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In recent years, although China’s economy has continued to grow, the
environmental impact is greatly affected by the use of primary energy, such as
global warming, which has become more and more serious. Under the
background of energy conservation and emission reduction, China’s emission
reduction pressure is very great. In this paper, an online monitoring system for
carbon emissions is developed for real-time monitoring of carbon emissions, and
the ant colony algorithm is used to performmulti-objective optimization based on
“construction period-cost-carbon emissions.” Through the organic integration of
wireless sensors, communication networks, cloud servers, and mobile devices, a
real-timemonitoring system for carbon emissions has been developed, which can
monitor and visualize the carbon emissions generated by major machinery on site
in real time. At the same time, the resource consumption of each process in
different modes is sorted out, and the multi-objective optimization problem of
“construction period-cost-carbon emission” is designed to seek the optimal
solution by combining the multi-objective optimization theory. In this paper,
the developed real-time monitoring system is applied in the actual field, the
stability and practicability of the system are verified, and the process-related data is
obtained by combining the monitoring system and field investigation. The
experimental results show that the relative deviations of the two units are
consistent, fluctuating between 0.54% and 6.14%, and the overall deviations
are 3.61% and 3.63%, respectively. Therefore, the online carbon emission
monitoring system has stable data and high accuracy. By comparing the data
trends of the online monitoring method and the emission factor method, it is
found that the two trends are consistent, which verifies the applicability of the
online monitoring method in the field of carbon emission monitoring.
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1 Introduction

High quality emission data is the foundation of carbon trading, and the selection of
monitoring methods is crucial for establishing a reliable carbon emission monitoring system
and improving the accuracy of carbon emission data (Blanco-Donado et al., 2022). China’s
energy conservation and emission reduction plan faces great challenges. Under the
background of sustainable development and the new normal of the economy, China
needs to closely integrate the development of the national economy with the reduction
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of carbon emissions, and find a new way of economic development.
The advancement of information technology provides a platform for
the field of carbon emission calculation and assessment, which not
only improves efficiency but also provides management ideas. Using
IT technology to conduct real-time monitoring and research on
carbon emissions will help to achieve effective management of
carbon emissions and promote low-carbon development (Chang-
Ho et al., 2021). It enables on-site managers to easily understand the
changes in carbon emissions in real time, which is conducive to the
formulation of targeted emission reduction measures. At the same
time, the research on the mechanism behind carbon emission data
can also provide a reliable and detailed data basis for the government
or other relevant departments to formulate emission reduction
policies, carbon emission standards or quotas. In addition, the
system can monitor the running time of various construction
machinery, which can help construction enterprises to formulate
the consumption quota of internal machinery. Or it proposes a
correction factor for the industry quota to improve the pertinence of
the quota and promote the continuous development of the quota
(Zhang et al., 2021). The carbon emission data of manuscript quality
is the foundation of carbon trading, and a reliable carbon emission
monitoring, reporting, and verification system is the cornerstone of
the construction and operation of the carbon trading system. The
system studied in this article can not only achieve real-time
monitoring of carbon emission data on construction sites, but
also help construction personnel view the carbon emission
situation on site in real time.

