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Due to the intricate and diverse nature of industrial systems, traditional
optimization algorithms require a significant amount of time to search for the
optimal solution throughout the entire design space, making them unsuitable for
meeting practical industrial demands. To address this issue, we propose a novel
approach that combines surrogate models with optimization algorithms. Firstly,
we introduce the Sparse Gaussian Process regression (SGP) into the surrogate
model, proposing the SGP surrogate-assisted optimization method. This
approach effectively overcomes the computational expense caused by the
large amount of data required in Gaussian Process model. Secondly, we use
grid partitioning to divide the optimization problem into multiple regions, and
utilize the multi-objective particle swarm optimization algorithm to optimize
particles in each region. By combining the advantages of grid partitioning and
particle swarm optimization, which overcome the limitations of traditional
optimization algorithms in handling multi-objective problems. Lastly, the
effectiveness and robustness of the proposed method are verified through
three types of 12 test functions and a wind farm layout optimization case
study. The results show that the combination of meshing and SGP surrogate
enables more accurate identification of optimal solutions, thereby improving the
accuracy and speed of the optimization results. Additionally, the method
demonstrates its applicability to a variety of complex multi-objective
optimization problems.
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1 Introduction

With the continuous advancement of technology, optimization problems have been
widely applied in various fields, including industrial manufacturing, energy management,
finance, and transportation. The primary objective of research on optimization problems is
to achieve the optimal performance of a specific system or process. Generally, optimization
problems can be divided into static optimization problems and dynamic optimization
problems (Mavrovouniotis et al., 2017). Static optimization problems usually involve
determining certain input conditions to maximize or minimize specific goals. Dynamic
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optimization problems consider how to adjust control parameters or
certain input conditions to achieve the best effect as time progresses.
However, as the scale of industrial systems continues to expand, the
complexity of controlled processes also continues to rise (Vafadar
et al., 2021). Consequently, optimization problems have become
more challenging and intricate. In some cases, complex systems are
often represented using high-precision models. To solve these
problems, complex systems are often described using high-
precision models. However, this approach requires a substantial
investment of time and manpower, leading to a lack of efficient
methods for solving optimization problems. As a result, there is a
growing emphasis on discovering faster and more effective
optimization techniques to enhance both efficiency and accuracy.

The multi-objective particle swarm optimization (MOPSO)
algorithm plays a significant role in addressing complex multi-
objective optimization problems (Parsopoulos and Vrahatis, 2008).
By optimizing the position of each particle, the algorithm searches
for the optimal solution set and offers several advantages: Firstly, it
efficiently identifies and outputs the Pareto optimal solution set,
providing more decision-making options compared to other
common multi-objective optimization algorithms. Secondly, the
algorithm can simultaneously handle multiple-objective functions by
adjusting weights to balance the priorities between objectives, a swiftly
computing the optimal solution for multiple objectives. Lastly, the
algorithm demonstrates strong performance in solving intricate
optimization problems, including non-linearity and high
dimensionality. MOPSO have proven successful in tackling real-
world multi-objective problems, such as feature selection for medical
diagnosis and other applications, optimization of stamping process
parameters, optimization of indoor CO2 and PM2.5 levels, ridesharing,
concentration analysis, and optimization of manufacturing processes.
However, when dealing with multi-objective problems, certain
challenges arise, such as selecting the individual best solutions,
identifying the global best solutions, and managing computational
resources. For MOPSO, the first issue is addressed by randomly
selecting one of the relatively superior particles in the space as the
historical best. To solve the problem of global best solutions, MOPSO
select the global best solution from the optimal set based on particle
density, and preferably choose positions where particles are relatively
rare in space as “elite particles” to lead other particles in searching for
the optimal solution (Palmer, 2019). Furthermore, solving multi-
variable optimization problems with MOPSO algorithms has
increased the computational difficulty of the algorithm, leading to
significant time and cost overhead. In recent years, optimization
algorithms based on surrogate models have attracted increasing
attention and are widely used due to their efficiency and
applicability (Gu et al., 2021).

With the rapid development of computer testing and analysis
methods, surrogate models have emerged as the primary approach
for solving the black box problems, replacing time-consuming
experiments. Surrogate model aided optimization algorithms can
be divided into two categories: global surrogate model and local
surrogate model (Zhou et al., 2006; Han and Zhang, 2012; Liu et al.,
2016). The global surrogate model is employed to approximate the
overall behavior of the problem and capture the general search
direction, such as response surface methodology (RSM) (Wang Z.
et al., 2022), Gaussian process (GP) (Shadab et al., 2022), radial
basis function (RBF) model (Chen et al., 2022) and spline method

(SM) (Grimstad et al., 2016). On the other hand, the local surrogate
model is utilized to enhance the approximation accuracy within a
confined search space, such as Kriging model (Jeong et al., 2005),
locally weighted regression (Talgorn et al., 2018), and support
vector machine regression (SVM) (Ciccazzo et al., 2015), etc.
Compared to methods like artificial neural network (ANN)
models, surrogate models based on the Bayesian framework
have been widely adopted due to their high model fitting
accuracy and the ability to provide approximate values of
uncertainty, which proves highly effective in model management
(Lystad et al., 2023). Among these, surrogate optimization based on
the Kriging model and GP model are typical examples of Bayesian-
based surrogate optimization methods (Liu J. et al., 2023). The
Kriging surrogate model, initially used in geology, has evolved into
an optimization design method applicable to various disciplines
(Currin et al., 1991; Kudela andMatousek, 2022). Jones constructed
the most widely used improvement expectation criterion in the
optimization field by using the Kriging model to predict the
function estimation and its mean square error (Jones et al.,
1998). Additionally, Jones proposed a highly efficient global
optimization algorithm called Efficient Global Optimization,
which maximizes the expected improvement criterion.
Subsequently, researchers further improved the model and
introduced methods such as Blind Kriging (Joseph et al., 2008),
Co-Kriging (Liu et al., 2022), and Gradient Kriging (Liu F. et al.,
2023), thereby expanding the selection range of Kriging models in
surrogate modeling. Currently, the Kriging surrogate model has
been widely applied in fields such as uncertainty analysis, reliability
assessment, and optimization (Wang C. et al., 2022; Ling et al.,
2022; Zhao et al., 2022). However, these methods have significant
requirements for the initial data, making them unsuitable for
situations with a limited number of samples or incomplete
information during the early stages of product or equipment
development. In addition, the GP model is considered a
surrogate model with low modeling complexity that balances
accuracy and correlation. It is extensively applied in complex
structures, particularly those with multiple failure modes, and
situations where reliability calculations are time-consuming (Liu
et al., 2013; Satria Palar et al., 2020). Many researchers have
conducted in-depth research and exploration on the GP
surrogate model, expanding its application fields and making it
one of the most commonly used optimization methods. Su et al.
(2017) proposed a dynamic GPR surrogate model based on Monte
Carlo simulation for the reliability analysis of bridge engineering
structures. Avendaño-Valencia et al. (2021) proposed a GP
surrogate model method based on Bayesian hyperparameter
calibration to predict short-term fatigue damage equivalent
loads of wind turbines, achieving a prediction error of less than
4%. Golparvar et al. (2021) examined the impact of wind wave-
related factors on the variability of offshore wind power using a GP
surrogate model, and revealed the potential relationship between
controlling offshore weather and power conversion. Furthermore,
Preen et al. (2019) simulated tumor growth using a GP surrogate
model, opening up broad prospects for dealing with complex,
multiscale tumor models.

