function,
and * represents the convolution operator. The selection of k is
typically done using optimization algorithms, based on central
frequencies, or through specific formulas. In this study, a
criterion is used to obtain the value of i (Zhang et al., 2021),
and the criterion is expressed as follows:

Ek � ∑k

i�1

��������∑len
j�1I

2
i j( )

len

√
(2)

θk � Ek+1 − Ek| |
Ek

(3)

where len represents the length of the time series; Ii represents the
i-th IMF, and Ek represents the energy of each intrinsic mode
function. When the θk suddenly increases after a certain value of k, it
is considered as the optimal value of k for that moment.

The constrained variational problem can be transformed into an
unconstrained variational problem by introducing the Lagrange
multiplier operator and the augmented Lagrange expression is as:

L uk{ }, ωk{ }, λ( ) � α∑k

i�1 ∂t δ t( ) + j/πt( )*ui t( )[ ]e−jωi t
������ ������2

2

+ f t( ) −∑k

i�1ui t( )
������ ������22 + 〈λ t( ), f t( ) −∑k

i�1ui t( )〉
(4)

where α is the quadratic penalty factor, which is used to decrease the
disturbance of Gaussian noise. The optimal modal component and

center frequency can be obtained by the alternating direction
multiplier (ADMM) iterative algorithm combined with Fourier
iso-distance transform and Parseval/Plancherel, and the saddle
point of augmented Lagrange function can be obtained. The
process of alternating optimization iteration for uk, ωk and λ is
as follows:

ûn+1
k ω( ) ← f̂ ω( ) −∑i≠kûi ω( ) + λ̂ ω( )/2

1 + 2α ω − ωk( )2 (5)

ωn+1
k ←

∫∞
0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω∫∞
0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω (6)

λ̂
n+1

ω( ) ← λ̂
n
ω( ) + γ f̂ ω( ) −∑

k
ûn+1
k ω( )( ) (7)

where γ represents the noise margin, which meets the fidelity
requirement of decomposition of signal; ûn+1k (ω), ûi(ω), f̂(ω),
and λ̂(ω) correspond to the Fourier transforms of un+1k (t), ui(t),
f(t), and λ(t).

2.2 Division of high and low frequency
sequences

Sequences with high frequency that possess poor stationarity
and complexity are predicted by LSTM neural network. This paper
uses the Prophet model to predict sequences with low frequency that
are stable and periodic. Therefore, it is necessary to divide the
intrinsic mode functions obtained by VMD processing into
sequences with high and low frequencies.

This paper primarily utilizes the over zero rate of a sequence to
divide the high and low frequency sequences. The over zero rate of a
sequence is defined by the following equation:

PsZC �
nZC

N
(8)

where nZC represents the number of passing zero in the sequence;N
represents the length of the sequence.

3 Predicting method of EV charging
load based on Prophet-LSTM

3.1 Prophet model

The Prophet model is a time series forecasting model developed by
the Facebook team (Taylor and Letham, 2018). This model fits the time
series by considering trend components, seasonal components, holiday
effects, periodic components, and error terms. The prediction results are
obtained by combining these fitted components. The Prophet model
can be represented by the following equation:

y t( ) � g t( ) + h t( ) + s t( ) + ε t( ) (9)
where g(t) represents the trend term, which captures the non-
cyclical trends in the time series; h(t) represents the holiday term,
accounting for the impact of holidays on the time series; s(t)
represents the seasonal term, typically defined at the weekly or
yearly level; ε(t) represents the error term, which captures the
unexpected fluctuations of the time series.
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The trend term can be expressed as:

g t( ) � C
1 + e −k t−m( )( ) (10)

where C represents the load capacity; k represents the rate of
increase; m represents the deviation parameter.

The holiday effect can be represented by the following equation:

FIGURE 1
The structure of LSTM neural network.

FIGURE 2
Forecasting process of Prophet-LSTM prediction model.
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h t( ) � Z t( )κ
Z t( ) � 1 T ∈ D1( ),/, 1 TDL( )[ ]

κ ~ Normal 0, v2( ) (11)

where Di represents the set of the past and future dates of holiday i.
The Prophet model is a model-based forecasting method.

Currently, another popular model-based forecasting method is
the ARIMA model. The Prophet model incorporates the
advantages of the ARIMA model while avoiding its disadvantages
such as limited robustness and the inability to consider external
factors that influence time series changes. Therefore, this paper
chooses the Prophet model to predict stationary low-frequency
sequences.

3.2 LSTM neural network

LSTM neural networks are a variant of recurrent neural
networks (RNNs) that were primarily developed to address the
issue of vanishing and exploding gradients that can occur in RNNs

during long sequence predictions (Li et al., 2018). Compared to
traditional RNNs, LSTM neural networks have improved
performance in long sequence predictions.

LSTM networks extend the basic structure of RNNs by
introducing additional components such as input gates, forget
gates, output gates, and a concept known as the cell state. These
additions allow LSTMs to selectively retain and discard information
over time, enabling them to capture long-term dependencies more
effectively. The architecture of an LSTM network is illustrated in
Figure 1.

