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With the increasing demand for reliable power supply and the widespread
integration of distributed energy sources, the topology of distribution networks
is subject to frequent changes. Consequently, the dynamic alterations in the
connection relationships between distribution transformers and feeders occur
frequently, and these changes are not accurately monitored by grid companies in
real-time. In this paper, we present a data-driven machine learning approach for
identifying the feeder-transformer relationship in distribution networks. Initially,
we preprocess the collected three-phase voltage magnitude data of distribution
transformers, addressing data quality and enhancing usability through three-
phase voltage normalization. Subsequently, we derive the correlation
coefficient calculations between distribution transformers, as well as between
distribution transformers and feeders. To tackle the challenging task of
determining the correlation coefficient threshold, we propose a multi-feature
fusion approach. We extracted additional features from the feeders and combined
themwith the correlation coefficients to create a feature matrix. Machine learning
algorithmswere then applied to calculate the results. Through experimentation on
a real distribution network in Jiangxi province, we demonstrated the effectiveness
of the proposed method. When compared to other approaches, our method
achieved outstanding results with an F1 score of 0.977, indicating high precision
and recall. The precision value was 0.973 and the recall value was 0.981.
Importantly, our method eliminates the need for additional measurement
installations, as the required data can be obtained using existing collection
devices. This significantly reduces the application cost associated with
implementing our approach.
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1 Introduction

The distribution network serves as the crucial link in the power delivery chain to end-
users. It’s safe and stable operation has a direct impact on the reliability and quality of power
supply to customers (Hock et al., 2018; Naik et al., 2018). Furthermore, an accurate
representation of the distribution network topology is essential for various activities such
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as line loss calculations, tide analysis, grid transformation, and
outage restoration. Achieving an accurate distribution network
topology forms the basis for intelligent operation, maintenance,
and dispatching of the distribution network, ultimately influencing
customer satisfaction (Krsman and Saric, 2017).

In practical operation, the distribution network undergoes
frequent restructuring due to various factors such as the addition
of new equipment, integration of distributed energy sources, and
load switching. These dynamic changes pose significant challenges
in obtaining real-time and accurate information about the
distribution network’s topology (Zhao et al., 2021).

The identification of the distribution network’s topology
involves several aspects, including determining the line
relationships between distribution transformers (referred to as
the feeder-transformer relationship), identifying the phase
sequence of customers, and associating distribution transformers
with specific customers. In China, the distribution network covers a
large power supply range, and its complex topology has not been
fully addressed through intelligent reforms. While significant
progress has been made in installing intelligent devices for data
collection in recent years (Van and Poll, 2019), the data collected by
smart meters remains limited, particularly considering the extensive
coverage of low-voltage distribution networks. Therefore, the
identification of phase sequences for users in the distribution
network topology may already meet the requirements. However,
there are limitations in accurately identifying the feeder-transformer
relationship. This relationship is crucial for load dispatch, line loss
calculation, power restoration, fault location assessment, and other
important aspects of the low-voltage distribution network (Song
et al., 2021). Grid companies have made efforts to monitor the
distribution network topology, creating and storing topology maps
in a Geographic Information System (GIS) during network
construction. However, due to operational changes, load
adjustments, and other factors, timely updates of distribution
topology changes to the GIS are not always feasible (Zhou et al.,
2020a; Zhou et al., 2020b). Over time, differences emerge between
the actual network operation and the topology stored in the GIS
(Luan et al., 2013). Therefore, this paper focuses on studying the
feeder-transformer relationship in the distribution network
topology.

In traditional approaches, distribution network topology
identification has relied on the verification of a priori
information and hardware-based methods (Deka et al., 2018).
The verification with a priori information involves using state
quantities of switches or circuit breakers on the lines to generate
correlation and collocation matrices for identifying the distribution
network’s topology (Freitas and Costa, 2015). However, as
mentioned earlier, the a priori knowledge of the distribution
networks topology stored in the actual operating system may not
be accurate. Consequently, relying solely on a priori knowledge for
distribution network topology identification may not yield
satisfactory results.

In hardware-based identification, a commonly used approach is
to use a specialized signal injection device. This method involves
using a micro-synchronous phase generator to inject high-frequency
characteristic signals, which are then monitored and analyzed for
topology recognition of the distribution network (Alam et al., 2014;
Byun et al., 2018; Wu et al., 2021). However, this option requires

substantial hardware support and manual analysis of the signals,
resulting in time-consuming, inefficient, and costly processes,
particularly for large-scale distribution networks. As a result, grid
companies are often hesitant to adopt this approach.

The development of Supervisory Control and Data Acquisition
(SCADA) systems and Advanced Measurement Infrastructure
(AMI) has led to the installation of numerous data acquisition
devices in the distribution network. This enables access to a
wealth of operational data from the distribution network (Jielong
et al., 2023). Taking advantage of the multiple measurement data
obtained, data-driven approaches for distribution network topology
identification have been widely proposed in recent years. These
studies can be categorized into two main types: graph model-based
approaches (Weng et al., 2017; Pappu et al., 2018; Liao et al., 2019;
Deka et al., 2020; Gadelha et al., 2021) and data-driven approaches
(Zhao et al., 2021).

In the graph model-based approach, Pappu et al. (2018) utilized
principal component analysis in conjunction with graph theory to
analyze load data collected by smart meters, enabling the inference
of steady-state distribution network topology. Gadelha et al. (2021)
combined graph theory, clustering, and Geographic Information
System (GIS) techniques to analyze steady-state voltages,
transformer loads, and line loads, ultimately determining the
distribution network topology. Weng et al. (2017); Deka et al.
(2020) proposed using a synchronous voltage measurement
device to capture voltage data, which was further analyzed to
obtain the topology. They employed a probabilistic graphical
model to describe the statistical dependence between different
voltage measurements, demonstrating that the estimation of line
connectivity and grid topology in topology identification can be
formulated as linear regression problems (Liao et al., 2019). Ji et al.
(2019) proposed a graph theory approach based on real-time
measurements to identify the topology of distribution networks,
which does not require the use of circuit analysis methods. It has to
use the covariance as well as the energy matrix K to find the
maximum graph index to determine the topology. Gao et al.
(2020) proposed a topology identification method based on
knowledge graphs, which can overcome the drawbacks of online
identification methods that require huge amounts of high-quality
operational data and occupy communication channels. In general,
the graph theory approach and the structure of the distribution
network have a great degree of similarity. However, since the data
originally presented in the system is wrong, the imported nodes and
edges are also wrong when using graph theory. This will eventually
lead to errors in the discriminatory results.

In the data-driven approach, Zhao et al. (2021) proposed a
model that combines Principal Component Analysis (PCA) and
Deep Belief Networks (DBN) to identify topology. This model
extracts features using PCA and utilizes DBN to capture the
nonlinear relationship between voltage amplitude and switchable
connected binary states, enabling stable topology identification even
in the presence of data quality issues and noise. Building upon this
work, Zhao et al. (2021) presented a user phase recognition
algorithm based on user classification, quadratic programming,
and probability distribution. They further proposed a
multidimensional calibration method for user phase identification
in low-voltage distribution networks to handle data incompleteness.
Liang et al. (2021) utilized Advanced Measurement Infrastructure
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(AMI) data and studied the topology identification of radial medium
voltage distribution networks based on tide matching. García et al.
(2023) developed a phase identification method based on Bayesian
inference, using the load curve of the low-voltage distribution
network as input. Srinivas and Wu. (2022) employed
probabilistic and deterministic methods to identify topology and
parameters using measured values from smart meters and micro-
phase measurement units. They also determined the optimal
installation location of the micro-phase measurement unit device.
Tian et al. (2016) proposed a topology identification model based on
Mixed Integer Quadratic Programming (MIQP), utilizing a
weighted least squares (WLS) estimation method of measured
residuals. Luan et al. (2015) demonstrated that correlation
coefficients of voltage sequences can be used to evaluate the
distance between energy meters, thereby determining their
upstream and downstream locations. Cavraro et al. (2019) used
smart inverters to detect the topology of the distribution network
based on voltage deviations of the nodes, even when the load is
unknown. Electrical tariffs (Kekatos et al., 2016), standard
expressions for voltage drop (Deka et al., 2018), and voltage
covariance matrices (Cavraro and Kekatos, 2019) have also been
employed to measure topology. Luan et al. (2015) proposed a voltage
correlation-based calibration method for the feeder-transformer
relationship in distribution networks. Despite some promising
results obtained from the mentioned research methods, there has
been limited research specifically focusing on the feeder-transformer
relationship, and challenges arising from data loss and voltage drop
over long distances have not been adequately addressed.