In summary, Kriging surrogate model and GP surrogate model
are widely applied due to their excellent performance in high-
precision fitting, optimization, and uncertainty analysis. They
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offer effective global optimization, interpretability, and flexibility,
making them versatile choices in various domains. However, both
Kriging surrogate model and GP surrogate model require complex

computations to estimate functions and establish correlations.
Dealing with large input spaces or extensive datasets significantly
increases the computational cost. Furthermore, the fitting accuracy

TABLE 1 Advantages and disadvantages of different surrogate model.

Surrogate model Advantage Disadvantage

Kriging (Jeong et al., 2005) • Effective handling of non-linear problems and number of noises • Requires a lot of data

• Takes a long time to compute

• Complex for high-dimensional problems

RBF (Chen et al., 2022) • Strong data adaptability, low noise sensitivity, fast calculation
speedetc.

• Appropriate kernel functions and parameters need to be selected
artificially

• Large calculation error when the number of input data is large

SVM (Ciccazzo et al., 2015) • For problems of high-dimensional data classification with good
effect

• Sensitive to noise data

• No need to understand data characteristics • High modeling complexity

ANN (Liu et al., 2021) • Ability to deal with non-linear problems • A large amount of data is required to train the model

• The model structure is complex

• The interpretation of data is weak

FIGURE 1
The AG-MOPSO-GPS model optimization framework.
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of the model is greatly affected when there is a small initial dataset.
Additionally, different surrogate models and optimization
algorithms have varying advantages and disadvantages, which
necessitate the use of other evaluation methods to measure their
performance and applicability. Therefore, it is essential to compare
and analyze optimization algorithms based on surrogate models. In
this paper, different optimization algorithms of surrogate models are
compared in order to better understand the surrogate models. The
specific contributions of this article are as follows.

1. This paper systematically summarizes the deficiencies of
traditional proxy model optimization, particularly the
adaptability issue between surrogate models and optimization
problems. The paper combines the Sparse Gaussian Process
(SGP) surrogate method with optimization algorithms for the
first time. By employing the SGP as the surrogate model, it can
estimate unknown function values a small amount of known data
and provide accurate uncertainty information.

2. This paper introduces a novel surrogate model method called the
Adaptive Grid-based Multi-Objective Particle Swarm Optimization
algorithm (AG-MOPSO), which is based on SGP surrogate
modeling. The use of an adaptive grid divides the optimization
problem into multiple regions and utilizes the MOPSO algorithm to
optimize particles in each region, addressing the inefficiency
problems of traditional algorithms in complex scenarios.

3. To validate the proposed method, three sets of test functions and
a wind farm layout optimization case study are employed for
testing. Comparative analysis with different optimization
algorithm models demonstrates the superior performance of
the proposed method in terms of accuracy and optimization
speed, particularly for multi-objective optimization problems and
diverse, complex industrial systems, when compared to
alternative optimization algorithms.

The remaining sections of this paper are organized as follows:
Section 2 introduces multi-objective optimization problems and

TABLE 2 Comparative analysis of IGB measures for test functions.

Test
function

Statistical value AG-MOPSO-GPS AG-MOPSO NSGA-II AG-MOPSO-ANNS AG-MOPSO-SVMS

ZDT1 mean 0.0023 0.068 0.072 0.0043 0.0051

std 2.173E-4 3.365E-4 5.782E-4 2.178E-4 4.327E-4

ZDT2 mean 0.0037 0.093 0.067 0.0058 0.0061

std 2.316E-3 3.175E-3 4.247E-3 2.768E-3 2.948E-3

ZDT3 mean 0.0643 0.0954 0.1084 0.0616 0.0713

std 0.0129 0.0201 0.0374 0.0193 0.0226

DTLZ1 mean 0.0479 0.0632 0.0912 0.0501 0.0578

std 4.679E-3 4.721E-3 5.156E-3 4.956E-3 4.785F-3

DTLZ2 mean 0.0565 0.0734 0.0638 0.0593 0.0721

std 3.158E-3 5.123E-3 4.148E-3 9.148E-2 4.256E-3

DTLZ7 mean 0.1930 0.3219 0.2753 0.2004 0.2314

std 0.0133 0.0262 0.0194 0.0158 0.0167

3 WFG1 mean 1.7483 2.7980 2.3490 1.8436 1.7738

std 0.0943 0.1573 0.0754 0.0519 0.0930

WFG2 mean 0.8573 0.9357 1.0753 0.8754 0.8932

std 0.1329 0.0873 0.1420 0.2243 0.1954

WFG3 mean 0.2107 0.3113 0.3721 0.2843 0.2585

std 0.0378 0.0539 0.0493 0.0447 0.0461

4 WFG1 mean 1.8391 2.4394 2.5730 1.9532 2.0967

std 0.0573 0.0625 0.0843 0.0714 0.0684

WFG2 mean 1.2342 1.5843 1.7922 1.3075 1.5493

std 0.1454 0.2256 0.1739 0.2168 0.1633

WFG3 mean 0.3745 0.4593 0.4303 0.3981 0.3825

std 0.0384 0.0534 0.0450 0.0487 0.5512

Bold values represents the optimal results.
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compares the advantages and disadvantages of commonly used
surrogate model-assisted optimizations. Section 3 provides a
detailed description of the implementation steps of the adaptive
grid multi-objective particle swarm optimization algorithm based on
the SGP surrogate (AG-MOPSO-GPS) model. Section 4 evaluates
the proposed surrogate model-assisted optimization algorithm.
Section 5, the algorithm proposed in this paper is applied to
actual engineering case. Finally, section 6 summarizes the
contributions of this paper.

2Optimization algorithm and surrogate
model

2.1 Multi-objective optimization problem

Multi-objective optimization is a prevalent challenge in modern
complex industrial systems (Cui et al., 2017). Achieving

simultaneous optimization for each objective, given their
conflicting nature, is often unattainable. In general, multi-
objective optimization problems are composed of several
objective functions, some related equations and inequality
constraints. Mathematically, they can be described as follows:

minF X( ) � f1 x( ), f2 x( ), . . . , fm x( )[ ]T (1)
s.t. gi x( )≤ 0, i � 1, 2, 3, . . .p
hj x( )≤ 0, i � 1, 2, 3, . . .p

(2)

Where, fi(x), i � 1, 2, 3, . . . , m{ } represents the objective
function; gi(x) and hj(x) are the constrained function; x � x1,{
x2, . . . , xn} is an n-dimensional design variable. X � x|xϵRn,{
gi(x)≥ 0, hj(x) � 0, i � 1, 2, . . . , p, j � 1, 2, . . . , q} represents the
feasible range of the objective function.