LSTM neural network has a more complex structure compared
to traditional RNNs, as shown in Figure 1. LSTM introduces the
concept of a cell state and utilizes input, output and forget gates to
control and retain information. The calculation for LSTM at time
step t is as follows:

f t � σ Wf · ht−1, xt[ ] + bf( )
it � σ Wi · ht−1, xt[ ] + bi( )
~ct � tanh Wc · ht−1, xt[ ] + bc( )
ct � f t*ct−1 + it*~ct
ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot*tanh ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where ft, it, and ot denotes the forget, input, and output gate layer,
respectively; ct denotes the cell state; ~ct denotes the cell state
candidate value; ht represents the hidden state; W and b denotes
the weights and biases.

The forget gate combines the foregoing hidden state with the
present input, and utilities the sigmoid function to determine which
information to discard. The sigmoid function outputs values
between 0 and 1. It discards part of the information when its
value is approaching to 0 and keeps the information when its
value is nearly 1.

FIGURE 3
Charging power diagram of EV charging station.

TABLE 1 VMD algorithm parameters.

Parameters Value of parameters

Data fidelity constrains balance parameters α 8,000

Double ascending time step tau 0

Label value of whether the first mode is DC False

Center frequency label value init 0

Convergence criterion tolerance tol 1e-7

Frontiers in Energy Research frontiersin.org05

Cheng et al. 10.3389/fenrg.2023.1297849

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1297849


The input gate and the tanh function determine which new
information to incorporate from the foregoing hidden state and the
present input, resulting in a candidate value ~ct.Then, the forget and
input gates are combined to discard or retain information, resulting
in the current cell state ct.Finally, the output gate combines with the
tanh function to determine which information from ht−1, xt and ct
to output as the current hidden state ht at the current time step.

The LSTM neural network constructed in this study consists of a
96-dimensional input layer, a 1-dimensional output layer, two
LSTM layers, and four fully connected layers. The number of
neurons in these layers is 128, 64, 32, and 16, respectively. The
activation function chosen for the LSTM layers is the hyperbolic
tangent (tanh) function. The Adam optimization algorithm is used
to minimize the error during training. This LSTM neural network is
utilized for predicting high-frequency sequences with significant
variations. Through multiple iterations and training, an effective
LSTM prediction model is obtained, which is capable of capturing
complex temporal dependencies and making accurate predictions.

3.3 Prophet-LSTM combination model

Since the EV charging load time series is highly influenced by
real-world factors, the time series exhibits pronounced variations.
Predicting such time series using a single forecasting method
without considering the relevant factors often results in poor
prediction performance and large errors. Therefore, it is
necessary to utilize a combination forecasting model. In this
study, a Prophet-LSTM prediction model is established. The
proposed model takes the advantages and disadvantages of both
the Prophet and LSTM model into account. The Prophet model is
employed to predict low-frequency sequences with relatively smooth
variations, while the LSTM neural network is used to predict

sequences with high frequency with more pronounced variations.
By dividing the original complex time series prediction problem into
two relatively simpler time series prediction problems, better
prediction results can be achieved. The overall prediction process
is illustrated in Figure 2.

3.4 Error evaluation index selection

To assess the prediction performance of the Prophet-LSTM
model, this study uses the mean absolute error (MAE) as well as
the goodness-of-fit to evaluate(R-squared) the prediction
results. The calculation methods for MAE and R-squared are
as follows:

XMAE � ∑l

n�1
ŷn − yn
ŷn

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (13)

R2 � 1 − ∑l
n�1 ŷn − yn( )2∑l
n�1 �y − yn( )2 (14)

where l represents the length of the sequence; ŷn denotes the
predicted value of the model for the nth data in the sequence; �y
denotes the mean of the sample.

4 Results

The hardware environment for the experiments includes an
Intel i5 8300H 2.3 GHz CPU and an NVIDIA GTX 1050Ti
graphics card, with 16 GB of memory. The model was
implemented using Python 3.9 as the programming language,
utilizing software architectures such as TensorFlow, Keras, and
the Prophet algorithm framework for power load forecasting.

FIGURE 4
Changing map of θk .
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4.1 Data processing

This study utilizes EV charging data from a charging station in
Fujian Province, China, spanning from January to April 2022. The

sample time of the data is 15 min. The EV charging power curve is
depicted in Figure 3.

Each red “q” in Figure 3 represents 24:00 of the previous day
and 0:00 of the next day. The power data between two consecutive

FIGURE 5
Sequence diagram after VMD decomposition.

TABLE 2 Over zero rate of each IMF.

