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Due to the inherent power output correlation and uncertainty, renewable energy
stations normally incur the deviation penalty in the day-ahead and real-time
electricity market. Meanwhile, shared energy storage operators have been
appearing to provide energy storage leasing services for neighboring
renewable energy stations. In this context, this paper presents a novel
optimization strategy to provide leasing services for renewable energy station
clusters while improving the utilization rate and revenue of shared energy storage
simultaneously. Especially, the proposed strategy utilizes a two-stage optimization
model to incorporate the overselling risk. In the first stage, a matching index is
defined to select a cluster of wind and solar power stations in the geographically-
close region, when a set of highly complementary stations are selected by
matching the typical output curve of the shared energy storage. In the second
stage, an optimization strategy is determined to explore the benefit and risk of
overselling for shared energy storage with the goal of maximizing the total
revenue, when the correlation of wind and solar power output is realized in
the scenario generation and sampling process. The results of numerical
experiments have demonstrated that employing a moderate overselling
method can provide an economical and efficient operational solution to
improving the utilization of shared energy storage.
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1 Introduction

Driven by the goal of low-carbon transformation in the modern power system,
renewable energy resources (RES), such as wind and solar power generations, have
developed rapidly in recent years. However, the volatility and intermittency of wind and
solar power generations have become prominent issues, which brings severe challenges to the
stable and reliable operation of power systems. Energy storage, with flexible charging and
discharging capabilities, is widely used to improve RES accommodation and reduce the
deviation penalties of RES (Kousksou et al., 2014; Luo et al., 2015). The existing energy
storage applications include individual energy storage (IES) and shared energy storage (SES).
IES is constructed by its investor, while the construction cost is high (Qiu et al., 2023). SES is
a feasible and economical solution for RES to obtain the use rights of energy storage
considering the temporal complementarity and various demand patterns among different
users (Wang et al., 2013; Dongwei et al., 2020; Chen et al., 2022a). SES operationmode is: SES
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operators provide renewable energy stations with energy storage
leasing services; renewable energy stations utilize the energy storage
resources by signing contracts with operators to save the cost of
independent configuration of energy storage devices and deviation
penalties (Zheng et al., 2021; Song et al., 2022). Nevertheless, in the
actual application of SES, there may be situations where energy
storage capacity is reserved but not actually utilized, which leads to
the low utilization of SES. Therefore, to improve the low utilization
of SES, it is necessary to screen renewable energy stations that are
matched with SES and maximize the utilization and revenue of SES
considering overselling risk.

Some scholars have studied the operational leasing mechanism
of SES, focusing on the charging and discharging strategy and
storage capacity allocation of SES. The research (Han et al.,
2023a) proposes a model for shared energy storage dynamic
capacity leasing, revealing the essence of improving revenues
through SES. Some researchers propose a peer-to-peer (P2P)
energy trading framework that allows producers and consumers
to share distributed solar and storage within a community and
allocate the SES capacity fairly (He et al., 2021). The research (Zhong
et al., 2020) focuses on community households and concentrates
energy storage within the region while gaining leasing income
through leasing services, based on optimizing the charging and
discharging strategy of SES. Some researchers introduce an
agreement leasing model that separates the ownership and
operation rights of energy storage power stations (Liu et al.,
2023). The research (Xiao et al., 2022) presents a new energy
storage sharing framework that provides strategies for energy
capacity allocation and power capacity allocation. The research
(Sun et al., 2020) adopts a sharing leasing strategy on a per-user
basis, where users lease energy storage mainly to profit from
electricity price differentials in the spot market and participate in
the ancillary services market. The robust reliability evaluation model
based on the minimum volume enclosing ellipsoid algorithm is
established to evaluate the power system reliability, while
considering the correlations among renewable energy sources
(RESs) and their uncertainties (He et al., 2023). The research
(Han et al., 2023b) proposes an optimization model based on the
chance-constrained goal programming to set up an internal energy
balance mechanism to make full use of the complementary energy
consumption characteristics of different DCs considering the
renewable energy uncertainty. To take full advantage of the
complementarity of MESs and improve the power system
economic operation, the research (Ding et al., 2022) proposes the
cascaded utilization of MES carriers which would lead to higher
energy efficiency and lower operation costs. The research (Tao et al.,
2018) sets up a multi-stage stochastic programming (MSSP) model
to address uncertainties in the expansion co-planning problem of
natural gas and power networks. The research (Zhang et al., 2021)
summarizes the benefits and disadvantages of various ESSs and
analyzes a variety of ESS evaluation indicators. Multi-stage
stochastic programming is developed to address the uncertainties
in the joint energy and reserve dispatch model, where the decisions
are made sequentially with the uncertainties being revealed
gradually over stages (Runzhao et al., 2020). However, these
studies do not take into account the waste of energy storage
resources due to the low energy storage utilization rate. In
addition, the existing researches on the SES leasing mechanism

only focus on the application for fixed demanders, while ignoring
the impact of similar output characteristics of demanders with SES
on utilization rate. To address this issue, this paper proposes a two-
stage model. In the first stage, a matching index is defined to select a
cluster of wind and solar power stations in the geographically-close
region, when a set of highly complementary stations are selected by
matching the typical output curve of the SES. The matching
mechanism provides a RES cluster whose leasing demand
matches the charging and discharging curve of SES with a high
degree for the second stage. In the second stage, an optimization
strategy is determined to explore the benefit and risk of overselling
for SES with the goal of maximizing the utilization rate of the SES
and the total profit.

To implement the operation strategy of SES considering
overselling risk, the crucial issue is to accurately predict the
actual energy storage utilization rate of renewable energy stations.
First, the overselling method refers to the sales behavior that exceeds
the supplier’s maximum supply (Zhijun et al., 2023). It is widely used
in fields such as cloud computing services, airlines, and hotels. In the
context of cloud computing services, it refers to the complex virtual
machine placement problem in IaaS environments. The research
(Tomás and Tordsson, 2014) implements an autonomic risk-aware
overbooking architecture capable of increasing the resource
utilization of cloud data centers by accepting more virtual
machines than physically available resources, which shows a
50 percent increment in resource utilization with acceptable
performance degradation. In the airline industry, it refers to
selling more tickets than the actual number of seats. Some
passengers frequently cancel or fail to board flights, resulting in
empty seats (i.e., available resources) on the flights, so that some
seats can be oversold to maximize seat utilization and revenue.
However, there are times when passengers actually show up at the
gate, which results in overbooked seats, and airlines will compensate
these passengers financially. Therefore, it is necessary to find a
balance between seat utilization and overselling penalty. The
research (Alavi Fard et al., 2019) constructs a wealth function to
set optimal overbooking strategies for flights, which views
overbooking as a stochastic loss exposure based on the stochastic
market average airfare and overbooking exposure. However, few
works have addressed the problem of the low actual utilization of
energy storage based on the overselling method. Similar to the
aforementioned services, SES provides services with higher
charges but lower resource utilization, making it crucial to
maximize the utilization of the capacity of SES. Due to the non-
timely delivery features of SES capacity resources, it is feasible to
oversell when submitting energy storage capacity resources and the
fact that it offers capacity leasing services by putting up bidding for
capacity rather than electricity resources in the day-ahead market.
Therefore, in the field of power system, overselling of SES refers to
determining the overselling power of ESS by solving an optimal
overselling model, aiming to increase the profit by improving the
utilization rate of SES.