In multi-objective optimization, a significant challenge arises
due to the mutual constraints between various objectives. This
constraint often leads to a trade-off where the improvement in

TABLE 3 Comparative analysis of HV measures for test functions.

Test
function

Statistical value AG-MOPSO-GPS AG-MOPSO NSGA-II AG-MOPSO-ANNS AG-MOPSO-SVMS

ZDT1 mean 121.5421 109.5395 108.3452 121.1453 120.7460

std 0.0926 0.0345 0.7042 0.1325 0.7321

ZDT2 mean 121.9517 110.1345 109.4098 121.8732 121.0545

std 0.4739 0.5017 0.7931 0.6333 0.6234

ZDT3 mean 115.4395 109.6390 109.2930 114.7145 115.0724

std 1.5475 1.9560 0.8654 1.2365 0.9653

DTLZ1 mean 14.5612 9.2365 7.2350 13.5353 13.1207

std 0.1172 0.1289 0.1731 0.2352 0.4521

DTLZ2 mean 14.2974 8.7402 9.1264 13.3467 11.4579

std 0.0547 0.3589 0.4524 0.2938 0.0327

DTLZ7 mean 39,543.1 39,432.8 39,312.0 39,473.5 39,502.9

std 19.4343 20.5839 21.5829 19.9505 20.1587

3 WFG1 mean 114.5409 111.0384 112.5791 114.0759 114.2306

std 0.0137 0.0661 0.0587 0.0216 0.0357

WFG2 mean 208.5743 200.5863 201.4730 205.4918 206.5783

std 2.4323 1.9684 1.6043 3.5333 1.6733

WFG3 mean 160.4532 140.5830 149.3402 150.5945 155.6320

std 2.5303 1.6493 2.5835 1.2010 1.5294

4 WFG1 mean 743.8567 721.8540 718.5603 735.3200 738.0541

std 13.4005 15.3945 18.4839 19.5584 15.5395

WFG2 mean 972.4356 956.4309 890.5437 969.4332 985.1439

std 45.3892 53.8875 50.4820 49.6843 50.3205

WFG3 mean 802.5640 765.4302 772.6403 795.5424 790.2093

std 13.0984 12.5834 11.5473 14.2034 13.6803

Bold values represents the optimal results.
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one target’s performance comes at the cost of sacrificing the
performance of other targets. As a result, finding a single optimal
solution becomes impractical in most cases. To address this issue,
multi-objective optimization problems typically use a set of non-
dominated solutions to represent all optimal solutions. This set of
solutions is called the Pareto optimal solution set. Finding the
Pareto optimal solution set is a very important task in multi-
objective optimization problems. One way to solve this task is to
find as many Pareto optimal solutions as possible for the
optimization problem. This means finding a set of solutions
that are as close to the Pareto optimal domain as possible, and
finding a set of solutions that are as different as possible. So, this
problem can usually be solved through multiple relatively
balanced solutions, rather than a single optimal solution. The
Pareto optimal solution set is a typical solution in multi-objective
optimization problems. In fact, the Pareto optimal solution set is
a model that can represent future needs and user decisions, as

most users pursue maximum benefits without losing any purpose.
Meanwhile, solving Pareto optimality problems can help people
better understand and apply multi-objective optimization
problems. In summary, the Pareto optimal solution set in
multi-objective optimization problems is an important form of
solving the optimal solution. By finding a set of Pareto optimal
solutions, people can obtain multiple equilibrium solutions to
solve the problem. The Pareto optimal solution set represents a
feasible solution that can help people better apply multi-objective
optimization problems to practical applications. Currently, the
majority of evolutionary algorithms used to address multi-
objective optimization problems often require tens of
thousands of fitness evaluations, incurring significant expenses
in terms of time and resources. Despite numerous research efforts
to create novel optimization algorithms for solving multi-
objective optimization problems, the trade-off between
solution speed and the number of function evaluations is
rarely considered (Akinola et al., 2022). As a solution to
mitigate costly function evaluations, data-driven surrogate-
assisted evolutionary algorithms have emerged. This method
involves constructing a surrogate model to approximate the
original expensive objective function and then employing the
surrogate model to evaluate a subset of candidate solutions,
thereby reducing computational costs (He et al., 2023). It has
become a prevalent approach to alleviate the burden of costly
function evaluations in multi-objective optimization problems.

2.2 Surrogate model

The surrogate model method offers a solution to the optimization
design and design analysis challenges posed by complex source models.
It involves constructing substitute models for these source models.
Despite requiring the expensive valuation of source models during
the sampling process, this method effectively reduces the number of
simulations in optimization, thereby improving its efficiency. Common
surrogate models include the Kriging model, RBF model, ANN model,
and others. In practice applications, these surrogate models are often
combined with various optimization algorithms, such as the genetic
algorithm, particle swarm algorithm, simulated annealing, among others
(Nguyen et al., 2014). A comparison of several classic surrogatemodels is
presented in Table 1. The Kriging surrogate model exhibits high fitting
accuracy and can provide predicted and error values. However,
constructing the Kriging model can be time-consuming, especially
when dealing with numerous sample points. In contrast, the RBF
surrogate model is relatively easy to construct, flexible, and adaptable
to nonlinear problems. The difficulty of constructing the SVM surrogate
model is determined by the number of support vectors requires.
Although it can reduce the problem of “curse of dimensionality” to
some extent, it cannot handle large sample sets. Meanwhile, the ANN
surrogate model is widely used due to its effective learning mechanism,
accuracy, and robustness, although constructing a high-precision ANN
surrogate model takes a lot of time (Liu et al., 2021).

Despite the strengths exhibited by different surrogate models,
choosing the most appropriate model remains a challenging
problem in practice. Multiple criteria need to be considered
simultaneously, such as model accuracy, construction time, and
computational efficiency. Moreover, in optimization scenarios

FIGURE 2
The PF effects of five different algorithms on three ZDT test
functions.
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involving multiple objectives, the Pareto front (PF) of the surrogate
model must be sufficiently sampled to accurately capture the entire
set of solutions. In conclusion, the effective construction and
updating of surrogate models are essential for the successful
implementation of multi-objective evolutionary algorithms, which
are central to many optimization problems. Advancements in this
field necessitate a better understanding of the strengths and
weaknesses of different surrogate models, along with the
development of more efficient algorithms capable of
accommodating the diverse requirements of various optimization
scenarios.