Comprehensive analysis of urban transportation carbon emissions
is the key to realizing low-carbon transportation. Sun D. J. et al. (2017)
started with the architectural design of a carbon emission mobile
monitoring system using multiple sets of equipment, and collected
traffic data to calibrate the emission model MOVES. He combined
various sensitivity and correlation evaluation indicators to monitor and
analyze transportation carbon emissions. Yuan et al. (2017) research
showed that AMSmonitors airflow velocity andmethane concentration
among other ventilation-related parameters at specific mine locations.
Based on the theory of heat and mass transfer in ventilation airflow, it
uses CO, CO, and airflow velocity from AMS sensor data. Sun J. et al.
(2017) used multi-dimensional mobile monitoring equipment to study
the formation mechanism of transportation carbon dioxide emissions
from different dimensions. He found out the main factors that affect
CO2 emissions from transportation, the vehicle emission model is
calibrated using the results of mobile monitoring, and the reliability
of the model is verified. Reducing emissions from deforestation and
forest degradation in developing countries is considered an effective and
cost-effective measure to mitigate climate change. Olayinka et al. (2021)
assessed Nigeria’s progress in implementing forest carbon storage
monitoring and quantification requirements in the context of
REDD+. This study was conducted through a case study that
reviewed and analyzed national and international REDD+documents
related toMRV. SunXueCheng et al. (2021) proposed a trajectory based
analysis method to determine the sources of high travel carbon
emissions and the relationship between car use and travel carbon
emissions. The Vehicle Specific Power Model (VSP) considers the
impact of vehicle operating speed on emissions and is used to estimate
emissions from the start of travel to the destination. He divided the
research area into grids based on population distribution, and calculated
grid carbon emissions (GCE) and grid average carbon emissions.

However, the acquisition of relevant data such as mechanical shifts
and engineering quantities by these methods is achieved through the
engineering quantity list and the consumption quota.

Building a smart city has become a key task of construction work,
and the top priority of building a smart city is to control carbon
emissions. In the context of carbon emissions, Liu et al. (2020)
established a decision-making optimization model for auto parts
low-carbon supply chain based on carbon emission responsibility
sharing and resource sharing. Smart cities provide sustainable and
economical services to citizens, and with the increase in carbon
emissions, the popularization of EVs is an important step towards
an environmentally friendly smart city. Aujla et al. (2018) proposed a
multi-leader and multi-follower Stackelberg game for energy trading,
and designed multi-parameter pricing through parameters such as
electricity consumption and usage time. Considering the relevance of
IoT-connected smart city concepts, Galvo et al. (2017) aimed to
improve the sustainability and energy autonomy of buildings by
applying new energy models in existing public buildings. The idea
of a smart city is to seek to improve the lives of these city dwellers by
utilizing high-capacity modern means of communication. Kadhim
(2019) has effectively contributed to the improvement of the quality
of life in some congested cities through solutions such as reducing
energy consumption and reducing carbon dioxide emissions. With the
explosion of smart cities and IoT applications, this brings more
intelligence to smart cities and public transportation to solve
fundamental problems such as human monitoring of safety, traffic
and traffic. Alam et al. (2017) implemented collaborative sensing for
smart beaches and intelligent transportation systems in IoT and
develops an end-to-end reference implementation utilizing big data.
The above studies propose methods for monitoring carbon emissions.
However, these methods have not achieved the effect of real-time
monitoring in terms of monitoring frequency, and the visualization of
carbon emission data is still insufficient.

The traditional emission coefficient method refers to the statistical
average of the amount of gas emitted by a unit of productionunder normal
technical, economic, and management conditions, and the emission
coefficient is also known as the emission factor. However, there are
significant differences in carbon emission coefficients under the
influence of factors such as different technological levels, production
conditions, energy usage, and process processes. Therefore, the
uncertainty of using the coefficient method is also significant. The
system studied in this article can not only achieve real-time
monitoring of carbon emission data on construction sites, but also
help construction personnel view the carbon emission situation on site
in real time. It can also obtain more data related to the construction
process, facilitatingmanagement personnel to have a better understanding
of the construction site.

2 Carbon emission monitoring and
algorithm design

2.1 Status of carbon emission and digital
management system

Carbon dioxide emissions cannot be equated with carbon
emissions, which are an umbrella term for all greenhouse gases.
In the case that the actual measurement conditions are not popular,
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the state proposes a default value based on the measurement results
of multiple units to represent the average level of the majority of
units. However, according to multi-party calculations, this method
has many influencing factors, and the representativeness of the
default value is questionable.