In this paper, the three-phase voltage of the distribution
transformer needs to be extracted, so the state of the distribution
transformer is an important influencing factor in the identification
of the feeder-transformer relationship. Badawi et al. (2022) presents
comprehensive maintenance for power transformers aiming to
diagnose transformer faults more accurately. Specifically, it aims
to identify incipient faults in power transformer’s using what is
known as dissolved gas analysis (DGA) with a new proposed
integrated method. Accordingly, this proposed integrated DGA
method could improve the overall accuracy by 93.6% compared
to the existing DGA techniques. Ghoneim et al. (2021) Box-
Behnken design (BBD) was used to introduce a prediction model
of the breakdown voltage (VBD) for the transformer insulating oil
in the presence of different barrier effects for point/plane gap
arrangement with alternating current (AC) voltage. The findings
illustrated the high accuracy and robustness of the proposed
insulating oil breakdown voltage predictive model linked with
diverse barrier effects. Darwish et al. (2022a) check the reliability
of estimating the transformer’s Health index (HI) percentage based
on the optical spectroscopy techniques. The HI percentages were
estimated for the transformers simulated by these aged samples
according to their DDP values. In the final analysis, this optical
method has proven its potential in being a superior alternative to
conventional techniques in estimating the transformer’s HI
percentage. Darwish et al. (2022b) use Fourier Transform
Infrared (FTIR) spectroscopy was employed to discriminate
between the electrical and thermal faults that frequently happen
in oil insulation. In the final analysis, it was obvious that the
implementation of the optical method is considered a promising
tool to monitor the faulted oil and distinguish between the electrical

fault and the thermal one making the FTIR spectroscopy a superior
alternative for DGA.

In addition, this paper utilizes various machine learning
algorithms to enhance the identification of feeder-transformer
relationships in distribution networks. Advanced machine
learning methods can greatly influence the accuracy and
effectiveness of the results. For instance, in the work conducted
by Rahul et al. (2023), machine learning algorithms were employed
to estimate long-term irradiation levels on a global scale. The paper
showcased a diverse range of machine learning algorithms and
compared their performance and results to determine the most
suitable prediction algorithm. Furthermore, Rahul et al. (2022) also
utilized machine learning algorithms for time series prediction
analysis. Machine Learning algorithms such as Facebook (FB)
Prophet and Extreme Gradient Boost (XGB) are used for
predicting solar energy generation on a monthly and weekly
basis. It concluded that the XGB model is efficient to forecast in
terms of better prediction and better fitting than the FB prophet
model. RMSE, MAPE, and MAE parameters are calculated to check
the performance of the time series model.

In this paper, we propose a data-driven processing fused with
machine learning (DDML) approach for identifying the feeder-
transformer relationship in distribution networks. The main
contributions of this work are as follows:

1) On the basis of addressing the errors caused by three-phase
imbalance, we derived the calculation methods for the
correlation coefficients between distribution transformers and
between distribution transformers and feeders using the voltage
drop formula and Ohm’s law. This is crucial for determining the
relationship between feeders and transformers.

2) We proposed a multi-feature fusion approach to improve the
accuracy of identification by incorporating multiple features in
addition to the correlation coefficients.

3) To overcome the challenge of determining the optimal
identification threshold solely based on correlation
coefficients, we introduced a machine learning method for
data mining, enabling accurate identification of the
relationship between feeders and transformers.

4) we have conducted extensive experiments on a real distribution
network, demonstrating the effectiveness of our proposed
method. The results show high precision and recall values,
indicating the robustness and reliability of our approach.

The rest of the paper is organized as follows: Section 2 describes
the problem formulation as well as the feasibility. Section 3 describes
the data pre-processing and the calculation of the voltage
correlation. Algorithm models and their training are presented in
Section 4. The comparison of the case study with other algorithms is
presented in Section 5. Section 6 summarizes the full text.

2 Problem formulation

In practical operation, the distribution network undergoes
adjustments to minimize network losses and balance the load,
which leads to dynamic changes in the feeder-transformer
relationship within the distribution network topology.
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Unfortunately, these changes are often not promptly recorded in the
Geographic Information System (GIS) used by the staff, resulting in
discrepancies between the actual feeder-transformer relationship
and the recorded feeder-transformer relationship in the GIS system.
This discrepancy can be seen in Figure 1, where T4 is shown
connected to 10 kV feeder 1 in the GIS system, but in reality, it
is connected to 10 kV feeder 2, causing errors in the feeder-
transformer relationship. These issues significantly impact the
daily operations of grid companies, and currently, there is no
efficient and accurate method available for identifying the feeder-
transformer relationship.

2.1 The practical problem

The distribution area plays a critical role in the final stage of
transmitting electric energy to customers, highlighting its
significance in the power supply chain. With the advancements
in smart devices, the installation of smart meters at transformers,
distribution transformers, and customer locations allows for
extensive data collection on the operation of the distribution
network. However, it is important to acknowledge that the
collected data often suffer from inaccuracies due to various
factors. Moreover, combining multiple types of data can further
amplify these errors. Therefore, it becomes imperative to conduct

research on utilizing a single type of data for the identification of the
feeder-transformer relationship in distribution networks, aiming to
address the challenges with data inaccuracies.

2.2 The feasibility of voltage data mining

In China, the distribution network is designed with a closed-
loop structure and operates in an open-loop manner to ensure
reliability and flexibility. This is achieved by installing numerous
sectional switches, link switches, capacitor banks, and other
equipment throughout the distribution network. As a result,
the distribution network predominantly follows a radial
configuration, where voltage drops and voltage magnitudes
exhibit consistent patterns (Zhao et al., 2021). In a specific
grid, as illustrated in Figure 2, Ohm’s law dictates that
currents in the same phase of a circuit should be equal at all
points. However, in long-distance supply lines, the inherent
resistance of the line leads to losses, causing voltage drops to
be higher at greater distances. Nevertheless, it is important to
note that the voltage drop on the same line maintains consistency
throughout its length.

As shown in Figure 2, the voltage at node T1 in the Figure as
follow:

U1 � I R1 + jX1( ) (1)
Here I is the feeder current, R1 is the resistance in the line, and

X1 is the reactance in the line. And for the voltage at the end of the
line T25 as follow:

U25 � I∑ R + jX( ) (2)

Here I is the feeder current, R is the resistance in the line, and X
is the reactance in the line.

Equations 1, 2 represent the principle that currents flowing
through distribution transformers in the same line are equal.
However, within the line, the resistance and reactance of the wire
contribute to increasing values as the distance grows, resulting in a
higher voltage drop at the end of the line. Simultaneously, since the
resistance and reactance of the line remain constant, the voltage
drop at the end of the line remains consistent. These observations
provide a theoretical foundation for the utilization of voltage data in
this paper for mining purposes. By analyzing the voltage

FIGURE 1
Schematic diagramof the Feeder-Transformer relationship error.

FIGURE 2
Radial Distribution Grid.
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measurements along the distribution network, valuable information
can be extracted and utilized to identify the feeder-transformer
relationship accurately.