3 Surrogate assisted optimization
framework

Utilizing surrogate models in optimization is a vital technique that
can significantly save computational resources, especially for multi-
objective optimization problems, where evaluating each objective
function can be time-consuming. The main idea behind surrogate
model-assisted optimization is to use a surrogate model to approximate
the true objective function, thus speeding up the optimization process
and improving its efficiency. As a result, it has been extensively studied.
In this section, we address the adaptability deficiencies of existing
surrogate models in optimization problems and propose the AG-
MOPSO-GPS optimization algorithm. We will provide a detailed
introduction to the SGP surrogate model, the AG-MOPSO
Optimization algorithm, and the framework of surrogate model-
assisted optimization.

3.1 SGP surrogate models

As a type of machine learning algorithm, the GP model
integrates the advantages of traditional statistical theory and
Bayesian theorem (Zhang et al., 2019). Compared to linear
regression, the advantages of the GP model lie in its ability to
solve complex problems with small samples, high dimensions, and
non-linearity (Giovanis and Shields, 2020). Compared to black box
algorithms such as artificial neural networks, its advantages include
ease of implementation, adaptive hyperparameters, and
interpretability (Ghahramani, 2015). The GP model allows prior
distributions to be placed over the entire function for inference,
rather than just learning model parameters. Consider a dataset D �
(xi, f(xi)){ }NI

i�1 of N samples. The GP model is defined as a set of
random variables (x1), f(x2), . . . , f(xi) , with any finite-
dimensional distribution being a joint normal distribution.

f x( ) ~ GP m x( ), K x, x′( )( ) (3)
Where, m(x) represents mean function, K(x, x′) is kernel

function.
The goal of the GP model is to model data as the output of

certain functions. However, in normal cases, the measured data
contains noise. To model this noise, a Gaussian noise model is
commonly used:

y � f x( ) + ε ε ~ N 0, σ2n( ) (4)
The prior distribution of the training samples follows the

distribution given below:

y ~ N m x( ), K + σ2nI( )
Where, I represents the n-order identity matrix.
In order to make predictions, it is important to evaluate the joint

prior distribution between the training and testing data:

y
y*

[ ] ~ N
m x( )
m x*( )[ ], Kxx + σ2nI Kxx*

Kx*x Kx*x + σ2nI
[ ]( ) (5)

FIGURE 3
The PF effects of five different algorithms on three DTLZ test
functions.
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Where, x* represents the new input dataset. y* represents the
predicted new potential unknown output. Kxx � K(x, x),
Kxx* � K(x, x*), Kx*x � K(x*, x), Kx*x* � K(x*, x*).

By applying the properties of multivariate Gaussian distribution,
it is known that each conditional distribution is also a Gaussian
distribution. Utilizing this standard result, we can express the
posterior distribution of y* as:

p y* x*, x, y
∣∣∣∣( ) ~ N μ*,∑ *( )

μ* � m x*( ) + Kx*x Kxx + σ2nI( )−1 y −m x( )( )∑ * � Kx*x − Kxx* Kxx + σ2nI( )−1Kx*x + σ2n

(6)

The kernel function is the most important component of the GP
model, as it is used during the training phase to map the relationship
between the input and output, and also for predicting new points
through interpolation. The radial basis function kernel is commonly
used, which has a small number of hyperparameters. These
hyperparameters control the behavior of the kernel function, and in
order to utilize the GP model to analyze the non-linear relationship
between different features, these hyperparameters must be determined.
Typically, the second type of maximum likelihood method is used to
determine the hyperparameters of the kernel function. The objective of
this method is to maximize the marginal likelihood (also known as
model evidence) of the model. This optimization finds the minimum
complex model using the Bayesian Occam’s razor, given the training set
D. For convenience and numerical stability, this optimization is usually
performed by minimizing the negative logarithm of the marginal
likelihood. Therefore, the estimated value of the hyperparameters θ̂ is
obtained through the following optimization.

θ̂ � argmin
θ

−logp y x, θ|( ){ }
−logp y x, θ|( ) � −logN m x( ), Kxx + σ2nI( )

� N

2
log 2π( ) + 1

2
log Kxx + σ2nI

∣∣∣∣ ∣∣∣∣
� 1
2

y −m x( )( )T Kxx + σ2nI( )−1 y −m x( )( )[ ]
(7)

However, in the GP model, to determine hyperparameters or
make predictions, it is necessary to evaluate the inverse of the
covariance matrix with noise (kxx + σ2nI)−1.This computation step
carries a time complexity and memory storage of O(N3), which
means that using the GP model to establish non-linear regression
models for big datasets is not feasible. To address this issue, inducing
data sets are constructed by randomly selecting M(M≪N) data
points from the training set to learn the hyperparameters, and such
models are known as SGPR. Introducing these inducing points
reduces the complexity of the GP model from O(N3) to
O(MN2). Utilizing the inducing points Z, u{ } (where Z

FIGURE 4
The PF effects of five different algorithms on three WFG test
functions.

TABLE 4 Metrics performance for constant wind speed and variable wind speed, with Nt = 15.

Statistical value Constant wind speed (12 m/s) Variable wind speed (8, 12, 17 m/s)

AG-MOPSO-GPS MO-LSA AG-MOPSO-GPS NSGA-II

IGD Mean 0.2945 0.4732 0.3831 0.5491

Std 0.0057 0.0064 0.0074 0.0081

HV Mean 1.3573 0.8437 0.9547 0.7458

Std 0.0327 0.0364 0.2643 0.2722

Bold values represents the optimal results.
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represents the locations of inducing points and u denotes the latent
function values at these points) forms a variational approximation to
the full posterior of the model. Then, the expected distribution value
is obtained by minimizing the Kulback-Leibler divergence between
the variational distribution and the posterior distribution:

q y* x*, x, y, u
∣∣∣∣( ) � N μ*,∑ *( ) (8)

μ* � Qx*x Qxx + σ2nI( )−1y (9)∑ * � Kx*x* − Qx*x Qxx + σ2nI( )−1Qxx* (10)

Where, Qxx represents the approximate Covariance matrix, and
the expression is as follows:

Qxx � KxuK
−1
uuKux (11)

3.2 Adaptive grid multi-objective particle
swarm optimization algorithm (AG-MOPSO)

Particle swarm optimization (PSO) is a heuristic algorithm
inspired by the foraging behavior of birds. Due to its high
convergence rate and simple search principle, PSO has been

widely used and developed in the field of multi-objective
optimization (Coello et al., 2004). However, traditional
MOPSO have some shortcomings, such as insufficient
consideration of the selection of global optimal particles, the
lack of pruning of the non-dominated set, and the imbalance
between global and local search capabilities. Therefore, in this
paper, an AG-MOPSO is selected to optimize multi-objective
problems (Yang et al., 2008).

The AG-MOPSO algorithm adopts a dual-population approach,
where one population is a standard PSO group, while the other
population is used to store the non-dominated solutions discovered
by the group after each iteration, known as the Archive set. The main
part of AG-MOPSO is similar to the general PSO algorithm. It
initializes a swarm of particles in an n-dimensional search space,
where the movement of each particle depends on its position and
velocity vector. The velocity and position vectors can be represented
by the following equations:

�X � �x1, �x2, �x3,/, �xn[ ]
�V � �v1, �v2, �v3,/, �vn[ ] (12)

In the search space, particles adjust their position and speed
vectors according to global searching experience gbest and individual
local searching experience Pbest with certain rules. In this way, global

FIGURE 5
Layout with the best trade-off. [(A) constant wind speed, (B) variable wind speed].

