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Introduction: The presence of connected and automated vehicles (CAV) in mixed
traffic flows with different market penetration rates (MPRs) in urban road scenarios
has a significant effect on fuel consumption and exhaust emissions.

Methods: Therefore, in this study, real-world road networks and traffic data are
simulated using SUMO based on actual data from a survey. The fuel consumption
and emission benefits of CAVs in mixed traffic flows are well-evaluated, and the
energy-saving performance of CAVs under low-speed vehicle interference is
tested. In addition, this study explores both the energy consumption and
emissions of purely electric vehicles.

Results: The results show that with 100% CAV penetration, fuel vehicles have a
maximum reduction in fuel consumption of 18% and a maximum increase in
average speed of 31.6%, while the energy consumption of electric vehicles
increases due to communication, detection, and collaboration between CAVs.

Discussion:However, the results clearly demonstrate that the carbon emissions of
electric vehicles are significantly lower than fuel vehicles. In addition, the increase
in low-speed vehicles will result in an increase in energy consumption and
emissions. Therefore, increasing the percentage of electric vehicles on the
roads and transitioning from manual to autonomous driving systems is crucial
to curbing carbon emissions.
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1 Introduction

Global climate change and energy crisis are increasingly attracting people’s attention
(Gov, 2018), and the transportation is an important factor leading to energy consumption
and carbon emissions (Li et al., 2023). Recent years, China’s car ownership has grown rapidly
and has raised concerns about sustainable energy, transportation safety and climate change.
According to statistics, China’s reliance on oil importation exceeded 65 percent by the end of
2017 (Gov, 2018). Meanwhile, the transportation accounts for a large share of the greenhouse
gas (GHG) emissions. In response to the environmental crisis, government has introduced
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policies to encourage people to buy new energy vehicles instead of
fuel vehicles to achieve energy saving and emission reduction.
However, in the 2012–2020 Energy Conservation and New
Energy Vehicle Industry Development Plan (China, 2018), the
total production and sales of electric CAVs and hybrid (fuel-
aided) vehicles are expected to reach 5 million units by 2020,
which is more than five times of the current holdings (Xiong
et al., 2019).

Meanwhile, the annual growth rate of GHG emissions from the
transportationsector is higher than that of other shares (such as
electricity, industry, agriculture, and commerce). It is expected that
the annual emission of GHG from transportation will double by
2050 (Lamb et al., 2021). Within the transportation system, road-
based travel is responsible for the most significant proportion of
carbon emissions and energy consumption compared to other
modes of transportation, such as aviation, rail, and marine (Lu
et al., 2020). Passenger cars, light-duty trucks (including sport utility
vehicles, pickup trucks, and minivans), and freight trucks emitted
41.6%, 18.0%, and 22.9%, respectively, of total United States
transportation-sector GHG emissions in 2016 (Zong, 2019). In
addition, the United States consumed approximately 143 billion
gallons of motor gasoline, with a daily average of 391 million gallons
in 2018 (Yao et al., 2021). Therefore, it can significantly reduce the
energy consumption and carbon emissions of transportation
systems by reducing vehicle fuel consumption and exhaust
emissions, thereby alleviating the current issues of the global
energy crisis and climate change.

The rapid growth in the number of vehicles is the main reason
for the continuous increase in fuel consumption and exhaust
emissions, and the traffic congestion caused by the increase in
the number of vehicles has further increased fuel consumption
and exhaust emissions (Romero and Gramkow, 2021). Therefore,
alleviating traffic congestion is an effective means to reduce vehicle
fuel consumption and exhaust emissions. Till now, the connected
and automated vehicle (CAV) can generally realize information
interaction and cooperative driving between other vehicles while
effectively reducing the response delay of vehicles and shortening
the distance between vehicles. For instance, some studies have
investigated the relations between CAVs’ applications and
greenhouse gas emissions (Zong, 2019; Romero and Gramkow,
2021).