3 Voltage dependence of feeders and
distribution transformers

In this paper, a data-driven and machine-learning online
identification model is proposed for the feeder-transformer
relationship in distribution networks. The model is composed of
two main parts: data pre-processing and correlation calculation, and
the training and application of the algorithm model. This section
describes the pre-processing process for the collected voltage
amplitude data, including the three-phase normalization method.
The formulae for calculating the correlation coefficients between
stations and between stations and feeders are also presented. These
steps are crucial for preparing the data and obtaining meaningful
correlation measures to accurately identify the feeder-transformer
relationship in the distribution network.

3.1 Data pre-processing

In practical scenarios, collected data often suffer from quality
issues such as missing data, duplication, and clock
desynchronization. These factors can introduce errors in the
identification results. To address this, data pre-processing
techniques are applied to minimize the impact of data quality

issues. The pre-processing stage involves handling missing data,
removing duplicates, and addressing clock desynchronization. By
effectively addressing these issues, the data can be prepared for
further analysis and ensure more accurate identification of the
feeder-transformer relationship in the distribution network.

3.1.1 Data cleaning
In practice, there are places where multiple measurement

point information exists for the same distribution transformer,
and the measurement point with the most complete data
retention should be selected. The specific problems that will
occur and the corresponding cleaning methods are shown in
Table 1.

3.1.2 Voltage missing value detection and filling
In Figure 3, it is observed that the sampling data is prone to

missing data, which can have a significant impact on the
identification process. To address this issue, this paper employs
two interpolation methods, namely, cubic spline interpolation and
cubic polynomial interpolation, to fill in the missing data. Table 2
presents the filling effect comparison under different random
missing ratios.

The results in Table 2 demonstrate that both interpolation
methods are effective in filling the missing voltage values.
However, the cubic polynomial interpolation method
outperforms the cubic spline interpolation method in terms of
filling accuracy. The cubic polynomial interpolation achieves a
higher percentage of filled data for each missing ratio. Based on
this comparison, the cubic polynomial interpolation method is
selected in this paper as the preferred approach for filling the
missing voltage values.

By utilizing the cubic polynomial interpolation method to fill in
the missing data, the issue of missing data can be effectively resolved.
This ensures that the dataset used for identification of the feeder-
transformer relationship is more complete and accurate. With
improved data completeness and accuracy, the subsequent
identification process can be conducted more reliably, leading to
better results in determining the feeder-transformer relationship in
the distribution network.

TABLE 1 Cleaning method of bad voltage data of transformer.

Problem description Processing method

Distribution transformers correspond to multiple metering points The measurement point with the most complete data retention

Distribution transformer file data duplication Retain unique archive data

Voltage acquisition data duplication Preserve unique voltage

FIGURE 3
Data Loss.

TABLE 2 Interpolated values with different data loss ratios.

Interpolation
method

5% 10% 15% 20% 25% 30%

Cubic spline 0.976 0.966 0.958 0.943 0.932 0.911

Cubic polynomial 0.994 0.979 0.986 0.958 0.952 0.946
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3.1.3 Voltage outlier detection and replacement
During the operation of the distribution network, factors such as

load switching, environmental disturbances, and distribution network
transient shocks can cause sudden increases or drops in the voltage
collected by voltage collection equipment at the distribution outlet side.
As shown in Figure 4, although this voltage data reflects the actual
operation of the grid, it is considered abnormal in terms of timing data
processing. Therefore, it is essential to identify and reject these
abnormal values, replacing them with the average of the two
adjacent voltage data points.

3.1.4 Voltage clock offset detection
During the operation of the distribution network, discrepancies

can arise in the clock calibration of measurement devices, leading to
timing variations in the voltage data of distribution transformers.
This can result in either an advance or a delay in the recorded voltage
data. Figure 5 illustrates this situation, where the blue curve
representing the voltage of transformer 2 clearly lags behind the
red curve representing the voltage of transformer 1.

The Dynamic Time Warping (DTW) algorithm is a technique
used to quantify the similarity between two time series. It is

particularly useful for comparing time series that may have
different lengths or temporal shifts. The algorithm determines
the similarity by continuously adjusting the alignment between
different time points of the two time series, ultimately finding the
optimal path that minimizes the discrepancy between them. DTW is
commonly employed when analyzing time series data to account for
temporal variations and enable effective comparison and pattern
recognition. Let the voltage timing data of the two distribution
transformers be X(x1,x2,.,xm) and Y(y1,y2,.,yn), the normalization
path is W(w1,w2,.,wk), and the kth element wk = (m,n)k of W.

DTW X,Y( ) � min∑K
k−1

wk (3)

Equation 3 is the DTW distance, wk should also satisfy three
constraints:

(1) The regularization path satisfies w1 = (1,1) and wk = (m,n);
(2) For an arbitrary 1 ≤ i < k, when wi = (ai,bi),wi+1 = (ai+1,bi+1), we

will have ai+1≤ai+1 and bi+1≤bi+1;
(3) For an arbitrary 1 ≤ i < k, when wi = (ai,bi),wi+1 = (ai+1,bi+1), we

will have ai+1≥ai,bi+1≥bi, and ai + bi ≠ai+1+bi+1

By applying the DTW algorithm to normalize the alignment
path of the offset voltage time series, the Pearson correlation
coefficient has been observed to increase from 0.77 to 0.89. This
improvement in correlation signifies a stronger relationship between
the time series data and indicates a reduction in the misclassification
rate. The DTW algorithm effectively aligns the time series,
compensating for temporal variations and enhancing the
accuracy of the correlation analysis.

3.1.5 Voltage curve smoothing process
During the operation of the distribution network, various factors

such as external environmental interference and clock calibration
deviations can introduce deviations between the collected voltage
values and the actual voltage values. Moreover, the voltage data on
the outlet side of the distribution transformer often contains
significant jitter noise. In Figure 6, it can be observed that the

FIGURE 4
Suddenly increase (suddenly drop) of distribution transformer
voltage.

FIGURE 5
Voltage time series offset.

FIGURE 6
Voltage curve smoothing comparison.
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verification of the feeder-transformer relationship primarily relies
on analyzing the change trend using voltage timing data. To extract
this change trend, the original voltage timing data collected on the
outlet side of the distribution transformer needs to undergo a
smoothing process. Smoothing helps to reduce the impact of
noise and highlights the underlying trend in the data.

In this paper, we compare the commonly used data smoothing
methods include One-dimensional convolutional smoothing,
Kalman filtering, Savitzky-Golay smoothing, etc. Savitzky-Golay
smoothing method for voltage time series data V = [v1,v2,v3,.,v96]
sets a sliding window W traversing the voltage timing data V with a
sliding step of 1. The data for a total of 2n+1 before and after the
sliding window W at moment t is W = [vt-n,.,vt-1,vt,vt+1,.,vt+n], and
the equation fitted at moment vt as follow:

vt � a0 + a1x + a2x
2 + . . . + ak−1xk−1 (4)

By substituting the sliding windowW into thematrix form of the
(k-1)st order polynomial equation (Eq. 4), we obtain Eq. 5.

When the number of data points in the sliding window, denoted
by 2n+1, exceeds the number of parameters, k, a system of equations
can be solved using the least squares method to obtain the
parameters a0,a1,a2, . . . ,ak-1. In one scenario, when the voltage
timing data in the sliding windowW exhibits minimal variation, the
Savitzky-Golay smoothing method is capable of effectively filtering
out a significant portion of the jitter noise, resulting in a smoothing
effect that closely approximates the real values. In another scenario,
when the real values in the sliding window W exhibit substantial
variation, the method can still filter out some of the jitter noise while
preserving the local variations present in the voltage-time series
data. Figure 6 illustrates the impact of voltage smoothing, where the
correlation coefficient is improved as a result of the smoothing
process.
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

3.2 Unbalanced three-phase voltage
processing

The power consumption information collection system gathers the
timing data of three-phase voltage from the distribution transformer.
Typically, either a single-phase voltage is selected from the three-phase
voltage or the three-phase voltage is converted into a single-phase
voltage to facilitate similarity calculation during the verification of the
feeder-transformer relationship.