FIGURE 6
The PF of different optimization algorithms. [(A) constant wind speed, (B) variable wind speed].
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searching ability and local searching ability can be included
simultaneously. The update formula is:

vni k + 1( ) � ω k( ) · vni k︸����︷︷����︸
previous velocity

+Λ1ϖ1 pn
best,i − xn

i k( )( )︸���������︷︷���������︸
personal component

+Λ2ϖ2 gn
best,i − xn

i k( )( )︸���������︷︷���������︸
global component

xn
i k + 1( ) � xn

i k( ) + vni k + 1( ) (13)
Where, vni (k + 1) and vni (k) represent the ith particle in the nth

dimension from the velocity vector of this iteration versus the last
iteration, respectively. xni (k + 1) and xn

i (k) represent the ith particle in
the nth dimension the position vector from this iteration to the last
iteration, respectively. gn

best,i and pn
best,i represent the position vectors of

the global and historical best particles for the first particle i n the nth
dimension, respectively.Λ1 andΛ2 are local and global learning factors,
respectively. ϖ1 and ϖ2 are random numbers between [0,1]. ω(k) is the
inertial factor given by the following formula:

ω k( ) � ωmax − k

kmax
· ωmax − ωmin( ) (14)

Where, kmax represents the total number of iterations. The variable
inertia weight can guarantee the global search ability in the early search
period and the local search ability in the late search period.

AG-MOPSO has three innovations: adaptive grid (AG) algorithm,
global optimal particle selection, and Archive set truncation. Taking the
two-dimensional target space optimization problem as an example, AG
first calculates the search range of the target space after K iterations
[min Yk

1, max Yk
1] and [min Yk

2, max Yk
2]. Then the grid model is

calculated according to the following formula:

ΔYk
1 � maxYk

1 −minYk
1( )/M

ΔYk
2 � maxYk

2 −minYk
2( )/M (15)

Where, M represents dividing the target space into M × M’s
Grid, Y1 and Y2 are the values of the fitness function. In the early
stage of evolution, M selects a smaller value to save computational
costs. As the algorithm continues to iterate, M will adaptively
increase to improve the resolution in the later stage of evolution,
obtaining a more realistic optimal result. After obtaining the
modulus of the grid, traverse the population to calculate the grid
numbers of each particle. For particle i, its grid number is given by
the following equation:

xi
1, x

i
2( ) � Int

Yi
1 −minYk

1

ΔYk
1

( ) + 1, Int
Yi

2 −minYk
2

ΔYk
2

( ) + 1( ) (16)

Where Int means integer. After calculating the grid number of
each particle, the grid density information of each grid can be
obtained. After calculating the grid number of each particle, the

grid density information of each grid can be obtained. The selection
of the globally optimal particles is based on the density information.
Specifically, the lower the density of the grid in which the particles in
the Archive are located, the greater the probability of being selected
as gbest. The more particles in Archive concentration are better than
the number of particles in the group, the greater the search potential
of the particles. Based on this idea, the gbest corresponding to each
particle in the group is determined using the following formula:

gk
best,j � i min F i( ), i ∈ Skj{ }∣∣∣∣∣{ } (17)

Where, F(i) indicates the number of particles in the grid in
which ith particles reside. Skj indicates that the Archive set is better
than the set of group particles j, which is determined by the
following formula.

Skj � i ∀i ≻ j
∣∣∣∣{ } (18)

Where, ≻ indicates the Pareto dominance. When there are more
than one particle that meets the criteria, select the Archive set
particle with the greatest potential as gbest:

gk
best,j � gk

best,j max i i ≺ j, i ∈ Pk

∣∣∣∣{ }∣∣∣∣∣{ } (19)

Where, Pk represents the population of particles in the kth
iteration. This formula represents the particle that dominates the
maximum number of particles in the population of all the particles
satisfying formula (17). When there are particles with the same
potential, choose one randomly. The Archive Set truncation
technique used by AG-MOPSO is based on the density
information of the mesh. When the density of the mesh exceeds
the threshold, the smallest potential particles are deleted according
to (19), which ensures that Archive Set always has excellent search
potential throughout the iteration process.

In the AG-MOPSO algorithm, the grid quantity is adaptively
adjusted based on the particle distribution and changes during the
optimization process. The variation of grid quantity depends on the
current particle distribution and grid density, aiming to better adapt to
the characteristics and changes of the problem during the optimization
process. In the initial stage of the algorithm, the grid quantity may be
relatively small because there is not enough information to accurately
partition the optimization space. As the optimization progresses and
particles move and search, the optimization space is gradually divided
into more grids. By adaptively adjusting the grid quantity, the AG-
MOPSO algorithm can efficiently search for the global optimal solution
or the Pareto optimal solution set in different optimization stages and
features of the optimization space. This flexible variation of grid
quantity allows the algorithm to better adapt to complex multi-

TABLE 5 The optimal solutions of different optimization algorithms.

Statistical value Constant wind speed (12 m/s) Variable wind speed (8, 12,17 m/s)

AG-MOPSO-GPS MO-LSA AG-MOPSO-GPS NSGA-II

f1 2.037E-4 2.155E-4 1.974E-4 2.029E-4

f2 0.231 0.257 0.269 0.28

f3 0.9389 0.9114 0.9795 0.9641
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objective optimization problems and maintain good performance
throughout the optimization process.

3.3 Optimization framework and process
description

When dealing with expensive multi-objective optimization
problems, it is important to consider the significant uncertainty
in the approximation of individuals by surrogate models (Zheng
et al., 2022). This means that the areas surrounding these solutions
may not be effectively explored, resulting in a high probability of
finding suboptimal solutions. Furthermore, evaluating these
solutions and using them to update the surrogate model could be
the most effective way to enhance the accuracy of the model.
Bayesian theory is an effective tool for considering the
uncertainty in optimization problems. It can predict the objective
function value and improve the variance of this predicted value. The
optimization framework assisted by surrogate models takes a similar
approach to Bayesian optimization, integrating the construction and
optimization processes of surrogate models. In this study, we used
an optimization framework assisted by a GP surrogate model (Sun
et al., 2017), whose pseudocode is shown in Algorithm 1. The
framework combines outer and inner optimization, where the
outer layer updates the training set from the solution output by
the inner layer, iteratively updating the surrogate model, while the
inner layer iteratively optimizes to obtain the function and then the
sampling points to output to the outer layer.