Regarding the latest surveys, most people hold positive attitudes
toward the automated CAVs of their green effects, and it has already
aroused people’s interest (Labanca and Bertoldi, 2018; Baumgartner
et al., 2022). Therefore, a large number of studies have been
conducted on the impact of CAV on driving safety, traffic
efficiency, and the environment. The application of CAV has
great potential to improve traffic efficiency, driving safety, and
stability (Ye and Yamamoto, 2019). Scholars generally believe
that CAV is expected to improve the overall traffic quality from
the micro level of traffic flow and reduce fuel consumption and
exhaust emissions by alleviating traffic congestion (Kopelias et al.,
2020). Therefore, we assume that, in reality, citizens are leaning
towards replacing fuel CAVs with green energy CAVs (electronic) in
order to protect the green world. We will mainly focus on the
research on the impact of CAV on the environment and summarizes
and analyzes existing research on fuel consumption and exhaust
emissions in this paper.

In terms of fuel consumption. Rios-Torres et al. (Rios-Torres
and Malikopoulos, 2018) analyzed the impact of CAV on fuel
consumption in confluence ramp scenarios under different traffic
volumes and market penetration rates (MPRs). They found that fuel
consumption can only be reduced in mixed traffic scenarios with low
traffic volumes. Islam et al. (Islam et al., 2019) conducted a
comprehensive analysis of the impact of fuel consumption under
different CAV scenarios and found that with the popularization of
CAV, the average fuel consumption of conventional powertrains
and hybrid electric vehicles has decreased by 1.5% and 2.2%,
respectively. Ma et al. (Ma et al., 2019) proposed an eco-drive
algorithm for CAV fuel consumption optimization on rolling
terrains. The test results indicated that the algorithm could save
more than 20% of fuel consumption. Alvarez et al. (Alvarez et al.,
2020) studied the extent to which CAV can potentially reduce the
overall fuel consumption of road vehicles. They found that the
ability to shape vehicle speed trajectories collaboratively plays a
dominant role in reducing urban/suburban fuel consumption, while
platooning plays a dominant role in influencing the attainable fuel
savings on the highway. Zhao et al. (Zhao et al., 2022) studied the
fuel consumption of mixed traffic flow with CAV under three typical
traffic scenarios (a basic segment with bottleneck zone, ramp of the
freeway, and signalized intersection) based on the simulation
platform of Python and SUMO. They found that the advantages
of CAV are more evident at signalized intersections, and when the
MPR of CAV is 100%, fuel consumption can be reduced by 32%.
Huang et al. (Huang et al., 2023) established a fuel consumption
calculation model for mixed human-driven vehicle (HUD) and
CAV scenarios. The results showed that under the four MPRs of
20%, 50%, 80%, and 100%, the fuel consumption of CAV decreased
by 0.8%–5%, 1.9%–12.5%, 8.6%–12%, and 12.4%, respectively, and
the reduction effect of CAV fuel consumption was negatively
correlated with vehicle speed.

In terms of exhaust emissions, Qin et al. (Qin et al., 2018)
conducted a numerical simulation of a CAV fleet on an on-ramp
highway using a car-following model and assessed the impact of
queue stability on exhaust emissions by calculating the stability of
the fleet using transfer function theory. The results showed that
improving queue stability can effectively reduce traffic emissions.
McConky et al. (McConky and Rungta, 2019) proposed a
coordinated heuristic method to reduce exhaust emissions by
reducing traffic congestion of CAV vehicles. The research results
of Tu et al. (Tu et al., 2019) indicated that with the popularization of
CAV, the GHG emissions were significantly reduced, but the
emissions of nitrogen oxides were increased. Oswald et al.
(Oswald et al., 2019) compared the CO2 emissions from real-
world measurements with estimates based on MOVES vehicle
emission models and estimates provided by the physical-based
Comprehensive Modal Emissions Model (CMEM). The results
showed that MOVES underestimated the benefits of applying
CAV to reduce emissions, and CMEM provided more accurate
emission estimates. Pribyl et al. (Pribyl et al., 2020) demonstrated
that introducing CAV into traffic flow can make significant progress
in achieving EU emissions targets. Even at low MPRs of CAV,
applying CAVs on the road can reduce CO2 emissions by 10%–19%.
Cai et al. (Cai et al., 2021) defined a new green vehicle routing
problem (VRP) for CAV and used vehicle speed as a decision
variable for the VRP. In addition, a nonlinear mixed integer

Frontiers in Energy Research frontiersin.org02

Li et al. 10.3389/fenrg.2023.1207449

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1207449


programming model was established for the VRP to meet the
demand for CAV while minimizing carbon emissions.