Although the introduction of intelligent methods has improved
the calculation efficiency of carbon emission evaluation and the
visualization of evaluation results to a certain extent, most of these
methods simulate and predict carbon emissions from different
dimensions before or after project construction, rather than real-
time monitoring at the construction site stage (Reuter et al., 2019).
Some people use the GID database to evaluate and calculate carbon
reduction, which can develop more accurate carbon reduction
planning plans and refine carbon reduction targets onto
individual devices; Some scholars have also simulated and tested
carbon emission efficiency using the Carbon Monitor big data
system. Moreover, many methods use quotas or bills of
quantities when calculating carbon emissions, which may lead to
deviations in the calculation results. Because the quota can only
represent the national or industry average level, it cannot reflect the
real level of each specific project.

2.2 Evaluation indicators and algorithm
design

2.2.1 Evaluation indicators
Since the optimization process in this paper involves three

objectives of time, cost and carbon emission, how to evaluate the
pros and cons of each feasible solution has become a problem that
needs to be solved before algorithm design. In the research process of
this paper, the meanings represented by each goal are not the same.
For each sub-objective function, the relative deviation is used to
measure the pros and cons of the feasible solution, that is, the
deviation of the actual value of a certain target from the minimum
value of all feasible solutions of the target (Fedi, 2017). In this paper,
the method of random and dynamic weighting is adopted, and a
comprehensive objective function is constructed by combining the
related concepts of aggregation function. This effectively simplifies
the multi-objective solution, thereby speeding up the solution
progress and ensuring the accuracy of the solution results
(Mohammed and Miklas, 2019).

For the model in this paper, each ant corresponds to a feasible
solution, and the evaluation of the pros and cons of an ant includes
three indicators: time, cost, and carbon emissions. The degree of
deviation of the time index of the kth ant corresponding to the
feasible solution can be expressed by Formula 1.

ATk � ETk − ET
min

ET
max − ET

min
(1)

In the same way, the cost of the kth ant corresponding to the
feasible solution and the deviation degree of the carbon emission
index are shown in Formulas 2, 3.

ACk � ECk − EC
min

EC
max − EC

min
(2)

ABk � EBk − EB
min

EB
max − EB

min
(3)

Formulas 1–Formulas 3 have given the evaluation method of the
pros and cons of each ant corresponding to the sub-goals of feasible
solutions. Therefore, for the evaluation of the pros and cons of the
overall goal, on the basis of the pros and cons of the sub-goals, the
corresponding weight coefficient w is introduced for calculation, so
as to obtain the comprehensive objective function expression as
shown in Formula 4:

F k( ) � wTATk + wCACk + wBABk

� wT
ETk − ET

min + r

ET
max − ET

min + r
+ wC

ECk − EC
min + r

EC
max − EC

min + r

+ wB
EBk − EB

min + r

EB
max − EB

min + r

(4)
Among them, r is a random number between (0, 1), which can

effectively ensure the validity of the target value. At the same time, in
order to achieve the global optimal effect, this paper draws on the
practice in previous research. The random dynamic weight method
is used to provide weight coefficients for the comprehensive
objective function, so that the model can continuously change
the search direction during the optimization process, and it will
not fall into a local optimum (Spurrier, 2017). For a comprehensive
function with m sub-objectives, the distribution of the weight
coefficients follows the Formula 5.

wn � bn
b1 + b2 + ... + bm

(5)

2.2.2 Algorithm design
Under the given construction mode and construction

conditions, it is necessary to find the construction scheme with
the minimum time, cost and carbon emission, so as to effectively
guide the construction process. The specific algorithm flow and
algorithm design include the following parts:

It prevents the solution process from falling into a local
optimum and ensures the rationality and globality of the optimal
solution (Gately and Hutyra, 2017). The comprehensive objective
function assigns weight coefficients as shown in Formula 6.

wi � bi
b1 + b2 + ... + bn

(6)

For the comprehensive objective function, when the function
value is smaller, it indicates that the corresponding feasible solution
has less consumption in terms of “time, cost and carbon emission”,
which means that the feasible solution is better (Tamilarasu et al.,
2020). According to this principle, we need to calculate the value of
the comprehensive objective function in the solution process as
shown in Formula 7.