In practical scenarios, distribution transformers with the
Dyn11 wiring method typically exhibit balanced outlet three-
phase voltages. In such cases, the average value of the three-
phase voltage timing data can be utilized as a representative
single-phase voltage. On the other hand, distribution
transformers with the Yyn0 wiring method have an ungrounded

neutral point on the high-voltage side. When the three-phase load is
unbalanced, it causes a shift in the neutral point. In public
transformer station areas, most users receive power from a single
phase of the distribution transformer, resulting in an unbalanced
three-phase voltage at the transformer’s outlet due to the unequal
load carried by each phase. This unbalance poses a significant
challenge to the identification of the feeder-transformer
relationship. To address this issue, it becomes necessary to
estimate the unbalanced three-phase voltage. The first step is to
calculate the degree of unbalance for the collected voltage data, as
shown in Eq. 6.

PV � max Va − VPavg

∣∣∣∣ ∣∣∣∣, Vb − VPavg

∣∣∣∣ ∣∣∣∣, Vc − VPavg

∣∣∣∣ ∣∣∣∣[ ]
VPavg

× 100% (6)

In formula (6),Va,Vb,Vc are the three phase voltages of ABC on
the exit side of the distribution transformer, and VPavg is the average
value of the three phase voltages. When the percentage of values in
the PV solution exceeds 95% as defined by the current standards, the
unbalanced voltages in three phases need to be recalculated to their
balanced state using an iterative approach for each moment’s phase
voltage. Figure 7 illustrates a schematic diagram of neutral point
displacement at the high-voltage side of the transformer.

In Figure 7, AN, BN, and CN represent the three-phase voltage
when the three-phase load is balanced, while AN’, BN’, and CN’
represent the three-phase voltage when the three-phase load is
unbalanced. In the Figure, triangle ABC is an equilateral triangle,
AB, AC, BC is the line voltage, in the normal case, AN = BN = CN =
X. From trigonometric functions, we can know AB2 = AC2 = BC2 =
3X2. Based on the cosine theorem, the following format can be
derived (Tang et al., 2018):

cos∠BN′A � AN′2 + BN′2 − AB2

2 × AN′ × BN′ (7)

cos∠BN′C � BN′2 + CN′2 − BC2

2 × BN′ × CN′ (8)

cos∠AN′C � AN′2 + CN′2 − AC2

2 × AN′ × CN′ (9)

FIGURE 7
Distribution transformer high-voltage side neutral point offset
figure.
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∠BN′A + ∠BN′C + ∠AN′C � 2π (10)
Combining Eqs 7–10 yields Eq. 11.

arc cos
AN′2 + BN′2 − AB2

2 × AN′ × BN′ + arc cos
BN′2 + CN′2 − BC2

2 × BN′ × CN′
+ arc cos

AN′2 + CN′2 − AC2

2 × AN′ × CN′� 2π (11)
In the above equation, AN’, BN’, CN’ are already known, only X

is unknown. According to the specification, the voltage qualification
range of the distribution is between +7% and −10% of 220 V, so the
solution interval of X is set to [190, 250], and the solution accuracy is
0.1, and X can be found using the iterative method. Further, AN, BN,
and CN can be calculated, and the values obtained are the data after
the balancing process. Then, the same phase data of any different
transformer can be selected for the next step of similarity calculation.

3.3 Voltage correlation

Correlation analysis of time series is a commonly used method in
the field of time series data mining. In the context of distribution
networks, voltage fluctuations often occur due to uncertainties in the
load at different locations along the line. As depicted in Figure 8, the
fluctuation patterns of voltage curves belonging to the same phase in
different distribution transformers under the same line exhibit a
noticeable consistency. Conversely, the fluctuation patterns of
voltage curves under two different lines display distinct differences.
Therefore, the consistency of voltage fluctuation trends on the outlet
side between distribution transformers can serve as a significant feature
for identifying the feeder-transformer relationship. The correlation
calculation proposed in this paper involves determining the
correlation between distribution transformers and the correlation
between distribution transformers and the line.

The correlation between distribution transformers refers to the
relationship between any two transformers that are located on the
same line. In Chapter 3, Section 2, after the data processing
described, we can select different transformer data from the same

phase and perform correlation calculations. This allows us to assess
the degree of similarity or consistency between the voltage data of
different transformers, providing valuable insights into the feeder-
transformer relationship.

In general, the Euclidean distance is commonly used to measure
the correlation between two time series. A smaller Euclidean
distance indicates a higher correlation, while a larger Euclidean
distance suggests a lower correlation. However, since different time
series may have varying magnitudes, it is often necessary to scale the
data to a commonmagnitude before using the Euclidean distance for
comparison. Although the Euclidean distance is widely used, it can
be sensitive to abnormalities, noise, and temporal deformations
present in the measured data, leading to unstable calculation
results. To address this issue, it is beneficial to utilize a
dimensionless measure of correlation between two time series.
This alternative approach helps mitigate the problem caused by
the Euclidean distance, resulting in more stable and reliable
calculation outcomes.

Pearson’s correlation coefficient, also known as Pearson’s
product-moment correlation coefficient, is used to measure the
degree of linear correlation between two independent variables
and is calculated as:

ρX,Y � cov X,Y( )
σXσY

�
n∑n
i�1
xiyi−∑n

i�1
xi∑n

i�1
yi��������������

n∑n
i�1
x2
i − ∑n

i�1
xi( )2

√ ��������������
n∑n
i�1
y2
i − ∑n

i�1
yi( )2

√ (12)

In Eq. 12, cov(X,Y) is the covariance of the ligand X and the
ligand Y. σx, σy are the standard deviations of the ligand X and the
ligand Y, respectively.

From Eq. 12, the correlation coefficient between distribution
transformer under the same line can be calculated. By applying
the Pearson correlation coefficient calculation to the time series
of distribution transformer voltage for the same line, a
distribution transformer correlation matrix can be obtained.
This matrix represents the correlation coefficients between
different distribution transformer and can be expressed as
follows:

P �

1 ρ1,2 / ρ1,n−1 ρ1,n
ρ2,1 1 / ρ2,n−1 ρ2,n
..
. ..

.
1 ..

. ..
.

ρn−1,1 ρn−1,2 / 1 ρn−1,n
ρn,1 ρn,2 / ρn,n−1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

In this correlation matrix, the main diagonal represents the
distribution transformer themselves, and their Pearson correlation
coefficients are constant with a value of 1. The remaining positions
in the matrix represent the Pearson correlation coefficients between
the distribution transformer voltage time series of two distribution
transformer. These coefficients are symmetric about the main
diagonal, indicating the correlation between different pairs of
distribution transformer. The size of the correlation matrix is
determined by the number of distribution transformer under the
line, denoted as “n”.

The same formula (12) is used for the calculation of the
correlation coefficient between the distribution transformer and
the line. cov(X,Y) is the covariance of the ligand X and the ligand

FIGURE 8
Different distribution transformer voltage curves under the same
line.

Frontiers in Energy Research frontiersin.org08

Gao et al. 10.3389/fenrg.2023.1225407

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1225407


Y. σx, σy are the standard deviations of the ligand X and the ligand Y,
respectively.

The correlation coefficient between the line and the distribution
transformer calculated by Eq. 12 also yields the correlation matrix:

PX � ρ1, ρ2,/ρn[ ] (14)
Each element of this correlation matrix represents the

correlation coefficient of a distribution transformer and the line.

4 DDML algorithm

In this subsection, we present the distribution network line-
variation relationship identification algorithm that combines
data-driven approaches with machine learning. The focus is
on introducing the proposed random forest algorithm and
selecting the optimal feature construction matrix for model
training. The random forest algorithm is utilized as the
underlying machine learning method in this study. It is a
powerful ensemble learning technique that combines multiple
decision trees to make accurate predictions. By leveraging the
random forest algorithm, we aim to achieve robust and reliable
identification of the line-variation relationships in the
distribution network.

To train the random forest model effectively, the construction of
the feature matrix plays a crucial role. Various features are extracted
from the collected data to represent the characteristics of the
distribution network. The selection of the optimal feature
construction matrix is a key step in enhancing the performance
of the model.