In summary, scholars have studied the impact of CAVs on fuel
consumption and exhaust emissions in transportation systems from
various perspectives, however, there are still some issues that need to
be further considered. Firstly, most studies analyzed the impact of
the application of CAVs on fuel consumption or exhaust emissions
separately, without discussing the correlation between both fuel
consumption and exhaust emissions under the same scenario.
Secondly, previous studies generally used intersections or
highways as research scenarios. However, the changes in traffic
volume and speed during different periods on urban roads have led
to more complex road conditions in this scenario.

Therefore, aiming to evaluate the co-benefits of both fuel and
emission, we investigated the effects of deploying more CAVs and
the environmental results together while exploring the daily urban
traffic scenarios, tested and compared using different fuel
consumption and exhaust emissions, given that the people are
tending to use more green energy to protect the green world.
Meanwhile, this study will also explore the carbon emissions of
pure electric vehicles and the environmental effects with respect to
the speeds.

Our paper is organized as follows. The Simulation part,
including the data collection, processing, and parameter
calibration in SUMO, is presented following the introduction.
Next is a case study, including the simulation scenarios, results,
and discussions. Finally, the research findings and limitations are
concluded.

2 Methods

2.1 Overall simulation process

In order to assess the potential fuel consumption and emissions
benefits of CAVs, we initiated a simulation utilizing SUMO under
different levels of market penetration rate (MPR). These MPRs were
categorized into eleven groups, ranging from 0% to 100% in
increments of 10%. Human-driven Vehicles (HDVs)the
employed Intelligent Driver Model (IDM) as their car-following
model, while CAVs employed Cooperative Adaptive Cruise Control
(CACC). Our fuel consumption and emissions models were based
on the default settings offered by SUMO, including indicators of PM,
HC, CO2, and CO.

To be specific, we used SUMO for our experiments and
analysis because it is an extensive road traffic simulator, which
allows researchers to build on realistic network topologies to
create simulations of vehicle movements. Also, SUMO is an
open-source spatially continuous road traffic simulator
commonly used to test ITS, which includes components of
road networks network and vehicle demand modeling (e.g.,
traffic lights, right-of-way rules, lane changes) as well as
public transport and pedestrian components. In addition, it
also provides several tools to generate traffic demands (e.g.,
DUArouter, MArouter, OD2trips, Randomtrips) (Barbecho
Bautista et al., 2021).

To ensure a realistic representation of road networks and traffic
data, we utilized simulations that span 1 km long, reflecting real-

world conditions. Before initiating the simulation, we calibrated
SUMO parameters to reflect real-world traffic flow. Our
methodology also incorporated a traffic survey and parameter
calibration method, based on processed data, for comprehensive
analysis.

2.2 Data collection and processing

We conducted a traffic survey on Hexing Road, Harbin, China.
It is an arterial road with significant traffic demands in Harbin. The
traffic survey was conducted during the peak hour in the morning,
and the data were collected by video (shown in Figure 1). The traffic
flow data on the main road were selected in this paper because there
is too much interference on the auxiliary road which may make
vehicles run abnormally, such as manual tricycles, motorcycles and
other vehicles with irregular movements.

The main road includes three lanes and the traffic volume is
summarized in Table 1.

Time headway and speed were extracted through the raw video
data, and the detailed statistics of them were summarized in Table 2.

A run test was conducted to verify if the statistics result of time
headway was related to the sampling sequence. The run test result
was summarized in Table 3, which found that the data was random.
Simultaneously, the speed data was confirmed randomly by the run
test (shown in Table 3).

2.3 Parameter calibration

We conducted a sensitivity analysis to calibrate car-following
model parameters, which include: acceleration (ACC), deceleration
(DEC), max speed (SPE), time headway (TAU), and min gap (GAP).
The general flow is illustrated in Figure 2.

Firstly, a benchmark value for each parameter was selected based
on the average survey value or default value and expanded into a set
of ten elements with the benchmark value as the center and an
appropriate value as the step. This allowed each parameter to obtain
a set of ten alternative values.