F k( ) � wT
ETk − ET

min + r

ET
max − ET

min + r
+ wC

ECk − EC
min + r

EC
max − EC

min + r

+ wB
EBk − EB

min + r

EB
max − EB

min + r
(7)

After completing one cycle, the pheromone concentration of the
path needs to be updated in time for the next cycle. The pheromone
is obtained by adding the remaining concentration of the
pheromone concentration before the current cycle after the
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current cycle and the pheromone concentration left by the ants
during this cycle, as shown in Formula 8.

δmn NC( ) � α*δmn NC − 1( ) + Δδmn (8)
The basic calculation formula of Δδmn is shown in Formula 9.

Δδmn � ∑i

k�1Δδmn
k (9)

Before the next cycle starts, the ants’ selection probability for
each path should be calculated. Generally speaking, the path choice
of ants will be affected by two factors. Among them, the
concentration of pheromone can be known from the foregoing
content, and the degree of visibility is shown in Formula 10.

βmn � wT
Tn

max − Tn + r

Tn
max − Tn

min + r
+ wC

Cn
max − Cn + r

Cn
max − Cn

min + r

+ wB
Bn

max − Bn + r

Bn
max − Bn

min + r
(10)

a and β represent the relative importance of pheromone and path
visibility, respectively, which are both constants. When the j node
cannot form an effective process with the i node, its selection
probability value is 0. When an ant faces a path selection, its
probability is shown in Formula 11.

Pk
mn �

δmn( )α βmn( )ω
∑

k∈allowedk
δmk( )α βmk( )ω (11)

When choosing a path for an ant, it will go through two selection
processes. First, generate a random number q between (0, 1), and
compare it with the given number q0, if q≥ q0, select the path for the
ants according to Formula 11. If q< q0, the path selection should be
performed according to Formula 12:

γ � argmaxk∈allowedk δmk( )α βmk( )ω (12)

Due to the constraints of various resources in the process of
production and life, people need to use limited resources to produce
more products, or try to consume less resources under the premise
of producing the same products (Vojtisek-Lom et al., 2020; Deepak
Kumar et al., 2022).

Minb � f a( ) � f1 a( ), f2 a( ), ..., fm a( )[ ] (13)

2.3 Multi-objective function processing

The objective programming method is generated earlier and is
suitable for the situation where the optimal value of the sub-
objective is easy to find. The mathematical expression is:

min∑q

m�1 f1 x( ) − Fi

∣∣∣∣ ∣∣∣∣ (14)

Among them, q represents the number of constraints, and Fi

represents the optimal value that the ith objective function can
achieve under the constraints.

When using the hierarchical sorting method to solve the multi-
objective optimization problem, the importance of all sub-objectives
is firstly quantified and then sorted to obtain the optimal solution of
the original problem, as shown in Formula 15.

Minf1 a( ) S.t.g a( ) � g1 a( ), g2 a( ),/, gm a( )( ) (15)
Then the second round of solution is performed:

Minf2 a( ) S.t.g a( ) � g1 a( ), g2 a( ),/, gm a( )( ) (16)
The fixed weight method assigns a fixed weight coefficient to

each sub-objective, and performs weighted calculation on the sub-
objective function value corresponding to each feasible solution. The
pros and cons of feasible solutions are evaluated by comparing the
comprehensive objective function values calculated by weighting
(Ershov and Sochilova, 2020; Nasser et al., 2023). For example, if
there are m sub-goals, first set a weight coefficient for each sub-goal
through the expert scoring method or the analysis and comparison
method to satisfy:

∑k

m�1αm � 1 (17)

Assuming that each sub-goal is f1(a), f2(a), ..., fk(a), then the
comprehensive objective function is

F a( ) � α1f1 a( ) + α2f2 a( ) + ... + αkfk a( ) (18)
Then, by comparing the single-objective optimization methods,

the pros and cons of the feasible solutions can be judged, and finally
the optimal solution of the original problem can be obtained
(Kuhlmann et al., 2020).