By carefully selecting and constructing the feature matrix, we
can capture the essential information and patterns in the data,
allowing the random forest algorithm to make accurate
predictions for line-variation relationship identification in the
distribution network.

4.1 Random forest algorithm

The random forest algorithm is an ensemble learning method
that combines multiple decision trees tomake predictions. It is based
on the idea of Bagging, which involves training each decision tree on
a random sample of the overall dataset. The model parameters are
determined by aggregating the predictions of individual decision
trees, such as through voting or averaging.

By integrating multiple machine learning models, the random
forest algorithm offers several advantages over using a single learner.
It tends to achieve higher accuracy, as the combination of multiple
models helps to reduce bias and variance. It is also less prone to
overfitting, as the averaging or voting process helps to generalize the
predictions. Additionally, the random forest algorithm exhibits
strong resilience to interference, making it robust in handling
noisy or inconsistent data.

The decision tree serves as the base learner in the random forest
algorithm. Figure 9 illustrates the construction process of a decision
tree. Initially, different decision trees are constructed by partitioning
the dataset using different subsets of the data. Each decision tree

undergoes node splitting and randomly selects feature variables for
the split. Finally, the random forest model is built from multiple
decision trees, and the final classification result of a sample is
determined by aggregating the predictions through a voting
mechanism.

Overall, the random forest algorithm combines the strengths of
individual decision trees to create a powerful and reliable model for
classification and prediction tasks.

4.2 Feature selection and construction

To enhance the generalization ability of the machine learning
model, it is necessary to construct meaningful features from the
voltage time series data of distribution transformers. Instead of
directly inputting the high-dimensional parameter of the voltage
time series, a set of eight features are selected in this paper to capture
different aspects of the time-series characteristics. These features are
chosen to provide a comprehensive representation of the voltage
time series.

By considering these eight features, the model can learn not only
the instantaneous characteristics of the voltage time series but also
the statistical properties and patterns within the series. This feature
construction approach enables the model to generalize well to
voltage time series data from different dates and enhances its
ability to capture the underlying patterns and trends in the
distribution transformer voltage.

(1) Skewness

The skewness indicator reflects the asymmetry of the time-series
data distribution and its calculated equation is as follows:

FIGURE 9
Random forest algorithm construction.
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xsk � E
V′ − μ

σ
( )3[ ] (15)

(2) Kurtosis

The kurtosis indicator reflects the steepness of the voltage-time
series data distribution and is calculated as follows:

xku � E
V′ − μ

σ
( )4[ ] (16)

(3) Discrete values

The dispersion coefficient is a relative statistic that measures the
degree of dispersion of the data and is mainly used to compare the
degree of dispersion of different sample data. It is denoted as xs.

(4) Number of line distribution transformers

This indicator directly reflects the topological complexity of the
line and the diversity of load changes and it is an important indicator
that affects the calibration of the feeder-transformer relationship,
denoted as xn.

(5) Percentage of dedicated transformers

The quality of the voltage data of dedicated transformers varies,
and this indicator is also an important indicator affecting the
calibration of the feeder-transformer relationship, denoted as xz.

(6) Distribution transformer correlation

Calculating the correlation between different distribution
variables yields Eq. 13, and then take the mean value of each
column to obtain ρt � [ρ1, ρ2,/ρn], denoted as Xρ.

(7) Mean value of line distribution transformer correlation

Take Eq. 14 derived from the value to xl, the indicator reflects
the degree of correlation between the line and the distribution
transformer, denoted as xl.

(8) Distribution transformer sliding window correlation

The Pearson correlation coefficient provides a measure of the
overall correlation between distribution transformer voltage time
series. However, in real-world operation, various factors such as load
imbalances and transformer tap shifting can introduce offsets in the
voltage time series data, affecting the accuracy of the global Pearson
correlation coefficient calculation. In some cases, the global Pearson
correlation coefficient may be low, but there may still be a high
correlation between the voltage time series of specific distribution
transformers within a sliding window.

To address this, a sliding window approach is adopted to
calculate the Pearson correlation coefficients between distribution
transformer voltage time series within the window. The average
value of these window correlation coefficients (xw) is considered as a

new feature, which is added to the feature vector. This approach
aims to improve the accuracy of feeder-transformer relationship
calibration and reduce misclassification rates.

In the end, the eight selected features, including statistical
indicators, discrete values, and correlation coefficients, are
constructed as a feature matrix according to Eq. 17. This feature
matrix is used as input for offline training of the random forest
model. After the training is completed and optimal parameters are
selected, the model can be applied for the identification of feeder-
transformer relationships.

xsk,1 xku,1 xs,1 xn,1 xz,1 xρ,1 xl,1 xw,1

xsk,2 xku,2 xs,2 xn,2 xz,2 xρ,2 xl,,2 xw,2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

xsk,i xku,i xs,i xn,i xz,3 xρ,i xl,i xw,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

4.3 Model training

The experimental environment for this paper is Windows
10 with the following configuration: Intel(R) Xeon(R) Gold
5120T CPU@ 2.20 GHz 2.19 GHz Graphics card is NVIDIA-P5000.

In this method, the preprocessing and feature construction of
the distribution transformer voltage time series data are performed
using the Pandas and NumPy libraries in the Python environment.
These libraries provide useful functions for data manipulation and
feature extraction.

Once the feature dataset is prepared, the next step is to construct
and train the random forest model. The random forest algorithm is
implemented using libraries such as Scikit-Learn (SKLearn) in
Python.

To evaluate the performance of the trained model and assess
its generalization ability, the feature dataset is split into a
training set and a test set. The train_test_split function from
the SKLearn library is used for this purpose. Typically, the
training set contains 70% of the data, while the remaining 30% is
allocated to the test set. This partitioning allows for cross-
validation, which helps in assessing the model’s performance
on unseen data.

To ensure reliable evaluation, cross-validation is performed
using 10-fold cross-validation. This means that the dataset is
divided into 10 equal parts, and the model is trained and
evaluated 10 times, each time using a different fold as the test
set while the remaining folds are used as the training set. This
approach provides a more robust assessment of the model’s
performance by considering different combinations of training
and test data.

By following this process, the distribution transformer voltage
time series data is preprocessed, features are constructed, and a
random forest model is trained and evaluated using cross-validation
techniques to ensure accurate and reliable results.

The modeling of the classified random forest using the scikit-
learn library Random forest consists of numerous decision trees, so
the number of decision trees has the greatest impact on the
complexity of the random forest model. The parameter n_
estimators is set in the interval [1–200] with a step size of 10 to
observe the trend of the change in the number of decision trees on
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the classification accuracy of the model, a diagram of the specific
training process as shown in Supplementary Figure S1.

As can be seen in Supplementary Figure S1, the F1-score of
the model is highest at 0.84 when n_estimators is taken to be
around 50, and then the F1-score of the model shows an
oscillating and slightly decreasing trend as n_estimators
increases. Since the step size of n_estimators is 10, it is easy to
miss the optimal F1-score within the step size. To determine the
optimal value of n_estimators, Supplementary Figure S1 between
40–70 with a step size of 1 is taken for secondary learning and
cross-validation to obtain the F1-score curve, a diagram of the
specific training process as shown in Supplementary Figure S2.
From the quadratic learning F1-score curve, it can be seen that
the classification performance of the model is optimal at
0.8432 when n_estimators is taken as 45. Compared with the
value of 50 when n_estimators is only improved by 0.0032, it
shows that adjusting this parameter can no longer improve the
classification performance of the model, so the optimal value of
n_estimators is selected as 45.

The decision tree splitting algorithm has two types based on
information entropy and Gini coefficient, so the model training is
set 20 times with the same model parameters to obtain the F1-
score curve as shown in Supplementary Figures S3A, B. The
overall F1-score fluctuates around 0.84 as can be seen from
Supplementary Figure S3. But the Gini coefficient fluctuates
more smoothly. Criterion parameter is chosen as the Gini
coefficient.