Some studies compare the common characteristics of the power
and airline industries and introduce the concept of overselling
operations to the power industry (Sioshansi and Vojdani, 2001),
but only limited to theoretical analysis. Some researchers verify the
feasibility of ESS overselling operational strategies but do not
consider the integration of renewable energy sources
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(Lombardi and Schwabe, 2017). Some researchers study the price
arbitrage and frequency regulation services of solar and storage
sharing under overselling risk but do not consider overselling risk
for various application scenarios, such as energy storage capacity
leasing (Chen et al., 2022b). In this paper, a novel two-stage model is
proposed for SES providng leasing services to renewable energy
stations. We first select matched demanders considering the output
similarity between SES and renewable energy stations. Based on the
selected cluster of wind and solar power stations, scenarios
predicting RES actual leasing demand are generated by non-
parametric kernel density estimation and Copula function. Due
to the randomness and the correlation of renewable energy output
between wind farms and solar plants in the same region, a large
number of scenarios are generated and reduced for analysis and
computation to accurately predict the wind and solar output, thus
obtaining reliable actual energy storage leasing demand of the wind
and solar power stations cluster. By considering its randomness and
correlation, a suitable wind and solar joint output model is
established and typical scenarios are generated, which is
important for the optimization model considering the overselling
strategy in the second stage. Then an optimization model for
maximizing the profit of SES considering the overselling risk is
established based on the selected demanders. The contributions of
this paper are summarized as follows.

(1) The matching mechanism based on a weighted matching degree
between SES and renewable energy stations is first presented to
improve the utilization rate of SES. Based on the matching
degree, a cluster of renewable energy stations is selected in
which leasing demand has a high degree of matching the
charging and discharging curve of SES.

(2) Due to the uncertainty and correlation of wind and solar power
output in the same region, this paper proposes a scenarios-
generation approach considering the complementarity of wind
and solar power output to obtain a reliable prediction of actual
leasing demand.

(3) An optimized leasing model of the SES based on an overselling
scheme is proposed in the second stage. In the overselling
scheme, the SES fully utilizes its energy storage capacity to
mitigate energy deviations of the renewable energy stations. On
this basis, the SES makes decisions on the actual leasing capacity
and overselling power through the model to maximize the
profit.

The rest of this paper is organized as follows: Section 2
introduces the framework that the SES provides demanders with
leasing services for the use of energy storage. Section 3 proposes a
two-stage optimization model. Section 4 analyzes the result through
the simulation. Section 5 summarizes the whole paper and gives the
conclusion.

2 The framework of leasing services
provided by SES

The framework of SES providing leasing services for renewable
energy stations in the day-ahead and real-time market is shown in
Figure 1. The system contains the following subjects, shared energy

storage operators and renewable energy stations and distribution
network.

Considering the uncertainty of RES output, the actual output
often deviates from the day-ahead market clearing, resulting in
significant power imbalance deviations in the real-time market
(Yang et al., 2023). The real-time market establishes a penalty
mechanism for output deviations. SES can utilize the
complementarity of wind and solar power stations in real-time
market generation deviations to meet users’ energy storage
demand with minimal investment in energy storage. At the same
time, the unit cost of SES is lower than IES, which can reduce the
total investment cost of energy storage stations and shorten the
investment payback period for energy storage. As can be seen in
Figure 1, the renewable energy stations can obtain the use rights of
energy storage in a certain period of time from the SES leasing
market without a huge investment in constructing energy storage
equipment. In this way, SES can provide reserves for RES in order to
reduce the deviation penalty of RES forecast error on day-ahead
market clearing operation.

2.1 Transaction considering overselling risk

The transaction stage between renewable energy stations and SES
can be divided into two parts: the day-ahead market and the real-time
market. In the day-ahead market, wind and solar power stations report
their leasing demand 1 day in advance to reduce the deviation penalty
caused by volatility. In the real-time market, SES provides charging and
discharging services to the cluster of renewable energy stations, and
determines the optimal overselling power and charging and discharging
strategy to maximize the profit of SES. Renewable energy stations pay
leasing service fees daily. Considering the sustainability of SES, after one
operating cycle, the capacity of the energy storage station is restored to
its initial state. When the next transaction occurs, the energy storage
leased in the previous period will be retrieved by the SES operator and
then supplied to meet the leasing demand of wind and solar power
stations in the next period. Thus, the renewable energy stations
collaborate with SES to complete transactions in one cycle.

To improve the actual utilization rate and economic efficiency of
SES during the transaction, this paper introduces a novel operation
strategy considering overselling risk. First, the predicted actual
leasing demand is solved by a scenario-generation method based
on non-parametric kernel density estimation and Copula function
considering the correlation of wind and solar power output. Then,
SES leases energy storage power in excess of its maximum supply
based on the actual energy storage utilization and next determines
the equilibrium between the net revenue and the overselling penalty
by solving a revenue optimization model aiming at maximizing the
SES’s profit.

The following assumptions are made in this paper.

(1) When the capacity of both the renewable energy stations and the
SES stations is small, they are both considered recipients of
market prices, and the clearing power will be accepted by the
market (He et al., 2017; Díaz et al., 2019). It is assumed that the
renewable energy stations and SES stations are connected to the
main grid through the same node, and their market prices can
be considered the same (Wang et al., 2022).
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(2) Considering cost inefficiency and the small sizing of the cluster
of renewable energy stations, it is assumed that they do not
configure their own IES stations. In addition, this paper mainly
considers the leasing mechanism of SES, and if the renewable
energy stations are partially configured with IES stations and
partially not, it needs to consider the complexity of mixing IES
and SES.

2.2 Leasing mechanism of SES

As the lessor of energy storage, SES operators need to establish
the billing method and leasing prices for leasing energy storage.
Renewable energy stations, act as demanders and lease energy
storage based on these prices. Given that the capacity of energy
storage directly reflects the size of the user’s energy storage demand
and each charging and discharging cycle during energy storage usage
results in certain degradation to the battery life. Therefore, this paper
proposes a hybrid billing method (Li et al., 2022) that takes into
account both the energy storage capacity demand and the charging
and discharging power. A method is established to calculate the
energy storage capacity demand based on the charging and
discharging demand curve of the renewable energy stations,
including power demand and capacity demand.

(1) Power demand Pi
cap: The rated power of energy storage limits

the maximum charging and discharging power of SES.
Therefore, the power leasing demand of renewable energy
stations is determined by the maximum value of the daily
charging and discharging power, which can be expressed as
follows:

Pi
cap � max Pc

i,t, P
d
i,t( ) (1)

where Pc
i,t and Pd

i,t represent the charging and discharging power
provided by SES to the renewable energy station i, respectively.

(2) Capacity demand Ei
cap: The energy storage state varies with the

fluctuation of charging and discharging power throughout the
day. The variation in energy storage state over a certain period

reflects the cumulative effect of energy input and output during
different time intervals. To ensure the security of the energy
storage, the energy storage state should be maintained within a
constrained range that is determined by the energy storage
capacity and the upper and lower limits of the state of charge.
Therefore, within an optimization period, the energy storage
state should fluctuate within a certain interval, which represents
the effective capacity of energy storage within that period. The
capacity demand Ei

cap is calculated corresponding to the
charging and discharging power of a renewable energy
station based on this principle.