Through the construction of sub-goal models of construction
period, cost and carbon emission, based on the purpose of
minimizing construction period, cost and carbon emission, a
multi-objective optimization model of “construction period-cost-
carbon emission” can be established, as shown below:

MinT � ∑j
m�1∑αm

n�1TmnXmn

MinC � ∑j
m�1∑αm

n�1 ∑kmn
k�1α

mn
k cmn

k 1 + δmn
k( )( )

MinE � ∑j
m�1∑αm

n�1 Eδmn + Emmn + Esmn + Ewmn( )Xmn

S.t.∑mn
n�1Xmn � 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(19)

3 Construction and carbon emission
monitoring and digital management
system

3.1 Framework construction of carbon
emission real-time monitoring system

The design of the platform is based on the concept of
“comprehensive planning, appropriate promotion, step-by-step
implementation.” The overall design of the cloud platform
system for smart city and carbon monitoring management
consists of 3 main parts: cloud monitoring platform, engineering
team and equipment support team, as shown in Figure 1.

As shown in Figure 1, the cloud monitoring platform is the core
of the smart energy and carbon monitoring system, including a data
processing center, an interactive web interface, and a large-screen
display. In order to make this design scheme scientific, especially
more practical, the implementation and operation of the whole
system should take into account all aspects, and form the integration
and mutual support of technology, engineering and service. The
computing layer consists of corresponding servers and databases,
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similar to the CPU of the system, which is mainly responsible for
computing, storing and processing data. The interaction layer is
composed of the corresponding portable client and virtual model,
which is mainly responsible for the interaction between the real
world and the virtual model. The overall framework of the system is
shown in Figure 2.

As shown in Figure 2, in this system framework, the physical layer is
mainly composed of wireless sensors to collect machinery operation
data at the construction site. When the sensors are connected with the
construction machinery, they can record the movement state of the
construction machinery, and send the movement state and
corresponding data to the server, thus completing the data collection
function of the physical world. When the operation state of the
construction machine is transmitted to the server, the server
determines the operation time of the construction machine, and
calculates the carbon dioxide emission in the time period according
to a predetermined calculation logic, and then stores it in the database.
The interaction layer consists of desktops and mobile phones, where
users can view the operating status and carbon dioxide emission data of
construction machinery, enabling efficient interaction.

In the system development process, for better division of labor,
system development activities are divided into hardware and software
development. The hardware part includes the development of wireless
sensors, while the software part includes the choice of communication
network, server, database and client platform.

3.2 Measuring point arrangement for flow
and concentration measurement

In view of the large deviations in the measurement of flow,
humidity and carbon dioxide concentration in the direct monitoring

method, on the basis of solving these problems, a set of carbon
emission on-line monitoring system is researched and developed.
Figure 3 shows the schematic layout of the flue section concentration
and pressure difference measuring points.

As shown in Figure 3, referring to the setting of environmental
protection measuring points, it is determined that the section where
the environmental protection comparison flange hole is located
outside the tail flue is the sampling section. The measuring
section of the flue is 6 m deep and 5.3 m high. Taking the flue
depth as the X-axis and the height as the Y-axis, 5*5 measuring
points are selected. In view of the site construction conditions, the
concentration measurement point and the differential pressure
measurement point are slightly different. This has little effect on
the overall uniformity of the flow field and concentration field on the
study section, which can be ignored. There are 8 flange holes on the
flue wall, and the backrest pipe and sampling pipe are extended from
the 1, 3, 4, 5, and 7 flange holes to carry out measurement work.

Referring to the national standard, this paper takes 0.8, 1.8, 2.8,
3.8, and 4.8 m on the X-axis, and 1.59, 2.65, 3.18, 3.71, and 4.77 m on
the Y-axis. The values of X and Y are cross-combined to obtain
5*5 measuring points. The measured carbon dioxide volume
concentrations are shown in Table 1.