IMF Zero-crossing rate

IMF1 0

IMF2 0.041

IMF3 0.063

IMF4 0.083

IMF5 0.106

IMF6 0.125

Based on the threshold of 0.05 for the zero-crossing rate, the division between high-frequency and low-frequency sequences can be defined as follows: when the zero-crossing rate of an intrinsic

mode function is greater than 0.05, it is considered as a high-frequency sequence, and when the zero-crossing rate is less than 0.05, it is considered as a low-frequency sequence.
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“q” markers is complete data set for each day. From Figure 3, it
can be observed that the raw data has a certain periodicity. Given
the 15-min data granularity, this study defines 96 time steps as
1 week. However, the daily variation of the charging load is quite
volatile, and the sequence is not sufficiently stationary. Using a

single forecasting method for prediction would result in poor
performance. Therefore, this paper employs the VMD algorithm
to partition the time series into components with high and low
frequency. The parameters for the VMD algorithm are shown in
Table 1.

FIGURE 6
Predicting result of low frequency sequence.

FIGURE 7
Predicting result of high frequency sequence.
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First, the value of k in the VMD algorithm needs to be
determined using Eqs 2, 3. The variation of θk with the value of
k is illustrated in Figure 4.

From Figure 4, it can be observed that θk reaches its minimum
value during a decreasing process when k is equal to 7. However,
when k is equal to 8, θk increases dramatically. Additionally, since
the values of θk are close when k equals 6 and k equals 7. Based on
the selection rule mentioned above, it can be considered that an
appropriate value for k is 6. By applying the VMD algorithm with
k = 6, the sequence is divided into six IMFs by the VMD algorithm,
and the individual IMFs are illustrated in Figure 5.

Based on Figure 5, it can be observed that the magnitude of
fluctuations increases from IMF1 to IMF6. In this paper, the zero-
crossing rate is used to divide the decomposed IMFs into sequences
with high and low frequency. The zero-crossing rates of the obtained
intrinsic mode functions are provided in Table 2.

4.2 Results analysis

Through the application of the VMD algorithm, the data was
processed and divided into the high-frequency sequence with more
pronounced variations and the low-frequency sequence with
relatively stable variations. The low-frequency sequence was then
predicted using the Prophet model, while the sequence with high

frequency was predicted using LSTM neural network. The resulting
predictions for sequences with high and low frequency are shown in
Figures 6, 7, respectively.

Finally, the predicting results for the sequences with high and
low frequency are combined to obtain the final prediction result. The
comparison between the predicting result of the Prophet-LSTM
method and other predicting methods is illustrated in Figure 8.

As can be seen from Figure 8, compared with several other
predicting methods, the predicting method proposed in this paper
has a better performance. The predicting results are better fitted to
the real data curve. Additionally, the error values and R-squared
values for eachmodel’s predicting results are summarized in Table 3.

Table 3 presents the assessed values of predicting results of each
method. According to Table 3, the VMD-Prophet-LSTM prediction
method proposed in this study exhibits the highest accuracy. The
average absolute errors of the VMD-Prophet-LSTM model are
7.57% lower than those of the ARIMA model, 8.73% lower than
those of the LSTM model, and 46.02% lower than those of the
Prophet model. This indicates that the VMD technique utilized in
the proposed model enables the Prophet model to be applied for
predicting sequences with pronounced variations and improves its
performance in predicting sequences with high volatility. Moreover,
it ensures the predicting performance of the LSTM model.

Additionally, the coefficient of determination (R-squared) value
achieved by the proposed prediction model is 0.8411. Generally, a value
of 0.8 or higher indicates a good fit. Therefore, the prediction
performance of the proposed method is satisfactory, and it
demonstrates improvements compared to current prediction methods.

5 Conclusion

This paper proposes a combined forecasting method for EV
charging load predicting. The proposed method is based on the
VMD technique and integrates the advantages of the Prophet model
and LSTM neural network. Through the application of the VMD

FIGURE 8
Comparison of prediction results.

TABLE 3 Evaluation value of different model predicting results.

Forecasting methods MAE/kW R2

Prophet-LSTM 109.22 0.8411

ARIMA 118.16 0.8227

LSTM 119.67 0.8202

Prophet 202.32 0.4936
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algorithm, the EV charging load time series is divided into sequences
with high and low frequency, allowing the Prophet model and LSTM
neural network to leverage their advantages for prediction. The
conclusions drawn from the case analysis are as follows:

(1) Compared to using a single method to predict the EV charging
load time series, the proposed combined forecasting method
demonstrates better prediction performance.

(2) By employing the VMD technique and zero-crossing rate, the EV
charging load time series is effectively partitioned into a relatively
stable sequence with low frequency and a highly volatile sequence
with high frequency. The Prophet model and LSTM neural
network are then applied to predict the sequences with low and
high sequency, respectively. The case analysis demonstrates that
this partitioning approach helps overcome the limitations of the
Prophet model in predicting sequences with high volatility, thereby
reducing the errors in the combined forecasting results.

Overall, the proposed method proves effective in improving the
EV charging load prediction accuracy by leveraging the advantages
of both the Prophet model and LSTM neural network, while
addressing the challenges posed by highly volatile sequences
through the utilization of the VMD technique.

In the future research, the combined prediction method
proposed in this paper will be applied to different fields (such as
photovoltaic power prediction) to further verify the prediction
performance and generalization ability of this method.
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