First, the energy state of energy storage at time t depends on the
energy state at time t− 1 and the energy change during the 1-h
timescale Δt, as follows:

Ei,t � Ei,t−1 + ηcPc
i,t − Pd

i,t/ηd( ) · Δt (2)

where Ei,t and Ei,t-1 are the energy state of the energy storage for the
renewable energy station i at time t and t-1 during the time period
Δt, respectively; ηc and ηd represent the charging and discharging
efficiency of the SES, respectively.

In addition, the initial and the final energy state of energy storage
are equal during the optimization period, as follows:

Ei,0 � Ei,T (3)
where Ei,0 is the initial energy state of energy storage in a dispatch
cycle and Ei,T is the final energy state of energy storage in a dispatch
cycle for the renewable energy station i.

Then, the energy capacity requirement of the energy storage can
be determined considering a 1.1-fold energy storage capacity margin
for the uncertainty in renewable energy output, which is
calculated by:

Ei
cap � 1.1 · Ei,t

max − Ei,t
min( ) (4)

where Ei,t
max and Ei,t

min are the maximum and minimum energy
storage states within the scheduling period by calculating and
comparing the energy storage state for each time period,
respectively.

In summary, the hybrid billing method of SES is:

FIGURE 1
Framework of SES to provide leasing services.
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Rre � R1
re + R2

re (5)
where Rre is the total leasing revenue of SES, which consists of the
energy storage capacity demand cost R1

re and the charging and
discharging power cost R2

re.
The revenue of energy storage capacity demand is calculated by:

R1
re � αPi

cap + βEi
cap (6)

in which α and β are the leasing price per unit of energy capacity and
power, respectively.

The revenue of the charging and discharging power is
calculated by:

R2
re � ps,re

t ·∑T
t�1

Pt
i,c + Pt

i,d( ) (7)

where ps,re
t is the leasing price per unit of SES.

2.3 The framework of two-stage
optimization model

The SES implements a two-stage optimization model to improve
the utilization and increase the revenue of SES by incorporating the
overselling risk. The optimization strategy is shown in Figure 2.
First, based on the uncertainty of the renewable energy power
generation, a metric quantifying the correlation of output
fluctuations is established. SES selects a cluster of renewable
energy stations with high compatibility to provide leasing
services. Secondly, overselling behavior of SES can bring
considerable overselling revenue. However, improper operation
may lead to the embarrassment of being unable to provide the

promised service in a timely manner when called upon, and a
penalty must be paid for that. Therefore, the key to the operation
strategy lies in determining the optimal overselling power of SES, so
as to maximize the overselling operation revenue for SES while
considering both conditions mentioned above.

As can be seen in Figure 2, to improve the utilization and increase
the revenue of SES, the research of this work is divided into two steps:
matching degree calculation for RES screening and scenario-based
optimization for SES operation. In the first stage, the matching
degree is calculated for selecting a cluster of wind and solar power
stations in the geographically-close region, which is matched with the
typical output curve of the SES best. In the second stage, to maximize
the utilization rate of the SES and the total profit, an optimization
strategy for SES is determined considering overselling risk.

3 Matching degree calculation for RES
screening

The charging and discharging behavior of SES is closely related
to the fluctuation of the leasing demand for renewable energy
station. Based on the similarity between the typical output curve
of SES and the demand curve of the renewable energy station cluster,
the compatibility is defined to quantify the similarity between the
two curves. It is calculated as the average similarity between the two
curves at each time interval throughout the day. The higher the
similarity, the better the match between the renewable energy station
cluster and the SES. By selecting a cluster of wind and solar stations
that complement each other well and are most compatible with the
SES, leasing services can be provided to improve the utilization
of SES.

FIGURE 2
Two-stage optimization model for SES providing leasing services.
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To obtain the typical charging and discharging curves of SES, the
typical characteristics can be extracted from the operating curves of
energy storage systems under specific application scenarios. By
relying on the application scenarios where SES meets the leasing
demand for reducing deviation assessment in renewable energy
stations, the clustering analysis is applied to the yearly charging
and discharging power curves of SES. The most optimal charging
and discharging curves are aggregated from the storage operation
curves. Then the typical charging and discharging curves serve as
inputs to the matching model. According to the matching model, a
selection is made from the renewable energy station cluster to find
the cluster of renewable energy stations that best matches the
charging and discharging curves of SES for providing leasing
services.

The trend of a curve can determined through changes in slope
(Liu et al., 2021). Slope correlation is an analytical method based on
the slopes of curves. We can calculate the slope correlation between
two curves to obtain a measure of compatibility, assigning different
weights to different ranges or intervals, the correlation function
between the typical charging and discharging curve and the leasing
demand curve of renewable energy station cluster at each time
interval, ψ(t), is calculated by:

ψ t( ) � 1

1 + 1
τs

ΔPs
t

Δt − ∑NS

i�1
1
τi

ΔPs,re
i,t

Δt( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (8)

where Ps
t is the typical power output of SES and Ps,re

i,t is the leasing
demand of RES i; Ns is the renewable energy stations amount; ΔPs

t is
the power output difference of SES between adjacent periods; ΔPs,re

i,t

is the leasing demand difference of i between adjacent periods; ΔPs
t

and ΔPs,re
i,t are calculated respectively as:

ΔPs
t � Ps

t+1 − Ps
t (9)

ΔPs,re
i,t � Ps,re

i,t+1 − Ps,re
i,t (10)

where Ps
t+1 is the typical power output of SES at time t+1 and Ps,re

i,t+1 is
the leasing demand of RES i at time t+1.τs and τi restrict the power
output standard deviation of SES s and renewable energy station i,
respectively, which can be expressed as follows:

τs �

����������������
1
T
∑T
t�1
αk Ps

t − Ps,Lav
t[ ]2√√

(11)

τi �

�����������������
1
T
∑T
t�1
αk Ps,re

i,t − PLav
i,t[ ]2√√

(12)

where αk is the weight assigned to the interval; Ps,Lav
t , PLav

i,t are the
average of the power output of SES and the average of the leasing
demand of renewable energy station i at 24 time intervals
respectively, which are calculated by:

Ps,Lav
t � 1

T
∑T
t�1
Ps
t (13)

PLav
i,t � 1

T
∑T
t�1
Ps,re
i,t (14)

where t � 1, 2, . . . , 24 are 24 time intervals and T = 24.

Since the time interval is 1 hour, i.e., Δt � 1, the formula ψ(t)
can be reduced to:

ψ t( ) � 1

1 + ΔPs
t

τs
− ∑NS

i�1
αk ·ΔPs,re

i,t

τi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (15)

Then the average matching degree of SES s and the renewable
energy stations i over the time range T, ε, is calculated by:

ε � 1
T
∑T
t�1
ψ t( ) (16)

where the matching degree ε ranges from 0 to 1. The higher the
matching degree, the greater the complementary use of SES, which
improves its utilization. However, the drawback is that frequent
charging and discharging can shorten the lifespan of energy storage,
impacting its economic benefits.