The maximum depth parameter of the max_depth decision tree
is generally chosen according to the number of data features. When
the maximum depth of the decision tree is increased, the decision
tree will capture more useful information in the data, but it will also
increase the risk of overfitting the random forest. When the
maximum depth is set too small, the flexibility of the decision
tree is reduced and underfitting is easily produced. For the
voltage time series data in this paper, the max_depth is set in the
range of [1–30] with a step size of 1 to obtain the F1-score curve, as
shown in Supplementary Figure S4.

It can be seen from Supplementary Figure S4. That the
classification performance of the random forest model reaches
the optimum when the max_depth takes the value of 21, with
F1-score of 0.8824. And then the F1-score value remains
unchanged as the depth of the tree grows, and the F1-score value
grows by 0.0392 compared to 0.8432, at which time the model lies to
the right of the lowest point of generalization error.

To reduce the complexity of the random forest model and
obtain a smaller generalization error, it needs to further learn and
choose the appropriate parameter values of min_samples_split
and min_samples_leaf. The parameter values in scikit-learn are
integers larger than 2, sot the parameter value interval should be
set as [2–30] and the step size as 1 to obtain the F1-score scoring
curve.

From Supplementary Figure S5, it is known that the highest level
of random forest model F1-score is 0.8947 when min_samples_split
is 12. From Supplementary Figure S6, it can be seen that the highest
level of random forest model F1-score is 0.9186 when min_samples_
leaf is 10.

By analyzing the learning curve of the parameters, it can be seen
that the generalization error of the random forest model keeps

decreasing, so it needs to further try to adjust the max_features
parameter to further reduce the complexity of the model and observe
whether the generalization error of the model still has room to
decrease. Set the max_features parameter interval to [1–9] with a
step size of 1. The F1-scoring curve is obtained as shown in
Supplementary Figure S7. From Supplementary Figure S7, it can
be seen that the optimal value of the F1-score for the random forest
model reaches 0.9209 when the max_features parameter is set to 5.
Compared to 0.9186, the F1-score value only increases by 0.0023,
and the generalization error of the model is very close to the lowest
point.

The optimal values of each parameter of the final random forest-
based feeder-transformer relationship calibration model are shown
in Table 3.

4.4 Algorithm processing sequence

After detailing the necessary data processing steps and outlining
the essential calculations, this subsection presents the specific
algorithm flow. The proposed method solely relies on the voltage
data collected by the production management system (PMS) in the
Chinese distribution network. The formal description of the
algorithm is provided in Table 4.

One crucial aspect of the algorithm is its ability to operate in
real-time. Therefore, it should be executed periodically whenever the
PMS acquires new data to determine the current feeder-transformer
relationship. Setting the execution interval requires careful
consideration to strike a balance. If the interval is too short, the
algorithmmay yield a low correlation coefficient for the voltage time
series, leading to incorrect identification. On the other hand, if the
interval is too long, a large amount of data will accumulate, resulting
in longer computation times and wastage of computational
resources. Hence, a comprehensive approach is needed to
determine the most appropriate implementation cycle.

For instance, in China, voltage data is collected every 15 min,
resulting in 96 data points per day. At the end of each day, the
collected data for that day is frozen, and the data collection for the
next day begins. Therefore, each day’s data can be utilized to identify
the feeder-transformer relationship. The program will output the
result if it detects any inconsistencies with the previous day’s result
after execution.

Once the daily data is frozen, the feeder-transformer
relationship in the distribution network is identified using the
voltage data collected on that day. Before initiating the
identification process, the entire algorithm needs to be initialized.
In Step 2, the voltage data (V) for the current day is imported and
passed through the data pre-processing component of the algorithm.
This involves applying the data pre-processing algorithm described
in Chapter 3, Section 1 to process the data and calculate the
extraction of feature values. Subsequently, the trained model is
used to generate the feature matrix, which is then utilized for
identification. Prior to this step, it is verified whether there is any
input data for the feature matrix. If no data is available, the
algorithm returns to Step 1 to restart the process.

The output results are compared with the previous results. If
inconsistencies are detected, a 3-day data set is extracted and sent
back to Step 2 for joint calculation.
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5 Case studies

This section presents the computational results obtained from
the proposed algorithm and compares them with the results of other
algorithms. The analysis focuses on evaluating the performance and
effectiveness of the proposed algorithm in relation to alternative
approaches.

5.1 Dataset

In order to validate the effectiveness of the proposed algorithm, a
0.4 kV distribution network located in Jiangxi Province was selected
as the test network. This particular distribution network consists of
three substations and 18 feeders, representing a typical scenario with
long-distance supply lines and short-distance complex lines. The
selected feeders contain both single-phase power from residential
users and three-phase power from industrial users. This variety of
power supply configurations reflects the complexity of real-world
distribution networks in China.

The test cases included in the study cover a mix of dedicated and
public transformers within the distribution network. By
incorporating the data from distribution transformers in a city, a
comprehensive evaluation of the algorithm’s performance was
conducted. It is worth noting that all the identification results
obtained through the algorithm were verified on-site by
experienced engineers, ensuring the accuracy and reliability of
the findings.

While existing test networks such as IEEE-33 nodes and
IEEE-69 nodes are commonly used for power system-related
algorithm testing, they are not directly applicable to the unique
characteristics of the Chinese distribution network. The selection
of a representative distribution network in Jiangxi Province
provides a more realistic and practical basis for evaluating the
algorithm’s performance in the context of the Chinese
distribution network.

By conducting the analysis on the actual distribution network
and verifying the results on-site, the proposed algorithm’s capability
to identify the feeder-transformer relationship in a real-world
setting is thoroughly examined.

5.2 Analysis of practical application results

5.2.1 Long distance lines
In the first scenario, the focus was on the SQ 10 kV long-distance

power supply line and the SL line that runs along the country road,
providing electricity to villages and dedicated users along the way.
Voltage data from all distribution transformers under the SQ line on
16 August 2021, were processed and used to extract feature
quantities. These features were then fed into the trained model
for feeder-transformer relationship identification.

The extracted features are presented in Tables 5, 6, and the
model’s output results are shown. Figure 10 depicts the recorded
feeder topology of the SQ line as captured by the GIS system. The
analysis of the results revealed an error in the feeder-transformer

TABLE 3 Optimal parameter values for the random forest model.

Parameter name Parameter meaning Optimal value

n_estimators Number of decision trees 45

criterion Decision tree node splitting method gini

max_depth Maximum depth of decision tree 21

min_samples_split The minimum number of samples needed to split the nodes inside the decision tree 12

min_samples_leaf The minimum number of samples required for the leaf nodes of the decision tree 10

max_features Number of features considered for optimal splitting of decision trees 5

TABLE 4 Feeder-transformer relationship recognition algorithm.

Input:
V: 96-point voltage data of all distribution transformers under the line;
xn: Number of line distribution transformers;
xz: Percentage of dedicated transformers

Algorithm:
Step 1: Algorithm initialization;
Step 2: Importing voltage data (V) into the algorithm’s data Pre-processing section;
Step 3: The pre-processed data are passed through equation 12 to obtain the matrix (13);
Step 4: From equation 14 to obtain xl;
Step 5: Find the other eigen measures and generate the feature matrix (18);
Step 6: The feature matrix is fed into the already trained model in Section 4.3 model for result analysis;
Step 7: judge whether the random forest model obtains data or not. If not, go back to step 1;
Step 8: Output the identification results under the current day’s data;
Step 9: Comparison with the previous day’s identification results. If the same, output the result, if different, go to step 10;
Step 10: After obtaining the 3-day data, go back to step 2;
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relationship for distribution transformers T25 and T26, which are
two adjacent utility transformers.

Further examination of the data revealed that the characteristic
data of the two transformers in error were similar. However, their

correlation coefficient with other distribution transformers was
unusually low, as shown in Table 5. To verify the accuracy of the
results, field staff conducted an inspection using visual examination
and distribution transformer identifier analysis. The results
confirmed that T25 and T26 indeed had a misidentified line
relationship, validating the model’s successful identification of the
incorrect distribution transformers.