An optimization framework assisted by GP surrogate

models

Input: Relevant parameters: D, iteration number

Iter max, Set the initial number of samples n

Output: Optimal sample set { f(x)}, current optimal

solution min
x∈D

f(x)
Initialization:

Using experimental design methods to initialize a

solution set X ← xi{ }NI

i�1 from Ω and evaluate their

objective function values Y ← f(xi){ }NI

i�1. Set

initial training set D ← (xi ,f(xi)){ }NI

i�1. Set

initial Iter ← 0

While Iter<Iter max do

Build a GP model based on D.

Use optimization algorithms to optimize the

acquisition function and obtain candidate

solutions x*.

Evaluate the objective function value of x* and set

D ← D ∪ (xi ,f(xi)){ }NI

i�1.
end

Return min
x∈D

f(x)

Algorithm 1. GP surrogate models

Considering the limitations of traditional optimization
algorithms in dealing with industrial system optimization
problems, this paper proposes a new optimization algorithm
called AG-MOPSO-GPS model, as shown in Figure 1. In contrast
to the conventional GP surrogate model framework, we introduce

the SGP model and propose the SGP-assisted optimization method.
The SGP surrogate model effectively addresses the computational
overhead caused by the large data requirements of traditional
gaussian process model. Moreover, we divide the optimization
problem into multiple regions through grid partitioning and
utilize the MOPSO algorithm to optimize particles in each
region. By combining the advantages of grid partitioning and
particle swarm optimization, we overcome the limitations of
traditional optimization algorithms in dealing with multi-
objective problems. At each iteration, the surrogate model is used
to predict the next optimal solution and integrated into the
subsequent iteration. The advantage of this algorithm lies in its
ability to reduce computation costs by avoiding frequent evaluations
of the true objective function. The AG-MOPSO-GPS algorithm is
characterized by a broad search range and fast search speed due to
the use of MOPSO. Additionally, it can effectively handle high-
dimensional non-linear problems, and is supported bymathematical
theory. The specific implementation of the algorithm includes key
steps, such as selecting specific hyperparameters, sampling
strategies, and stopping conditions, to improve accuracy and
efficiency.

The steps of the AG-MOPSO-GPS model are as follows:
Step 1: Initialize population: randomly generate a certain

number of particles and assign initial position and velocity values.
Step 2: Particle fitness evaluation: substitute the particles in the

population into the objective function and calculate the fitness value
of each particle.

Step 3: Update non-dominated solution set: determine whether
the solution of the objective function is a non-dominated solution
based on the dominance relation and update the non-dominated
solution set.

Step 4: Grid division: according to the distribution of the non-
dominated solution set, divide the grid and optimize each grid as a
region.

Step 5: Update particle velocity and position based on non-
dominated solution set: use the best particle position in each grid
as a reference point, calculate the velocity and position of each
particle based on the reference point, and update the position and
velocity of the particles. At the same time, use the SGP surrogate
method to optimize the reference point and predict the reference
point for the next iteration.

Step 6: Record the best historical solution: record the best
particle position and corresponding fitness value in each grid.

Step 7: Determine stopping criteria: determine whether the
defined stopping criteria such as maximum number of iterations
are met.

Step 8: Output results: output the final optimization results,
including the position of particles in the population and their
corresponding fitness values.

4 Results and discussions

In this section, we make a series of comparisons of surrogate model
assisted multi-objective optimization algorithms to explore the
advantages of surrogate model applied to complex optimization
problems. Firstly, we compared the evaluation accuracy of surrogate
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models on different functions. Secondly, we applied the surrogate
models to multi-objective optimization algorithms and compared the
performance of surrogate model-assisted optimization algorithms.

4.1 Testing of multi-objective optimization
algorithm based on surrogate model

The Zitzler Deb Thiele (ZDT) test function set is a classic set
of test functions for assessing the performance of multi-
objective optimization algorithms (Lim et al., 2015).
Developed by Zitzler and his colleagues at the University of
Barcelona in 2000, the ZDT function set features independent
objective functions with varying feasible range widths and non-
linear characteristics. These properties make it suitable for
evaluating the performance of PF search algorithms. The
ZDT function set includes several functions, with ZDT1 and
ZDT2 being the most widely used ones.

The problem definition of ZDT1 is as follows:

f1 x( ) � x1

f2 x( ) � g x( ) 1 −
�����
f1 x( )
g x( )

√⎡⎣ ⎤⎦ (20)

Where, g(x) � 1 + (9∑n
i�2xi)/(n − 1); x � (x1, . . . , xn)T ∈ [0, 1]n,

which PF is convex.

The problem definition of ZDT2 is as follows:

f1 x( ) � x1

f2 x( ) � g x( ) 1 − f1 x( )
g x( )( )2[ ] (21)

Where, ZDT2 takes values of g(x) and x that both range and
dimensionally are the same as ZDT1.

The problem definition of ZDT3 is as follows:

f1 x( ) � x1

f2 x( ) � g x( ) 1 −
�����
f1 x( )
g x( )

√
− f1 x( )

g x( ) sin 10πx1( )⎡⎣ ⎤⎦ (22)

Where, the PF of ZDT3 is discontinuous and has different scales
on both targets.

DTLZ is another classic test function set used for testing multi-
objective optimization algorithms (Li et al., 2015). Developed by
Kalyanmoy Deb and others in 2002, this function set consists of a
range of multi-objective test functions. Its features include high
dimensions and interaction design in the objective functions,
making it suitable for assessing the high-dimensional PF search
capability.

The problem definition of DTLZ1 is as follows:

f1 x( ) � 1
2
∏m−j

i�1
xi 1 + g xm:n( )( )

fj�2:m−1 x( ) � 1
2

∏m−j

i�1
xi

⎛⎝ ⎞⎠ 1 − xm−j+1( ) 1 + g xm:n( )( )
fm x( ) � 1

2
1 − x1( ) 1 + g xm:n( )( )

(23)

Where, g(xm:n) � 100[k +∑m
i�n((xi − 0.5)2 − cos (20π(xi − 0.5)))],

x � (x1, . . . , xn)T ∈ [0, 1]n, DTLZ1 has many local optimal solutions, and

the PF of DTLZ1 satisfies (∑m
i�1fi(x)) � 0.5.

The problem definition of DTLZ2 is as follows:

f1 x( ) � 1 + g xm:n( )( )∏m−1

i�1
cos

xiπ

2
( )

fj�2:m−1 x( ) � 1 + g xm:n( )( )∏m−1

i�1
cos

xiπ

2
( ) sin xm−j+1π

2
( )

fm x( ) � 1 + g xm:n( )( ) sin x1π

2
( )

(24)

Where, g(x) � ∑m
i�n((xi − 0.5)2, The PF of DTLZ2 satisfies

(∑m
i�1fi(x)2) � 1.
DTLZ7 problem has 2m−1 disconnected optimal Pareto regions,

used to test the algorithm’s ability to maintain subpopulations
within different Pareto regions. The problem definition of
DTLZ7 is as follows:

fj�1:m−1 x( ) � xj

fm x( ) � 1 + g xm:n( )( ) m − ∑m−1

i�1

1
1 + g xm: n( ) 1 + sin 3πfi x( )( )( )[ ]⎛⎝ ⎞⎠

(25)

Where, g(xm:n) � 1 + 9∑n
i−mxi/k, x � (x1, . . . , xn)T ∈ [0, 1]n.