The upper and lower constraints of the energy storage capacity
demand of renewable energy station are expressed as follows:

∑NS

i�1
Ei

max ≤Es,max (17)

∑NS

i�1
Ei

min ≤Es,min (18)

where Es,max and Es,min represent the upper and lower limits of the
storage capacity of SES, respectively; Ei

max and Ei
min are the upper

and lower limits of the energy storage capacity demand of renewable
energy station i, respectively.

The upper and lower constraints of the energy storage power
demand of renewable energy station are expressed as follows:

∑NS

i�1
Pi

max ≤Ps,max (19)

∑NS

i�1
Pi

min ≤Ps,min (20)

where Ps,max and Ps,min represent the upper and lower limits of the
storage power of SES, respectively; Pi

max and Pi
min are the upper

and lower limits of the energy storage power demand of renewable
energy station i, respectively.

The upper and lower constraints of charging power are
expressed as follows:

∑NS

i�1
Pi,c
max ≤Pc

s,max (21)

∑NS

i�1
Pi,c
min ≤Pc

s,min (22)

where Pc
s,max and Pc

s,min represent the upper and lower limits of the
charging power of SES, respectively; Pi,c

max and Pi,c
min are the upper

and lower limits of the charging power demand of the renewable
energy station i, respectively.

The upper and lower constraints of discharging power are
expressed as follows:

∑NS

i�1
Pi,d

max ≤Ps,max
d (23)
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∑NS

i�1
Pi,d

min ≤Ps,min
d (24)

where Ps,max
d and Ps,min

d represent the upper and lower limits of the
discharging power of SES, respectively; Pi,d

max and Pi,d
min are the

upper and lower limits of the charging power demand of i,
respectively.

4 Scenario-based optimization for SES
operation

4.1 Scenario generation

The wind and solar output scenario generation method based on
non-parametric kernel density estimation and Copula function is an
effective method to simulate the randomness and the correlation of
renewable energy output in the same region. Non-parametric kernel
density estimation is a non-parametric statistical method to estimate the
probability density function of continuous random variables with
Gaussian distribution as the kernel function (Gu et al., 2021). Copula
function characterizes the probabilistic correlation between multiple
random variables (Yu and Ghadimi, 2019), which is commonly used
to study the correlation between wind and solar power output. By
considering its randomness and correlation, a suitable wind and solar
joint output model is established and typical scenarios are generated.

Based on historical power output data for wind and solar power
plants over the past n days, Gaussian kernel functions are selected to
generate probability density functions of wind and solar power
output for 24 time periods within a day utilizing a non-
parametric kernel density estimation method. The cumulative
distribution function is calculated based on the probability
density function of power output for each time period. Then, the
joint distribution function of wind and solar power output is
established using the Frank-Copula function for each time period.

The extent to which the point xt contributes to the estimate f̂(·)
is determined by calculating the distance from point xt to the
neighborhood of xt. The estimate of the probability density
function at point xt, f̂(·) be as follows:

f̂ xt( ) � 1
nh
∑n
d�1

K
xt −Xd

t

h
( )

f̂ yt( ) � 1
nh
∑n
d�1

K
yt − Yd

t

h
( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (25)

where xt and yt are the wind and solar output at time t;Xt
d and Yt

d are
the wind and solar output at time t in the day d; h is the step. The
Gaussian kernel function K (·) is calculated by:

K
xt −Xd

t

h
( ) � 1���

2π
√( ) exp − xt −Xd

t( )2
2h2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
K

yt − Yd
t

h
( ) � 1���

2π
√( ) exp − yt − Yd

t( )2
2h2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (26)

The cumulative distribution functions F̂(xt) and F̂(yt) of the
wind and solar power output are derived from the probability
density function of each time period, and then the joint

distribution function of the wind and solar output for each time
period is established based on the Frank-Copula function, which is
expressed as follows:

F̂ xt, yt( ) � C F̂ xt( ), F̂ yt( )( ) (27)

where C (·) is the two-dimensional Frank-Copula function.
Sampling the joint distribution function for each time interval

and using cubic spline interpolation to solve for the sampled wind
and solar power output corresponding to the cumulative
probabilities in each time interval, the sampled wind and solar
power output can be expressed as follows:

xt � F̂xt( )−1 ut( )
yt � F̂yt( )−1 vt( )

⎧⎪⎨⎪⎩ (28)

where ut and vt are calculated by the empirical cumulative
distribution function.

Then using K-means to cluster the sampled samples in order to
reduce the number of scenarios to a specified threshold, and
calculating the probability of occurrence for each scenario.

4.2 Revenue optimization model
considering overselling risk

The overselling behavior of SES can bring considerable revenue to
operators. However, if not operated properly, they may face the
embarrassment of being unable to provide the promised services
when called upon, resulting in a penalty payment. Therefore,
determining the optimal overselling power is crucial for SES. This
paper will establish a scenario-based optimization model for SES
considering overselling risk. The uncertainty of wind and solar power
output introduces certain the overselling risk. Therefore, a scenario-
generation method based on non-parametric kernel density estimation
and Copula function considering the correlation of wind and solar power
output will be taken into account.

The objective function of the model can be represented as:

Rs,net � Rre − C1 − C2 − C3 (29)
where Rs,net is the net revenue; Rre is the leasing services revenue; C1 is
the penalty for overselling; C2 is the power purchase cost and C3 is
the loss cost. They can be expressed as follows.

4.2.1 Leasing services revenue

Rre �∑Ns

i�1
αPi

cap + βEi
cap + ps,re

t ·∑T
t�1
Ps,re
i,t )⎛⎝ (30)

Ps,re
i,t � Pt

i,c + Pt
i,d (31)

where Rre is the leasing services revenue; Ps,re
i,t is the leasing demand

for SES at time t, which is composed of the charging power and
discharging power of renewable energy station i.

4.2.2 Modeling the overselling risk
After considering the correlation between wind and solar power

output, the actual output of the renewable energy station alliance is
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predicted. Obviously, the overall demand of the renewable energy stations
is lower than the sum of the leasing demand submitted by each station in
advance considering the correlation. Therefore, SES has potential to gain
overselling profit. A penalty for overselling operation which can not fulfill
the power leasing participation is expressed as follows:

C1 � ∑Nw

w�1
∑T
t�1

ςw · max ∑Ns

i�1
Preal
w,i,t − Pout

w,t , 0⎛⎝ ⎞⎠ · pobey
t Δt⎡⎢⎢⎣ ⎤⎥⎥⎦ (32)

Pout
w,t � Pd

w,t − Pc
w,t (33)

where ςw is the probability of scenariow occurring; Pout
w,t is the leasing

power amount that can be provided in real time by SES in the
scenario w, which is a decision variable; Preal

w,i,t is the actual demand of
i in scenario w after considering the correlation between wind and
solar power output; pobey

t is the penalty coefficient at time interval t.
The overselling power amount should be the leasing amount

previously signed by SES minus the power amount it can currently
provide in real time, which is calculated by:

Poversold
t � ∑Nw

w�1
ςw · (∑Ns

i�1
Pi,t − Pout

w,t)⎡⎣ ⎤⎦ (34)