As shown in Table 1, the average cross-sectional carbon dioxide
volume concentration is 12.63%, the standard deviation is 0.23, and
the relative standard deviation is 1.8%. Although the volume
concentration of carbon dioxide varies slightly on the cross
section, its distribution remains uniform as a whole. Based on
the experimental results, it is known that a smaller number of
measurement grids can effectively improve the measurement
accuracy of cross-section concentration. It is recommended to
arrange two or three measuring points on the same section and
the same level. In addition, the concentration of CO was also

FIGURE 1
Smart city and carbon emission monitoring and management cloud platform system.
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measured during the test, and its average concentration was only 1/
100,000 of the concentration of Co2, so CO was ignored. The
differential pressure measured by the electronic differential
pressure gauge is shown in Table 2.

As shown in Table 2, the maximum differential pressure of the
section is 135.6 Pa, the minimum differential pressure is 57.2 Pa, and
the relative standard deviation of the differential pressure is 12.35%.
Based on the field test results and the engineering practice, it is
recommended to arrange multiple sets of measuring points
symmetrically on the same section to improve the speed
measurement accuracy.

3.3 Architecture of carbon emission online
monitoring system

Based on the above research, based on the concept of in situ
measurement of some flues, a set of in situ measurement of carbon
dioxide by TDLASmethod was built in the laboratory. In this device,
a heating wire is wound around the upper part of the gas pool to heat
the gas and simulate the temperature of the flue gas. Dust and water
vapor are also added to the gas to simulate the real flue gas with high
humidity and high dust, as shown in Figure 4.

As shown in Figure 4, water vapor and dust will contaminate the
optical mirror in a short time, seriously affecting the measurement
accuracy. Considering that the dust concentration and humidity in the
on-site flue are high, and the vibration of the flue wall will also affect the
performance of the optical path and optical instruments, the interference of
dust and water vapor can be eliminated through pretreatment. The
measuring device is far away from the flue, and cannot be affected by
vibration on the optical path and optical instruments. The flue gas enters
from the sampling probe, and reaches the analysis cabinet through the
sampling and heat tracing pipeline. After pretreatment, it is measured by
the measurement module. The working flow chart of the carbon emission
online monitoring system is shown in Figure 5.

As shown in Figure 5, it is determined to select two measurement
points, and after sampling, mixing and pretreatment, gas concentration
measurement is carried out. Due to the high dust concentration in the
flue, in order to prolong the service life of the sampling probe, a back-
purging pipeline is set up, and the sampling tube and probe are regularly
purged. In this paper, parameters such as carbon dioxide concentration,
flow rate, oxygen content, pressure, temperature, and humidity are
transmitted to the carbon emission monitoring data management and
analysis expert system, and the purchased electricity data is read. The
carbon emission monitoring data management and analysis expert
system conducts comprehensive processing to calculate the carbon

FIGURE 2
Overall framework of the system.
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dioxide emission rate and emission amount of the enterprise. Finally,
the carbon emission data is connected to the carbon emission detection
for online verification.

3.4 Total deconstruction

The error of the online monitoring method mainly comes from
the results of the two parameters of flue gas flow rate and carbon

dioxide concentration, with few parameters and high accuracy.
There are few human factors in the error, which mainly come
from the error brought by the sampling point and the equipment
itself. Carrying out operation and maintenance according to the
requirements can control the error within a certain range. The
solution circulation volume can be adjusted appropriately according
to changes in load. It can also strengthen oxidation regeneration to
ensure the residence time of the rich liquid in the spray regeneration
tank, achieving the purpose of regeneration. The total CO2

emissions from the desulfurization process of the two units in
the effective months of the year are shown in Figure 6.