The WFG test functions encompass a total of 9 test problems,
with each function exhibiting distinct characteristics and
complexities to cover various types of multi-objective
optimization problems (Li et al., 2018). In this paper, we have
selected three test functions: WFG1, known for its plateau-like
preference characteristics; WFG2, which demonstrates multi-
modal non-continuity properties; and WFG3, a deceptive problem.

In general, ZDT test functions are suitable for evaluating
relatively simple multi-objective optimization algorithms.
Compared to ZDT, DTLZ test functions are more suitable for
exploring algorithm performance under different problem
characteristics, while WFG test functions offer more diversity and
complexity, making them closer to real-world multi-objective
optimization problems.

4.2 Evaluation criteria

The purpose of multi-objective optimization algorithm is to
quickly search and approximate the true PF and distribute
uniformly on it. Therefore, evaluating the performance of a
multi-objective optimization algorithm requires consideration of
its convergence, distribution, coverage, and search speed, among
others. This paper tested the performance of the algorithm, mainly
using two comprehensive indicators: inverted generational distance
(IGD) and hypervolume (HV).

In multi-objective optimization, the IGD is an important
indicator to evaluate the convergence, distribution uniformity,
and generality of solutions. It is the inverse mapping of the
generational distance (GD) and calculates the average distance
from each individual in the true Pareto optimal solution set to the
non-dominated solution set obtained by the algorithm. The
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smaller the IGD value of the solution set, the better the
performance. In addition to reflecting the convergence of
solution sets, IGD can also reflect the distribution uniformity
and generality of solution sets. A smaller IGD value indicates
better diversity and convergence.

IGD F*, F( ) � ∑x∈F* min dis x, F( )
F*| | (26)

Where, F is the non-dominated solution set obtained by the
algorithm, F* represents the true Pareto non-dominated solution
set, d(.) represents the Euclidean distance, |F*| represents the
number of solutions in the true PF.

The HV indicator is one of the metrics used to evaluate the
comprehensive performance of multi-objective optimization
algorithms. It represents the volume of the region in the
objective space between the non-dominated solution set obtained
by the algorithm and a reference point. HV can be used to measure
the degree of closeness between the solution set and the optimal
solution set and partially reflects the distribution of solutions in the
objective space. A larger HV value indicates better comprehensive
performance of the algorithm.

HV P( ) � VOL ∪
x∈P

x1, z
r
1[ ] × . . . × xm, z

r
m[ ]( ) (27)

Where, VOL represents the Lebesgue measure,m represents the
number of non-dominated solutions, xm represents the mth
objective component of the solution set x in P, zrm represents the
rth objective component of the reference point in the objective
space.

4.3 Validation analysis of AG-MOPSO-GPS

Before validating the surrogate-assisted optimization algorithm,
it is necessary to set the parameters of the optimization algorithm
and the test functions. For the ZDT series test functions, the decision
variables of ZDT1 and ZDT2 are set to 30. For the DTLZ series test
functions, DTLZ1 has 7 decision variables and 3 dimensions, while
DTLZ2 has 12 decision variables and 4 dimensions. For the WFG
test function, the effectiveness of the method proposed in this article
is verified by testing under three and four objectives. And for the
three objectives problem, set 100 reference vectors, and for the four
objectives problem, set 120 reference vectors with a vector
dimension of 11 dimensions. The population size of the AG-
MOPSO algorithm is set to 100, the number of partitions of each
dimension in the adaptive grid-based method is set to 30, the inertia
weight w is set to 0.4, the learning factor is set to 2.0, and the
mutation parameter is set to 0.5. All the simulation experiments in
this section were performed on a computer with 2.90 GHz AMD
Ryzen 74800H with Radeon Graphics and 16 GB of memory using
MATLAB_R2021b. The AG-MOPSO-GPS algorithm was run
30 times on uniformly random test functions to reduce
accidental results, and the IGD measure and HV measure were
calculated for each run. The data in Tables 1, 2 show the IGD and
HV measures of the proposed algorithm and four other multi-
objective algorithms, where “Mean” represents the average value of
IGD and HV obtained by running the algorithm 30 times, and “Std”
represents the standard deviation.

To better validate the superiority of the proposed algorithm in
this paper, we selected two basic optimization algorithms, AG-
MOPSO and NSGA-II, as well as two agent-based optimization
algorithms, AG-MOPSO-ANNS and AG-MOPSO-SVMS, for
comparative research. Tables 2, 3 present the statistical results of
these five optimization algorithms on three sets of test functions
concerning IGD and HV measures. The best average results are
highlighted in bold. As revealed in Table 3, the proposed algorithm
exhibits the best IGD results among different test functions, except
for the ZDT3 test function. Particularly, in the ZDT1 and ZDT2 test
functions, the IGD has a significant advantage of one order of
magnitude. Although the IGDmeasure is not optimal for ZDT3, the
proposed method still outperforms traditional optimization
algorithms and SVM agent models, indicating that the AG-
MOPSO-GPS algorithm can obtain an optimal solution set closer
to the true PF, further validating its effectiveness. Furthermore, the
proposed algorithm shows significant improvement in the DTLZ
type of test functions compared to other optimization algorithms,
demonstrating its generalization and robustness for three-objective
high-complexity optimization problems. Additionally, in WFG test
functions with varying numbers of objectives, the proposed
algorithm achieves the smallest IGD values, indicating that the
adaptive grid strategy and SGP agent model of AG-MOPSO-GPS
can achieve more stable optimization results while ensuring
convergence and diversity, making it suitable for solving high-
dimensional multi-objective optimization problems. Interestingly,
regardless of whether the ANN or SVM agent model is used in
different test functions, the IGDmeasure is superior to AG-MOPSO
and NSGA-II, indicating the effectiveness of the agent-assisted
optimization method in solving multi-objective optimization
problems.

Meanwhile, the average and standard deviation of the
approximate PF obtained using different optimization algorithms
for ZDT, DTLZ and WFG test functions based on the HV measure
are shown in Table 3. The HV measure can reflect the
comprehensive performance in terms of convergence and
diversity. It can be observed that the average values obtained by
the AG-MOPSO-GPS algorithm are better than those of the other
four algorithms, while the standard deviation is better than that of
the other algorithms in most cases. This indicates that the proposed
algorithm can obtain an optimal solution set that is closer to the true
PF in various forms of multi-objective optimization problems,
effectively avoiding the algorithm from getting stuck in local
optima and demonstrating good global search and local
development performance.