Upon conducting an in-depth analysis, it was discovered that
the two misidentified distribution transformers were located at
the very end of the line. In the specific SQ feeder, transformers
were predominantly centrally positioned at the first end,
primarily serving factories and enterprises with high electricity
loads and irregular consumption patterns. These users exhibited
significant differences in electricity consumption behavior
compared to users connected to public transformers.
Additionally, the end position of the long-distance line itself
experienced higher voltage drop, resulting in poorer voltage
waveforms at T25 and T26 compared to other distribution
transformers on the line. Despite these challenges, the random
forest model successfully identified the errors in the feeder-
transformer relationship.

Finally, after consulting the equipment maintenance, additions,
and cancellations records, it was confirmed that the two distribution
transformers had indeed been removed due to user cancellations.
However, the meters associated with those transformers were
relocated to another adjacent feeder originating from the same
substation.

5.2.2 Short distance lines
The second scenario involves the SL 10 kV short-distance lines,

which are situated in an area that recently underwent a pilot area
renovation to enhance power supply reliability. This particular
distribution network area exhibits a higher level of complexity.
The SL feeder, spanning a distance of 4.5 km, consists of a
combination of cable and overhead lines, and encompasses
26 distribution transformers, including 3 dedicated transformers
and 23 public transformers. Figure 11 displays the topology of the SL
feeder as stored in the GIS system. The feeder incorporates various
equipment such as ring cabinets, circuit breakers, and cable branch
boxes.

For analysis purposes, the same 96 points of voltage data from all
distribution transformers along the SL line on 16 August 2021, were
selected and processed. Table 7 presents the processed feature data,
while Table 8 showcases the calibration results obtained from the
random forest model. It is noteworthy that despite the line
traversing multiple intelligent devices and exhibiting high
complexity, only one distribution transformer was found to have
an incorrect feeder-transformer relationship.

Through a comparative analysis, it was determined that the
utility transformer T20 was the one with the erroneous
relationship. Upon examining its topology diagram, it was
observed that circuit breakers were present at both ends of the
branch where the utility transformer was installed. When the
circuit breakers were operated in reverse, the line associated with
the utility transformer also switched accordingly. This ultimately
resulted in the incorrect feeder-transformer relationship, a
finding that was corroborated by the on-site inspection
conducted by the staff.

TABLE 5 Scenario 4 line Eigenvalue.

t_n ku sk xs xρ xw xl xn xz

T1 −0.947 0.1648 0.5178 0.8028 0.8076 0.8386 36 0.0833

T2 −0.5084 −0.2551 0.552 0.8841 0.9002 0.8386 36 0.0833

T3 −0.4051 −0.2312 0.5734 0.8868 0.8797 0.8386 36 0.0833

T4 −0.3814 −0.2077 0.974 0.8877 0.8801 0.8386 36 0.0833

T5 −0.3539 −0.3413 0.9711 0.8896 0.8826 0.8386 36 0.0833

T6 −0.6462 −0.1448 0.5544 0.8822 0.8713 0.8386 36 0.0833

T7 −0.3525 −0.2294 0.5809 0.908 0.9156 0.8386 36 0.0833

T8 −0.3774 −0.264 0.5716 0.9067 0.9145 0.8386 36 0.0833

T9 −0.5339 −0.219 0.5681 0.8967 0.9093 0.8386 36 0.0833

T10 −0.586 −0.1842 0.5592 0.8988 0.9163 0.8386 36 0.0833

T11 −0.7291 −0.2157 0.5206 0.8729 0.8601 0.8386 36 0.0833

T12 −0.2908 −0.2953 0.5866 0.9089 0.918 0.8386 36 0.0833

T13 −0.3155 −0.1296 0.5813 0.889 0.8743 0.8386 36 0.0833

T14 −0.5544 −0.1737 0.5507 0.9048 0.9175 0.8386 36 0.0833

T15 0.1194 −0.6468 0.6412 0.8858 0.9021 0.8386 36 0.0833

T16 −0.5625 −0.1725 0.5551 0.9042 0.9181 0.8386 36 0.0833

T17 0.0349 −0.5011 0.6449 0.8945 0.9092 0.8386 36 0.0833

T18 −0.3295 −0.2803 0.5764 0.9035 0.9079 0.8386 36 0.0833

T19 −0.152 −0.4132 0.6062 0.9071 0.9183 0.8386 36 0.0833

T20 −0.0277 −0.4719 0.6237 0.9021 0.9131 0.8386 36 0.0833

T21 −0.0069 −0.4776 0.6236 0.9039 0.9158 0.8386 36 0.0833

T22 −0.2071 −0.3627 0.597 0.9083 0.9192 0.8386 36 0.0833

T23 −0.3204 −0.2465 0.5688 0.9032 0.9076 0.8386 36 0.0833

T24 −0.2611 −0.2784 0.5804 0.908 0.9178 0.8386 36 0.0833

T25 −0.3869 −0.3077 0.987 0.815 0.7855 0.8386 36 0.0833

T26 −0.3256 −0.3819 0.9752 0.8128 0.7686 0.8386 36 0.0833

T27 −0.0237 −0.4522 0.6014 0.8975 0.8832 0.8386 36 0.0833

T28 −0.0924 −0.4222 0.5873 0.8958 0.8776 0.8386 36 0.0833

T29 −0.1487 −0.3574 0.586 0.8988 0.8865 0.8386 36 0.0833

T30 −0.0718 −0.437 0.591 0.8983 0.8855 0.8386 36 0.0833

T31 −0.1993 −0.3727 0.5719 0.8932 0.874 0.8386 36 0.0833

T32 −0.3673 −0.1742 0.5466 0.8915 0.8809 0.8386 36 0.0833

T33 −0.2642 −0.3073 0.5717 0.8993 0.8891 0.8386 36 0.0833

T34 −0.2645 −0.2719 1.7919 0.9405 0.873 0.8386 36 0.0833

T35 −0.5025 −0.2274 0.5645 0.9056 0.9135 0.8386 36 0.0833

T36 −0.5906 0.0554 0.5725 0.8906 0.9043 0.8386 36 0.0833
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5.2.3 All distribution network transformers in a city
To validate the effectiveness of the proposed method on a

larger scale and facilitate its practical implementation, a 3-day
dataset was utilized to verify the feeder-transformer
relationships. The dataset consisted of data collected from a
provincial municipal company from August 15 to 17 August
2021. It encompassed distribution network ledger data,
distribution transformer outlet voltage data obtained from the
electricity consumption information collection system, and
distribution network GIS information. The dataset comprised
a total of 23,838 distribution transformers under 535 10 kV
feeders in the local municipality, along with the corresponding
topology diagram for verification.

Construct the feature matrix according to Section 4.2, the
matrix was input into the trained random forest model for direct

verification. The model output identified 486 distribution
transformers with incorrect feeder-transformer relationships.
Subsequently, a comparison was conducted between the
distribution transformers flagged by the model and the
corresponding topology diagram. The verification process
involved sending the list of identified transformers to each
grid company for on-site verification, and the results are
presented in Table 9.

From the data in Table 9, the overall accuracy of the
calibration results (Accuracy) can be calculated to be 99.96%.
The proportion of mismatched matches among the distribution
transformers is negligible. Even if the model were to classify all
mating changes as correct without any discrimination, the
accuracy would still reach 97.92%. Therefore, accuracy alone
does not fully reflect the actual effectiveness of the model
calibration. To assess the model’s performance in identifying
mismatched matches, precision and recall of the model output
were computed. Using the formulas for binary problems, the
precision was found to be 96.30%, the recall was 97.33%, and the
F1-score was 97.73%.

TABLE 6 Scenario 4 line results.

Number T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Result 0 0 0 0 0 0 0 0 0 0 0 0

Number T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24

Result 0 0 0 0 0 0 0 0 0 0 0 0

Number T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36

Result 1 1 0 0 0 0 0 0 0 0 0 0

FIGURE 10
SQ feeder topology figure.