As shown in Figure 6, the measured carbon emissions of Unit
1 fluctuate in the range of 234–695 t, the total annual emissions are
5,486 t, and the default emission range is 221–684 t. Total emissions
are 5,288 t. The measured emission of Unit 2 is 196–766 t, and the
default value fluctuation range is 188–730 t. It can be concluded
from the annual trend that the measured carbonate content is higher
than the default value, and the measured carbon emission value is
higher than the default calculated value.

3.5 Deviation deconstruction

To quantify the impact of carbonate content on carbon dioxide
emissions, the relative deviation analysis of the two units is shown in
Figure 7.

As shown in Figure 7, the relative deviations of the two units are
consistent, fluctuating between 0.54% and 6.14%, and the overall
deviations are 3.61% and 3.63%, respectively. The default and actual
measurement have little effect on the carbon dioxide emissions from
desulfurization, and the default value of carbonate content is
representative.

FIGURE 3
Schematic diagram of the layout of the concentration and pressure difference measuring points in the flue section.

TABLE 1 Sectional CO2 volume concentration measurements (%).

Y 4.8 3.8 2.8 1.8 0.8

1.59 12.478 12.744 12.646 12.546 12.766

2.65 12.346 12.468 12.446 12.742 12.686

3.18 12.780 12.426 12.978 12.586 12.612

3.71 12.448 12.726 12.843 12.556 12.276

4.77 12.256 1 2.796 12.618 13.286 12.774

TABLE 2 Differential pressure (Pa) at measuring points of flue section.

Y 4.8 3.8 2.8 1.8 0.8

1.59 94.4 82 123.6 124.2 80.2

2.65 121.4 77.6 135.6 130.8 57.4

3.18 121.8 63.6 84 73 65.2

3.71 98 102.6 70.8 95.2 84

4.77 91.8 64.6 76.6 85.6 93.6
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The annual average value of coal carbon oxidation rate of the
two units (measured), the annual average value of single coal carbon
oxidation rate (measured), the annual average value of coal carbon
oxidation rate (semi-measured), and the annual carbon dioxide
emissions of the two units are shown in Tables 3, 4.

As shown in Tables 3, 4, the differences between the three data are
relatively small, with a deviation of less than 1%. Comparing the six
combinations of annual data of Units 1 and 2, the conclusions are as
follows: the six groups of measured carbon oxidation rates and the
measured carbon content per unit of calorific value correspond to the
smallest annual carbon emissions. Units 1 and 2 are 1,488,061 and
1,286,884 t respectively. The default value of carbon oxidation rate and

the default value of carbon content per unit calorific value correspond to
the largest annual carbon emissions. Unit 1 and Unit 2 are 2,243,120 and
1,610,761 t respectively. For the annual carbon emissionsmeasured by the
two units, the difference between themaximum andminimum emissions
is 20.5% and 20% respectively. There is little difference between the three
cases of carbon oxidation rate, and the difference between the maximum
value and the minimum value is not more than 1%. The default value of
carbon content per unit calorific value has a large deviation from the
measured value. The default value of Unit 1 and Unit 2 are 21% and 18%
higher than themeasured value respectively. According to the third point,
it can be inferred that the selected carbon content per unit of calorific
value is themain factor leading to the large deviation of annual emissions.

FIGURE 4
Schematic diagram of the in situ measurement of carbon dioxide by TDLAS method.

FIGURE 5
Workflow of the carbon emission online monitoring system.
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3.6 Carbon emissions based on online
monitoring method

This section analyzes the CO2 emissions data monitored by the
CEMS of the two units. The two units are regularly maintained,
overhauled and calibrated to ensure that the system error is within a

controllable range and the data is valid. Since the carbon dioxide
monitors of Units 1 and 2 were officially operated in March, the data
from March to December were used for analysis, as shown in Figure 8.

As shown in Figure 8, the total carbon dioxide emissions of the two
units are in line with the emission law of the region where winter is the
peak tourist season and summer is the off-season. The largest carbon

FIGURE 6
Carbon dioxide emissions from the desulfurization process of Units 1 and 2. (A) Carbon emissions of Unit 1 (B) Carbon emissions of Unit 2.