4.2.3 Calculating the power purchase cost and loss
cost

From the perspective of SES, the total cost can be calculated by
purchase cost and loss cost. The power purchase cost is calculated by:

C2 � ∑Nw

w�1
∑T
t�1

ςw · ρbt P
buy
t − ρstP

sale
t( )[ ] (35)

where C2 presents the purchase cost of SES; ρbt and ρst represent the
purchase price and selling price of electricity interacting with the power
grid, respectively; Pbuy

t and Psale
t represent the power amount of

electricity purchased from and sold to the power grid, respectively.
The loss cost of SES is calculated by:

C3 � ∑Nw

w�1
∑T
t�1

ςw · δ · Pd
w,t + Pc

w,t( )Δt[ ] (36)

where δ represents the operating cost per unit power of the SES.
In the objective function, input variables include the leasing

demand Ps,re
i,t , the leasing price ps,re

t . The purchase price from the
power grid and selling price of electricity ρbt , ρ

s
t . The actual demand

Preal
w,i,t in the scenario w considering wind-solar correlation; Decision

variables include optimal overselling power Poversold
w,t and real-time

leasing power Pout
w,t that are provided by SES.

4.3 The constraints of revenue optimization
model

Then, the constraints in the optimal revenue model are
expressed as follows.

4.3.1 SES charging and discharging power
constraints

Since the charging and discharging behavior cannot be carried
out at the same time, the state variables are introduced to the upper

power limit. SES charging and discharging power constraints are
expressed as follows:

0#Pc
w,t#�Puc

t (37)
0#Pd

w,t#�Pud
t (38)

0#uc
t + ud

t#1 (39)
where uct and udt are the charging and discharging status bits of the
SES, respectively; �P is the maximum value for charging and
discharging power of the SES.

It can be seen that the constraints Eqs 38-40 are non-linear
constraints and the Big-Mmethod is used to linearise the non-linear
constraints.

4.3.2 SES state of charge constraints
The energy storage should keep its SOC within its energy

capacity limits and hold enough energy for each time interval to
provide leasing services, which is expressed as follows:

SOC min · E max ≤Ew,t ≤ SOCmax · E max (40)
where SOCmin and SOCmax are the maximum and minimum SOC
allowed by the SES owners, respectively.

The energy state of energy storage at time t depends on the
energy state at time t-1 during the time period Δt in scenario w, as
follows:

Ew,t � Ew,t−1 + ηcPc
w,t −

Pd
w,t

ηd
[ ]Δt (41)

The initial and the final energy states are equal during the
optimization, as follows:

Ew,0 � Ew,T (42)
where ηc and ηd represent the charging and discharging
efficiency of the SES, respectively; Ew,t represents the state of
charge of the SES in the scenario w; Ew,0 is the initial energy state
of energy storage in the scenario w and Ew,T is the final energy
state of energy storage in the scenario w during a dispatch cycle
for SES.

4.3.3 Power balance constraint of SES
The sum of the actual demand of renewable energy station

cluster, the power amount of electricity purchased from and
sold to the power grid should be equal to the leasing power
amount that can be provided in real time by SES, and can be
expressed as:

∑Ns

i�1
Preal
w,i,t + ub

tP
buy
w,t − us

tP
sale
w,t � Pc

w,t − Pd
w,t (43)

where ubt , u
s
t are the purchasing and selling status bits of the SES.

5 Case studies

This section solves a two-stage optimization model that
considers an overselling risk for a SES operator providing leasing
services in the MATLAB R2022b environment. The model is solved
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using the widely applied commercial software CPLEX 12.5 in the
YALMIP toolbox. The differences in operational strategies between
the overselling mode and the conventional mode of the SES operator
are compared, as well as their impacts on revenue.

5.1 Test system settings

Historical RES data from the 2019 Elia dataset
(OpenDataElia, 2019) are used to generate wind and solar
power output data under different scenarios and the required
dispatch power. 20 wind farms and 20 solar farms are initially
selected from the Elia dataset, and the complementary 4 wind
farms and 4 solar farms with the highest matching degree are
selected to provide energy storage leasing services. The case study
includes four wind farms, four solar stations, and one SES. Each
wind farm and solar station have an installed capacity of
100 MW. The difference between the required dispatch power
and the actual output curve of renewable energy is used as the
demand curve for energy storage utilization by each renewable
energy Power Plant. In this paper, the demand curve is a known
amount derived from historical data.

The installed capacity of the SES is 30 MW/60 MWh, based on
data from reference (Wang et al., 2023). The leasing price of the SES
is assumed to be a known parameter since this study primarily
focuses on the operational strategy of the SES. Additionally, the
leasing price of the SES should be lower than the deviation penalty
price. Therefore, the leasing unit price for the SES is set at $42/MW.
The leasing price per unit of energy capacity and the leasing price per
unit of power are denoted as α � 204.14/MWh and β � 58.29/MW.
Reasonable assumptions for actual energy storage parameters are
provided in Table 1.

5.2 Selection of renewable energy stations

By comparing 40 renewable energy stations in a region, select the
best complementary 4 wind power stations and 4 solar power
stations with the highest matching degree between total leasing
demand and SES output curve. The leasing demand of the
40 renewable energy stations are summarized in Figure 3.

To obtain the combination of renewable energy stations with the
highest matching degree to the SES, it is necessary to compare the
charging and discharging curves of the SES with the leasing demand of
the renewable energy stations. Using the typical charging and discharging
curve of the SES as a reference, different weights are assigned to different
intervals.When the leasing demand of the renewable energy stations falls
into different intervals, the weights are assigned as α1 � 0.6, α2 �
0.3, α3 � 0.1 accordingly. The typical charging and discharging curve
of the SES is derived by clustering the operational data of SES over a year
in this scenario and is considered as a known input in this paper. The
weights for different intervals are shown in Table 2; Figure 4.

The matching degree of each cluster of renewable energy stations
is calculated based on weights. The matching degrees of all eligible
combinations of renewable energy stations are calculated, and the top
five combinations with the highest matching degrees are 0.6440,
0.5567, 0.4833, 0.4829 and 0.4454 respectively. It can be seen that
the highest matching degree is 0.6440. The output of the selected
clusters of wind farms and solar farms is shown in Figures 5, 6, the
leasing demand and total demand are shown in Figure 7. As can be

TABLE 1 SES parameters.

ηc ηd α SOCmin SOCmax Pmax (MW) Emax

0.95 0.95 0 0.1 0.9 30 60 MW h

FIGURE 3
The leasing demand of the 40 renewable energy stations.

TABLE 2 Weights for different intervals.

Intervals Weight

[Ptypical
t − 5, Ptypical

t + 5] α1 � 0.6

[Ptypical
t − 8, Ptypical

t − 5] α2 � 0.3

[Ptypical
t + 5, Ptypical

t + 8] α2 � 0.3

[−Pmax , Ptypical
t − 8] α3 � 0.1

[Ptypical
t + 8, Pmax] α3 � 0.1

FIGURE 4
Weights for different intervals.
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FIGURE 5
Day-ahead bidding amount and actual output of the wind farms.