FIGURE 11
SL feeder topology figure.
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5.2.4 Comparison of methods
To assess the effectiveness of the proposed method, a

comparison was conducted with other common classification

algorithms in order to verify its performance. The selected
algorithms for comparison included Support Vector Machine,
K-Nearest Neighbor, Parsimonious Bayes, and AdaBoost. The
comparison experiments focused on the identification of both
correct and incorrect feeder-transformer relationships.

Table 10 presents the results of identifying the correct feeder-
transformer relationships, while Table 11 displays the results of
identifying the incorrect feeder-transformer relationships. In
Table 11, it is evident that the random forest algorithm
outperformed the other classification models in terms of F1-
score, accuracy, and completeness rates for both correct and
incorrect feeder-transformer relationships. These results indicate
the superiority of the random forest algorithm in effectively
identifying feeder-transformer relationships compared to other
commonly used classification algorithms.

TABLE 7 Scenario 5 line Eigenvalue.

t_n std kur ske xls xρ xρw xρl xn xz

T1 1.0017 −0.5229 −0.1894 0.5273 0.5691 0.6834 0.9226 26 0.0769

T2 1.0017 −0.0825 −0.5142 0.5917 0.9502 0.9379 0.9226 26 0.0769

T3 1.0017 −0.0369 −0.4174 0.6147 0.9545 0.9474 0.9226 26 0.0769

T4 1.0017 −0.1498 −0.4381 0.6231 0.9496 0.9396 0.9226 26 0.0769

T5 1.0017 −0.1011 −0.4683 0.613 0.9539 0.9469 0.9226 26 0.0769

T6 1.0017 −0.0688 −0.4814 0.6222 0.9554 0.9484 0.9226 26 0.0769

T7 1.0017 −0.0334 −0.4632 0.6189 0.9555 0.948 0.9226 26 0.0769

T8 1.0017 −0.1605 −0.5321 0.5742 0.9407 0.9211 0.9226 26 0.0769

T9 1.0017 −0.0343 −0.442 0.6345 0.9547 0.9485 0.9226 26 0.0769

T10 1.0017 0.0909 −0.4606 0.6212 0.9542 0.9479 0.9226 26 0.0769

T11 1.0017 −0.1629 −0.4419 0.6339 0.9429 0.9342 0.9226 26 0.0769

T12 1.0017 −0.0898 −0.4415 0.6166 0.9547 0.9472 0.9226 26 0.0769

T13 1.0017 0.1157 −0.4605 0.6288 0.9529 0.9437 0.9226 26 0.0769

T14 1.0017 −0.0028 −0.4247 0.643 0.9512 0.9398 0.9226 26 0.0769

T15 1.0017 −0.0175 −0.4952 0.6324 0.9534 0.9434 0.9226 26 0.0769

T16 1.0017 −0.0311 −0.4349 0.6306 0.951 0.9408 0.9226 26 0.0769

T17 1.0017 −0.0332 −0.3962 0.651 0.9508 0.9357 0.9226 26 0.0769

T18 1.0017 0.0536 −0.4777 0.622 0.9462 0.9215 0.9226 26 0.0769

T19 1.0017 −0.0226 −0.4438 0.6257 0.9553 0.9476 0.9226 26 0.0769

T20 1.0026 −0.1271 −0.3663 1.0875 0.5816 0.7676 0.9226 26 0.0769

T21 1.0017 0.0558 −0.453 0.642 0.9506 0.9377 0.9226 26 0.0769

T22 1.0017 −0.0987 −0.4795 0.596 0.9542 0.9433 0.9226 26 0.0769

T23 1.0017 −0.0499 −0.4322 0.6046 0.9538 0.9485 0.9226 26 0.0769

T24 1.0017 −0.0195 −0.5335 0.6016 0.9501 0.9391 0.9226 26 0.0769

T25 1.0017 −0.0939 −0.5034 0.5888 0.9484 0.9356 0.9226 26 0.0769

T26 1.0017 −0.0695 −0.4542 0.6077 0.9517 0.9368 0.9226 26 0.0769

TABLE 8 Scenario 5 line results.

Number T1 T2 T3 T4 T5 T6 T7 T8 T9

Result 0 0 0 0 0 0 0 0 0

Number T10 T11 T12 T13 T14 T15 T16 T17 T18

Result 0 0 0 0 0 0 0 0 0

Number T19 T20 T21 T22 T23 T24 T25 T26 T27

Result 0 1 0 0 0 0 0 0 0
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6 Conclusion

The proposed algorithm in this paper offers a data-driven and
machine learning approach for identifying the feeder-transformer
relationship in distribution networks. Unlike existing methods, this
approach does not require additional hardware equipment but instead
leverages data mining techniques and machine learning algorithms. By
extracting voltage amplitude data and performing feature extraction
and construction, a model is trained to effectively identify the feeder-
transformer relationship. The algorithm’s performance was evaluated
using real measured data, leading to the following conclusions:

1) The algorithm proposed in this paper exhibits a high level of
robustness in handling collected data, effectively dealing with
measurement errors and other uncertainties.

2) The method presented in this paper addresses the limitations of
single-feature approaches in data-driven methods by utilizing
multiple feature quantities to construct a comprehensive feature
matrix. This approach significantly reduces the false alarm rate.

3) By employing machine learning techniques, the proposed
algorithm leverages the constructed feature matrix for
accurate and reliable feeder-transformer relationship
recognition. This approach overcomes the challenges
associated with determining correlation coefficient
identification thresholds in existing methods.

4) The proposed method is practical and readily applicable, as the
trained model demonstrates strong generalization capabilities.
Once trained, it can be deployed for real-world applications.

5) This paper introduces a relevant imputation method specifically
designed to address the issue of three-phase voltage unbalance in
distribution transformers. This method effectively improves the
correlation coefficient in cases of unbalanced three-phase
voltages, contributing to the overall accuracy and reliability of
the algorithm.

These findings highlight the effectiveness and practical
applicability of the proposed algorithm in addressing the
challenges associated with feeder-transformer relationship
identification in distribution networks. By providing accurate and
timely insights into the network topology and line-to-variable
relationship, this algorithm can greatly enhance the operation
and management of power grid companies.

In future work, we plan to extend our research to explore the
identification of line-to-variable relationships in distribution
networks under various disturbances. Our focus will be on
addressing the challenges posed by the bi-directional flow of
tidal currents caused by the increased penetration of distributed
energy sources, because when a large number of distributed
photovoltaic power generation and other access will lead to
the phenomenon of backward transmission of electricity,
further exacerbating the difficulty of identifying the topology
of the distribution network. Specifically, we aim to investigate the
accurate identification of distribution network topology in the
presence of these dynamic conditions. This research will
contribute to the development of more comprehensive and
robust methods for managing distribution networks with high
levels of distributed energy source integration.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

TABLE 9 Feeder and transformers check result.

Model output result is correct The model output results is error All

Live for the right 23,343 13 23,356

Site for error 9 473 482

All 23,352 486 23,838

TABLE 10 Correct transformers check results of feeder transformers
relationship.

Model F1 Precision Recall

kNN 0.981 0.964 0.999

Naive Bayes 0.937 0.979 0.898

Tree 0.979 0.983 0.976

PNN 0.999 0.999 0.999

Random Forest 0.999 0.999 0.999

SVM 0.875 0.973 0.794

AdaBoost 0.993 0.993 0.993

Tang et al. (2018) 0.981 — —

TABLE 11 Wrong transformers check results of feeder transformers
relationship.

Model F1 Precision Recall

kNN 0.555 0.971 0.389

Naive Bayes 0.411 0.294 0.684

Tree 0.918 0.912 0.924

PNN 0.959 0.970 0.951

Random Forest 0.977 0.973 0.981

SVM 0.258 0.161 0.639

AdaBoost 0.927 0.905 0.950

Tang et al. (2018) 0.917 — —
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