FIGURE 7
Effect of carbonate content in desulfurizers for Units 1 and 2 on carbon emissions. (A) Impact of Unit 1 on carbon emissions (B) Impact of Unit 2 on
carbon emissions.
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emission of Unit 1 in the whole year was 188,842 t in August. The
largest carbon emission of Unit 2 in the whole year was 209,395 t in
December. The total emissions of the two units were the largest in
December, at 374,159 t. According to the data of routine maintenance,
the CEMS of the two units are running well and the data is stable.

3.7 Comparison of carbon emissions
between calculation method and online
monitoring method

This section compares the CO2 emissions of the online
monitoring method and the emission factor method to verify the

stability and effectiveness of the CEMS. Since the total emissions are
compared, the emission factor method here is the sum of the carbon
dioxide emissions from the fuel combustion process and the
desulfurization process. The monthly carbon emissions of Units
1 and 2 are shown in Figure 9.

It can be seen from Figure 9 that the trend of the emission factor
method and the online monitoring method is basically the same, and
the trend of the online monitoring data is stable. From the numerical
value, it can be seen that the result of the emission factor method is
conservative, which is larger than that of the online monitoring
method. According to calculations, the deviation between the two
sets of data for Unit 1 is between 17% and 20%. The deviation of the
two sets of data for Unit 2 is between 18% and 20%. Overall, the

TABLE 3 Annual average of coal carbon oxidation rate of units 1 and 2.

Fuel carbon oxidation rate Measured value Default value Half measured value

Unit 1

OFi (%) 99.91 100 99.76

Relative deviation 0.09% — 0.24%

Unit 2

OFi (%) 99.94 100 99.99

Relative deviation 0.06% — 0.01%

TABLE 4 Annual carbon emissions of units 1 and 2 (t).

Fuel carbon oxidation rate Measured value Default value Half measured value

Unit 1

OFi (%) 1,488,061 1,792,219 1,787,914

Relative deviation 2,241,102 2,243,120 2,237,720

Unit 2

OFi (%) 1,286,884 1,287,603 1,287,531

Relative deviation 1,609,861 1,610,761 1,610,671

FIGURE 8
Annual carbon emissions of two units.
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online monitoring method data is more accurate. The reason for the
analysis is mainly because the emission factor method assumes that
the carbon combustion products are all Co2, which completely
oxidizes CH4 and CO. And it is included in Co2 emissions, so
the data value is too large. Overall, the online monitoring system has
stable data and high accuracy, which can be applied to carbon
emission monitoring in China’s industries.

4 Conclusion

On the basis of fully analyzing the related research on carbon
emissions in the whole life cycle of prefabricated buildings, this
paper takes the on-site construction stage as the research object.
A real-time monitoring system for carbon emissions at the
construction site was developed using CPS technology, and a
multi-objective optimization model of “construction period-
cost-carbon emissions” was established in the construction
process. The stability and accuracy of the CPS monitoring
system were verified, and the basic data of the optimization
model was formed by combining the system monitoring data
and the field survey data. The ant colony algorithm is used to
solve the multi-objective optimization model, and the Pareto
optimal solution is obtained. It thus realizes the optimization of
“construction period-cost-carbon emission” through the
reasonable selection of process execution mode. In this paper,
the monitoring system is divided into physical layer, computing
layer and interaction layer to form a complete system framework.
In the development process, the system is divided into a hardware
part and a software part, and the appropriate hardware and
software system components are selected according to the
characteristics of the construction site, and finally the system
functions are realized through the integration of the two parts.

The system can not only realize the real-time monitoring of the
carbon emission data on the construction site, but also help the
construction personnel to check the carbon emission situation on
site in real time. It can also obtain more data related to the
construction process, which is convenient for managers to
understand more about the construction site.
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Monthly carbon emissions of Units 1 and 2. (A) The monthly carbon emissions of Unit 1 (B) The monthly carbon emissions of Unit 2.
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