FIGURE 6
Day-ahead bidding amount and actual output of the solar farms.
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seen from Figure 7 that the leasing demand of selected renewable
energy station is complementary and the aggregate leasing demand is
similar with the SES typical output curve.

5.3 Optimization of leasing services

Using the proposed scenario generation method, 1,000 sets of
wind-solar output data considering their correlation are obtained.
These 1,000 sets of data are then clustered into 3 typical daily wind-
solar output scenarios. The correlation of wind-solar output and the
generated output curves for each scenario are shown in Figure 8.

The Frank-Copula function is used to generate random points
according to the probability, the horizontal and vertical coordinates
of the generated points are the per unit of the wind farm and PV
power plant, and the generated random points obey the joint output
characteristics of the wind farm and PV power plant. Based on the
Frank-Copula function, the joint distribution function of the power
output of the wind farm and PV power plant is shown in Figure 8. It
can be seen that the binary Frank-Copula function has a thick tail,
the generated random points converge to the original function

according to the probability, reflecting the correlation between
the wind and solar power outputs from Figure 8.

The predicted actual leasing demand generated considering the
correlation between wind and solar outputs in three typical scenarios
is shown in Figure 9.

By comparing Figure 7; Figure 9, it can be observed that the day-ahead
leasing demand of the renewable energy stations is higher than the actual
leasing demand, indicating the profit potential of the overselling risk.

It is assumed that themarket regulatory agency imposes penalties for
overselling behaviors with the penalty coefficient set at 5 times the energy
market price. The cost of using energy storage in a scheduling cycle and
the revenue of the SES are calculated and compared by two schemes.

Scheme 1: SES leases energy storage without considering
overselling risk.

Scheme 2: SES leases energy storage and implements the optimal
overselling power.

In Scheme 1, renewable energy stations lease energy storage, and the
SES operator transfers the utilization right of energy storage. The
renewable energy stations determine the optimal leasing power
amount in advance to maximize their revenue. Through optimization
calculations, the daily total revenue of the renewable energy stations is
$7812.41. In Scheme 2, the overselling risk is considered. By solving the
optimization model for maximizing the revenue of SES, the optimal
overselling power for SES is obtained, thus maximizing the utilization of
energy storage, reducing resource idle time, and increasing SES revenue.
The curves depicting the actual leasing power, overselling power, and
predicted leasing power of the renewable energy station cluster for the
three generated scenarios are shown in Figures 10–12.

In Scheme 2, SES provides leasing services considering overselling
risk. The optimization results in three scenarios are shown in Figures
10–12. When the actual output of the renewable energy station cluster
exceeds the day-ahead bidding amount, SES is charging. However, most
of the time the actual output is lower than the day-ahead bidding
amount, SES is discharging, and most of the time the actual demand is
lower than the leasing power amount. Therefore, an appropriate
overselling method reduces the idle capacity of energy storage. As
can be seen from Figures 10–12 that SES can oversell the storage
power in multiple time periods without affecting the overall trend of the
energy supply for providing leasing services to renewable energy station.

FIGURE 7
The leasing demand of RES.

FIGURE 8
The Frank-Copula distribution function.

FIGURE 9
The predicted actual leasing demand for RES.
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The net revenues of SES in Scheme 1 and 2 are listed in Table 3.
By comparing the revenue of providing leasing services for

renewable energy stations with the same SES under two different
schemes, it can be concluded that considering an overselling risk can
significantly increase the revenue of SES leasing services. Although
there is a need to pay a certain penalty for unfulfilled services due to
overselling, the overall net revenue still increased by 22.6%, showing
a clear improvement in revenue.

5.4 Sensitivity analysis

To verify the validity of the two-stage model, sensitivity
analysis is performed. For stage 1, in order to demonstrate the
effect of matching degree on the SES utilization rate, two
parameters, the number of users and the type, are set for
validation, which has a direct effect on the matching degree.
For stage 2, in order to prove that the optimal overselling
power solved by the optimization model improves the SES
revenue, different amount of overselling power is set to verify
its impact on the revenue, which is analyzed as follows.

5.4.1 Impact of user number and types on SES
utilization rate

The degree of user complementarity and the number of users are
key factors influencing the economic viability of the operational model.
The SESmodel aims to improve SES utilization by integrating the usage
demands of all users, thereby reducing overall costs and enhancing the
economic viability of the project. Therefore, in this section, sensitivity
analysis is conducted by controlling the number of users and user types.
Table 4 illustrates how the SES utilization rate varies when the sensitivity
analysis was performed. The SES utilization rate changes with the
parameters of user number and types, which can be observed in Table 4.

From Table 4, it can be observed that as the number of users in the
renewable energy station increases, the utilization rate of SES also
increases, with the highest utilization rate achieved under the stage
1 screening mode. Comparing renewable energy stations selected
random and a high match under stage 1 screening with the same
number of users and types, the energy storage utilization rate is still
relatively high for the randommode but the leasing demand exceeds the
storage capacity. Thismeans that tomeet the leasing demand under this
mode, a larger capacity of SES needs to be allocated.

5.4.2 Impact of overselling power on SES revenue
In order to demonstrate the rationality of the optimal overselling

power, the revenue under different overselling power is analyzed by
calculating the revenue at 80%, 90%, 110%, and 120% of the optimal
overselling power. The optimal overselling power is denoted as
P_oversold. By using the overselling model described in Section 3.2,
the leasing revenue, overselling penalty, and net revenue of SES are
calculated and compared with the revenue under different
overselling power, as shown in Table 5.

As can be seen from Table 5 that the leasing revenue of the
SES increases with the overselling power increasing. However,
the net revenue of the SES increases initially and then decreases
as the overselling power increases, due to the overselling

FIGURE 10
Output curve considering overselling risk in scenario 1.

FIGURE 11
Output curve considering overselling risk in scenario 2.

FIGURE 12
Output curve considering overselling risk in scenario 3.
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penalty. The net revenue reaches its maximum at the optimal
overselling power.

6 Conclusion

This paper proposes an optimization model for providing leasing
services with SES under the overselling risk to maximize SES utilization
and revenue. Conclusions are drawn through actual case analysis. First,
the proposed leasing energy storage model for renewable energy
stations can reduce the deviation assessment cost and the one-time
investment cost of establishing energy storage. Then, the proposed
matching strategy can increase the utilization rate of SES. Moreover,
compared to the conventional energy storage sharing model, the
overselling mode can reduce the idle state of energy storage and
enhance the economic benefits of energy storage. However, excessive
overselling would result in higher penalties and reduce overall revenues.
Therefore, it is necessary to set a sensible level of overselling to obtain
optimal revenue. In the future, as the oversellingmethodmatures, it can
be considered to be included in the lease agreement terms, including
overselling prices, overselling power limits, overselling time, etc., which
will ensure that both lessors and demanders have a clear understanding
and constraints on the overselling services.
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TABLE 3 Net benefits of SES in Scheme 1, 2

SES Leasing revenue/$ Energy storage surplus grid revenue/$ Loss cost/$ Overselling penalty/$ Net revenue/$

Scheme1 12971.410 624.948 5783.941 — 7812.417

Scheme2 20954.874 1,272.339 5500.020 7150.064 9578.169

TABLE 4 Impact of user number and types on SES utilization rate.