To more intuitively compare the convergence and
distribution of different algorithms, Figures 2–4 present the
PF obtained by different optimization algorithms on different
test functions. It can be clearly seen that for the ZDT test
function, the non-dominated solutions generated by the AG-
MOPSO and NSGA-II algorithms are still far from the true PF of
ZDT. However, the agent-assisted multi-objective optimization
algorithm can converge to the true PF of the ZDT test function.
As for DTLZ1, it has multiple local PFs, and the agent-assisted
multi-objective optimization algorithm can escape from local
optima, which successfully finds solutions on the true PF.
Comparing the ANN and SVM agent models with GP agent
model-assisted multi-objective optimization algorithms, it can be
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found that the GP agent-assisted algorithm can converge better to
the true PF. In addition, the PF obtained by the proposed
algorithm on the DTLZ2 test function is well-distributed in
the objective space, and there are more solutions, which is
better than the other compared algorithms. Similarly, for the
DTLZ7 test function with a discontinuous PF, the proposed
method also achieves a well-distributed and abundant set of
non-dominated solutions. In the WFG test functions, the
proposed algorithm not only attains a smaller IGD value but
also demonstrates better convergence and diversity in the
obtained solution set. Overall, the other algorithms’ non-
dominated solution sets still fail to fit the true PF effectively,
requiring more iterations and incurring higher computational
costs.

5 Engineering cases

With the increasingly serious global climate problems, the
development of renewable energy sources is urgent, among which
wind power is the main force of clean energy. Therefore,
improving the capacity of wind farms is a pressing issue.
Generally, for wind farms that have been built, improving the
power generation efficiency can be achieved by improving the
control strategy of wind turbines, while for planned wind farms,
the power generation capacity can be improved by optimizing the
layout of wind turbines. Wind farm layout optimization is a
highly complex multi-objective optimization problem, involving
multiple fields. This paper applies the agent-based optimization
framework to wind farm layout optimization and proves its
superiority in complex optimization problems by comparing
with different optimization algorithms.

The wind farm layout optimization problem aims to obtain a
wind turbine layout that minimizes the annual energy cost f1,
minimizing the overall wind farm area f2, reducing wake loss and
maximizing efficiency f3 through a multi-objective strategy. The
specific expressions are as follows:

F x, y( ) � min f1, f2,−f3( )
f1 �

Nt
2
3
+ 1
3
e−0.00174N

2
t( )

8760∑360
k�0

∑Nt

i�1
fk θ( )Pi Ui θ( )( )

f2 � 1
2
abs ∑n−1

i�1
xiyi−1 + xny1 −∑n−1

i�1
xi+1yi + x1yn

⎛⎝ ⎞⎠
f3 � 100

∑360
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∑Nt
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∑360
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Subject to

∑Nt

i�1
∑Nt

j�1
max 6Dwt −

������������������
xi − xj( )2 + yi − yj( )√( ), 0( )≤ 0

xi ≥Dwt;xi ≤ 2000 −Dwt

yi ≥Dwt;yi ≤ 2000 −Dwt

xi ≠ xj;yi ≠ yj

(29)

Where, Nt is the total number of wind turbines; fk(θ)
represents the wind speed probability in the θ direction, with a
division step of 10°. Ui(θ) is the wind speed in the θ direction.
Pi(Ui(θ)) represents the power output under Ui(θ). Pi(U0(θ))
represents the power output obtained in the free stream wind speed
(excluding wake loss). Dwt is the diameter of the wind turbine. The
specific details of wind farm parameters and experimental settings
can be found in ref. (Moreno et al., 2021).

The proposed algorithm in this paper is applied to case 1 in
Moreno et al. (2021), and compared with the best-performing
algorithm MO-LSA under the fixed wind speed (12 m/s)
condition, and the best-performing algorithm NSGA-II under the
variable wind speed (8, 12, 17 m/s) condition. The performance is
shown in Table 4, and it can be observed that the AG-MOPSO-GPS
algorithm proposed in this paper is superior in terms of IGD andHV
measures in all cases.

Figures 5, 6 are optimization comparison diagrams between
the optimal method in the literature and the method proposed in
this paper. It can be found that the method proposed in this paper
obtains more non-dominated solutions and a more uniform
distribution when optimizing the layout of wind farms. The
optimal solutions of each optimization algorithm were
substituted into the objective function to obtain the annual
energy cost, wind farm area, and wind turbine efficiency, as
shown in Table 5. Compared with the method proposed in
this paper, MO-LSA reduced the energy cost by 5.48%,
decreased the wind farm area by 10.12%, and improved the
wind turbine efficiency by 3.02% under the constant wind
speed condition. NSGA-II algorithm reduced the energy cost
by 2.71%, decreased the wind farm area by 3.93%, and improved
the wind turbine efficiency by 1.60% compared with the method
proposed in this paper under the variable wind speed condition.
This indicates that developing high-performance optimization
algorithms is important for improving efficiency and reducing
costs in multi-objective optimization problems in practical
industrial applications.

6 Conclusion and future plans

With the continuous improvement of industrial demand,
the complexities arising from the interrelatedness of different
optimization objectives are increasing. Therefore, the
development of efficient methods to solve complex
optimization problems is of paramount importance in the
realm of multi-objective optimization. In this paper, we
thoroughly analyze and study the problems of the multi-
objective optimization problems requiring a large number of
function evaluations and propose a new method to solve
complex optimization problems by combining the AG-
MOPSO algorithm with surrogate models. Through
comparative research, the main findings are as follows.

1. Validation on different types of test functions demonstrates
that the proposed AG-MOPSO-GPS achieves satisfactory
results in various metrics. This indicates that the proposed
method in this paper can obtain a more realistic PF.
Specifically, in the WFG test functions, the ICD and HV
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metrics outperform other algorithms significantly. This
suggests that when multi-objective optimization problems
have multiple local optima, the proposed method in this
paper effectively assists particles in capturing and
maintaining these multiple Pareto optimal solution sets.

2. Compared with the traditional optimization models AG-
MOPSO and NSGA-II, the surrogate model assisted
multi-objective optimization algorithm can obtain non-
dominated solutions and the distribution of solutions is
more uniform, which indicates that the surrogate model
can provide a more efficient, comprehensive and robust
solution for multi-objective optimization problems, which
helps to accelerate the optimization process and obtain a
better approximate PF.

3. From the PF and solutions distribution, the SGP surrogate model
can provide uncertainty estimates of unknown target function
values, helping the optimization algorithm be more robust when
dealing with noise or uncertainty.

4. In the wind farm layout optimization, this method can effectively
reduce the land use area, reduce costs, and improve power
generation efficiency. This indicates that for complex
problems with multiple conflicting objectives, the proposed
method in this paper can efficiently search for the Pareto
optimal solution set, making it suitable for tackling complex
multi-objective optimization problems.

In generally, the proposed approach in this paper can quickly
solve multi-objective optimization problems and is suitable for
various industrial requirements, demonstrating strong
robustness. Future research plans include exploring online
updating techniques for agent models to adapt to dynamic
characteristics of optimization problems that change over time
or parameters and to timely reflect the regularity of objective
functions, in order to improve the real-time and accuracy of
agent models.
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