User number and types 2WTs+2PVs
(random)

3WTs+2PVs
(random)

4WTs+4PVs
(random)

4WTs+4PVs (selected by
stage 1)

SES utilization rate 0.425 0.535 0.745 0.829

TABLE 5 Impact of overselling power on SES revenue.

80%P_oversold 90%P_oversold P_oversold 110%P_oversold 120%P_oversold

Leasing revenue/$ 16712.867 17842.139 20954.874 21100.682 21229.953

Overselling penalty/$ 5720.0511 6435.057 7150.064 7865.070 8580.076

Net revenue/$ 6765.134 7179.401 9578.169 9007.932 8422.197

Frontiers in Energy Research frontiersin.org13

Lan et al. 10.3389/fenrg.2023.1286045

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1286045


References

Alavi Fard, F., Sy, M., and Ivanov, D. (2019). Optimal overbooking strategies in the
airlines using dynamic programming approach in continuous time. Transp. Res. Part E
Logist. Transp. Rev. 128, 128384–128399. doi:10.1016/j.tre.2019.07.001

Chen, C., Li, Y., Qiu, W., Liu, C., Zhang, Q., Li, Z., et al. (2022a). Cooperative-game-
based day-ahead scheduling of local integrated energy systems with shared energy
storage. IEEE Trans. Sustain. Energy 13 (4), 1994–2011. doi:10.1109/tste.2022.3176613

Chen, Y., Beibei, W., and Bike, X. (2022b). Study on the coordination strategy of
sharing distributed photovoltaic energy storage hybrid operation mode considering
overselling. Trans. China Electrotech. Soc. 37 (7), 1836–1846. doi:10.19595/j.cnki.1000-
6753.tces.201566

Díaz, G., Coto, J., and Gómez-Aleixandre, J. (2019). Optimal operation value of
combined wind power and energy storage in multi-stage electricity markets. Appl.
energy 235, 2351153–2351168. doi:10.1016/j.apenergy.2018.11.035

Ding, T., Jia, W., Shahidehpour, M., Han, O., Sun, Y., and Zhang, Z. (2022). Review of
optimization methods for energy hub planning, operation, trading, and control. IEEE
Trans. Sustain. Energy 13 (3), 1802–1818. doi:10.1109/tste.2022.3172004

Dongwei, Zhao, Hao, Wang, Jianwei, Huang, and Xiaojun, Lin (2020). Virtual energy
storage sharing and capacity allocation. IEEE Trans. Smart Grid 11 (2), 1112–1123.
doi:10.1109/tsg.2019.2932057

Gu, B., Zhang, T., Meng, H., and Zhang, J. (2021). Short-term forecasting and
uncertainty analysis of wind power based on long short-termmemory, cloud model and
non-parametric kernel density estimation. Renew. Energy 164, 164687–164708. doi:10.
1016/j.renene.2020.09.087

Han, O., Ding, T., Zhang, X., Mu, C., He, X., Zhang, H., et al. (2023a). A shared energy
storage business model for data center clusters considering renewable energy
uncertainties. Renew. Energy 202, 2021273–2021290. doi:10.1016/j.renene.2022.12.013

Han, O., Ding, T., Zhang, X., Mu, C., He, X., Zhang, H., et al. (2023b). A shared energy
storage business model for data center clusters considering renewable energy
uncertainties. Renew. Energy 202, 2021273–2021290. doi:10.1016/j.renene.2022.12.013

He, G., Chen, Q., Kang, C., Xia, Q., and Poolla, K. (2017). Cooperation of wind power
and battery storage to provide frequency regulation in power markets. IEEE Trans.
Power Syst. 32 (5), 3559–3568. doi:10.1109/tpwrs.2016.2644642

He, L., Liu, Y., and Zhang, J. (2021). Peer-to-peer energy sharing with battery storage:
energy pawn in the smart grid.Appl. Energy 297117129, 117129. doi:10.1016/j.apenergy.
2021.117129

He, X., Ding, T., Zhang, X., Huang, Y., Li, L., Zhang, Q., et al. (2023). A robust
reliability evaluation model with sequential acceleration method for power systems
considering renewable energy temporal-spatial correlation. Appl. Energy 340,
340120996. doi:10.1016/j.apenergy.2023.120996

Kousksou, T., Bruel, P., Jamil, A., El Rhafiki, T., and Zeraouli, Y. (2014). Energy
storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120, 12059–12080.
doi:10.1016/j.solmat.2013.08.015

Li, X. S., Fang, Z., Li, F., Xie, S., and Cheng, S. (2022). Game-based optimal
dispatching strategy for distribution network with multiple microgrids leasing
shared energy storage. Proc. CEES, 1–15.

Liu, J., Chen, X., Xiang, Y., Huo, D., and Liu, J. (2021). Optimal planning and
investment benefit analysis of shared energy storage for electricity retailers. Int.
J. Electr. Power & Energy Syst. 126106561, 106561. doi:10.1016/j.ijepes.2020.
106561

Liu, Y., He, Q., Shi, X., Zhang, Q., and An, X. (2023). Energy storage in China:
development progress and business model. J. Energy Storage 72108240, 108240. doi:10.
1016/j.est.2023.108240

Lombardi, P., and Schwabe, F. (2017). Sharing economy as a new business model for
energy storage systems. Appl. energy 188, 188485–188496. doi:10.1016/j.apenergy.2016.
12.016

Luo, X.,Wang, J., Dooner, M., and Clarke, J. (2015). Overview of current development
in electrical energy storage technologies and the application potential in power system
operation. Appl. energy 137, 137511–137536. doi:10.1016/j.apenergy.2014.09.081

OPENDATAELIA (2019). Opendataelia. https://www.elia.be/en/grid-data/open-
data.

Qiu, W., Zhou, S., Yang, Y., Lv, X., Lv, T., Chen, Y., et al. (2023). Application prospect,
development status and key technologies of shared energy storage toward renewable
energy accommodation scenario in the context of China. Energies 16 (2), 731. doi:10.
3390/en16020731

Runzhao, Lu, Tao, Ding, Boyu, Qin, Jin, Ma, Xin, Fang, and Zhaoyang, Dong (2020).
Multi-stage stochastic programming to joint economic dispatch for energy and reserve
with uncertain renewable energy. IEEE Trans. Sustain. Energy 11 (3), 1140–1151. doi:10.
1109/tste.2019.2918269

Sioshansi, F., and Vojdani, A. (2001). What could possibly Be better than real-
time pricing? Demand response. Electr. J. 14 (5), 39–50. doi:10.1016/s1040-
6190(01)00207-x

Song, M., Meng, J., Lin, G., Cai, Y., Gao, C., Chen, T., et al. (2022). Applications of
shared economy in smart grids: shared energy storage and transactive energy. Electr. J.
35 (5), 107128. doi:10.1016/j.tej.2022.107128

Sun, L., Qiu, J., Han, X., Yin, X., and Dong, Z. (2020). Per-use-share rental strategy of
distributed BESS in joint energy and frequency control ancillary services markets. Appl.
Energy 277115589, 115589. doi:10.1016/j.apenergy.2020.115589

Tao, Ding, Yuan, Hu, and Zhaohong, Bie (2018). Multi-stage stochastic
programming with nonanticipativity constraints for expansion of combined
power and natural gas systems. IEEE Trans. Power Syst. 33 (1), 317–328.
doi:10.1109/tpwrs.2017.2701881

Tomás, L., and Tordsson, J. (2014). An autonomic approach to risk-aware data center
overbooking. IEEE Trans. Cloud Comput. 2 (3), 292–305. doi:10.1109/tcc.2014.2326166

Wang, C., Zhang, X., Xiong, H., and Guo, C. (2023). Distributed shared energy storage
scheduling based on optimal operating interval in generation-side. Sustain. Energy,
Grids Netw. 34101026, 101026. doi:10.1016/j.segan.2023.101026

Wang, W., Huo, Q., Zhang, N., Yin, J., Ni, J., Zhu, J., et al. (2022). Flexible energy
storage power station with dual functions of power flow regulation and energy storage
based on energy-sharing concept. Energy Rep. 8, 88177–88185. doi:10.1016/j.egyr.2022.
06.035

Wang, Z., Gu, C., Li, F., Bale, P., and Sun, H. (2013). Active demand response using
shared energy storage for household energy management. IEEE Trans. Smart Grid 4 (4),
1888–1897. doi:10.1109/tsg.2013.2258046

Xiao, J., Yang, Y., Cui, S., and Liu, X. (2022). A new energy storage sharing framework
with regard to both storage capacity and power capacity. Appl. Energy 307118171,
118171. doi:10.1016/j.apenergy.2021.118171

Yang, X., Fan, L., Li, X., andMeng, L. (2023). Day-ahead and real-timemarket bidding
and scheduling strategy for wind power participation based on shared energy storage.
Electr. Power Syst. Res. 214108903, 108903. doi:10.1016/j.epsr.2022.108903

Yu, D., and Ghadimi, N. (2019). Reliability constraint stochastic UC by considering
the correlation of random variables with Copula theory. IET Renew. Power Gener. 13
(14), 2587–2593. doi:10.1049/iet-rpg.2019.0485

Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., et al. (2021). A review of
technologies and applications on versatile energy storage systems. Renew. Sustain.
Energy Rev. 148111263, 111263. doi:10.1016/j.rser.2021.111263

Zheng, S., Huang, G., and Lai, A. C. (2021). Techno-economic performance analysis
of synergistic energy sharing strategies for grid-connected prosumers with distributed
battery storages. Renew. Energy 1781261, 1261–1278. doi:10.1016/j.renene.2021.
06.100

Zhijun, Ding, Song, Wang, and Changjun, Jiang (2023). Kubernetes-oriented
microservice placement with dynamic resource allocation. IEEE Trans. Cloud
Comput. 11 (2), 1777–1793. doi:10.1109/tcc.2022.3161900

Zhong, S., Qiu, J., Sun, L., Liu, Y., Zhang, C., and Wang, G. (2020). Coordinated
planning of distributed WT, shared BESS and individual VESS using a two-stage
approach. Int. J. Electr. Power & Energy Syst. 114105380, 105380. doi:10.1016/j.ijepes.
2019.105380

Frontiers in Energy Research frontiersin.org14

Lan et al. 10.3389/fenrg.2023.1286045

https://doi.org/10.1016/j.tre.2019.07.001
https://doi.org/10.1109/tste.2022.3176613
https://doi.org/10.19595/j.cnki.1000-6753.tces.201566
https://doi.org/10.19595/j.cnki.1000-6753.tces.201566
https://doi.org/10.1016/j.apenergy.2018.11.035
https://doi.org/10.1109/tste.2022.3172004
https://doi.org/10.1109/tsg.2019.2932057
https://doi.org/10.1016/j.renene.2020.09.087
https://doi.org/10.1016/j.renene.2020.09.087
https://doi.org/10.1016/j.renene.2022.12.013
https://doi.org/10.1016/j.renene.2022.12.013
https://doi.org/10.1109/tpwrs.2016.2644642
https://doi.org/10.1016/j.apenergy.2021.117129
https://doi.org/10.1016/j.apenergy.2021.117129
https://doi.org/10.1016/j.apenergy.2023.120996
https://doi.org/10.1016/j.solmat.2013.08.015
https://doi.org/10.1016/j.ijepes.2020.106561
https://doi.org/10.1016/j.ijepes.2020.106561
https://doi.org/10.1016/j.est.2023.108240
https://doi.org/10.1016/j.est.2023.108240
https://doi.org/10.1016/j.apenergy.2016.12.016
https://doi.org/10.1016/j.apenergy.2016.12.016
https://doi.org/10.1016/j.apenergy.2014.09.081
https://www.elia.be/en/grid-data/open-data
https://www.elia.be/en/grid-data/open-data
https://doi.org/10.3390/en16020731
https://doi.org/10.3390/en16020731
https://doi.org/10.1109/tste.2019.2918269
https://doi.org/10.1109/tste.2019.2918269
https://doi.org/10.1016/s1040-6190(01)00207-x
https://doi.org/10.1016/s1040-6190(01)00207-x
https://doi.org/10.1016/j.tej.2022.107128
https://doi.org/10.1016/j.apenergy.2020.115589
https://doi.org/10.1109/tpwrs.2017.2701881
https://doi.org/10.1109/tcc.2014.2326166
https://doi.org/10.1016/j.segan.2023.101026
https://doi.org/10.1016/j.egyr.2022.06.035
https://doi.org/10.1016/j.egyr.2022.06.035
https://doi.org/10.1109/tsg.2013.2258046
https://doi.org/10.1016/j.apenergy.2021.118171
https://doi.org/10.1016/j.epsr.2022.108903
https://doi.org/10.1049/iet-rpg.2019.0485
https://doi.org/10.1016/j.rser.2021.111263
https://doi.org/10.1016/j.renene.2021.06.100
https://doi.org/10.1016/j.renene.2021.06.100
https://doi.org/10.1109/tcc.2022.3161900
https://doi.org/10.1016/j.ijepes.2019.105380
https://doi.org/10.1016/j.ijepes.2019.105380
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1286045

	Risk-based optimization for facilitating the leasing services of shared energy storage among renewable energy stations
	1 Introduction
	2 The framework of leasing services provided by SES
	2.1 Transaction considering overselling risk
	2.2 Leasing mechanism of SES
	2.3 The framework of two-stage optimization model

	3 Matching degree calculation for RES screening
	4 Scenario-based optimization for SES operation
	4.1 Scenario generation
	4.2 Revenue optimization model considering overselling risk
	4.2.1 Leasing services revenue
	4.2.2 Modeling the overselling risk
	4.2.3 Calculating the power purchase cost and loss cost

	4.3 The constraints of revenue optimization model
	4.3.1 SES charging and discharging power constraints
	4.3.2 SES state of charge constraints
	4.3.3 Power balance constraint of SES


	5 Case studies
	5.1 Test system settings
	5.2 Selection of renewable energy stations
	5.3 Optimization of leasing services
	5.4 Sensitivity analysis
	5.4.1 Impact of user number and types on SES utilization rate
	5.4.2 Impact of overselling power on SES revenue


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