Secondly, a loop was set to traverse each candidate parameter. A
KS test was conducted to verify if the simulated time headway and
speed were non-significant differences compared to the real-world
data (Wang et al., 2022). Furthermore, only when they bothmeet the
requirements can it proceed to the next step. The statistic of the KS
test can be calculated as follow:

D � max F1 x( ) − F2 x( )| | (1)
where,D is the statistic;F1(x) is the empirical distribution function of
the real-world data about the observed value x; F2(x) is the empirical
distribution function of the simulated data about the observed value x.

Finally, the simulated traffic needed to pass the GEH test.
Precisely, it can be verified that the simulated traffic volume was
non-significant different from the real world if the GEH is less than
5. The GEH value can be calculated as follow:

GEHph �
����������
Qe − Qs( )2
Qe + Qs( )/2

√
(2)
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where, GEHph is the GEH value during the peak hour between the
real-world and simulation data; Qe is the real-world equivalent
traffic volume, veh; Qs is the simulated traffic volume, veh.

The traffic flow characteristics of different roads are
different, so we need to use the data in the real-world road

traffic to calibrate some default parameters in SUMO, so that the
traffic flow characteristics of the simulated roads in SUMO
reflect those of the real-world roads, which makes it easy to
compare and analyze. Then, the calibrated parameters are
summarized in Table 4.

FIGURE 1
Location and reality of traffic survey.

TABLE 1 Statistics results of traffic volume.

Time interval 0–15 min 15–30 min 30–45 min 45–60 min

Traffic volume (veh/lane) 463 411 459 544

TABLE 2 Detailed statistics of time headway and speed.

Item Mean Standard deviation Max Min Confidence interval (95%)

Time headway (s) 2.6 0.75 6.1 1.4 (2.04, 3.26)

Speed (m/s) 9.6 2.57 14.8 3.1 (9.26, 9.97)

TABLE 3 Run test results of time headway and speed.

Item Test valuea Cases < test value Cases ≥ test value Total cases Number of runs Z Asymp. sig. (2-Tailed)

Time headway 2.00 96 99 195 92 −0.930 0.352

Speed 9.77 100 100 200 95 −0.686 0.473

aMedian.

FIGURE 2
The flow chart of the parameter calibration method.
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3 Results

3.1 Fuel consumption analysis

In this section, we aim to analyze the total fuel consumption on
the road under different levels of MPR. By analyzing the fuel
consumption by the vehicles through the simulation experiments,
we can figure out the total energy waste and compare the
enhancement after the intervention of the CAVs. In SUMO
simulation, the measure of fuel consumption is by mg per unit.
However, to unify units for subsequent comparison and analysis, we
need to change the measure of fuel consumption to a liter per unit as
follows:

Fl � Fmg

1 × 106 · ρ (3)

where, Fl is the fuel consumption, L/km or L/s; Fmg is the fuel
consumption, mg/km or mg/s; ρ is the density of fuel, which is
0.7475 g/cm3, the average value of the gasoline in China.

Vehicles in Harbin are mainly fuel-driven vehicles,
meanwhile, since our experiment is carried out with Hexing
Road, which is the main road of the city and runs through the
east and west of the city, the traffic flow characteristics are cyclical
and representative. Therefore, converting the energy
consumption of fuel vehicles into electricity consumption
helps to compare better and analyze.

Afterward, we recorded the data of fuel consumption and the average
speed of all vehicles on the road with different levels of MPR and
compiled them into Figure 3. Generally, compared to 0 MPR, the fuel
consumption under 50%MPR is reduced by 0.006 L/km or 5.1%. When
MPR arrives at 100%, the fuel consumption is reduced by 0.0222 L/kmor
18.0%. In addition to that, the average speed increased by 0.7 m/s (7.4%)
from 0 MPR to 50% MPR. Moreover, the average speed increased by
3.0 m/s (31.6%) under 100% MPR compared with 0 MPR.

On the other hand, as Figure 3 shows, with the increase of theMPRs,
the fuel consumption of CAV is in a decreasing trend but also with a
slight upward trend in several periods like 30%–40%MPR and 80%–90%
MPR, while the average speed of each one is increasing in general but also
with a stable period from 10% to 30% MPR.

3.2 Emissions analysis

In this section, we recorded data on the total emissions
generated by traffic flow within the road per second and per
vehicle per kilometer emissions under various MPRs for PM,
HC, CO2, and CO. The findings were presented as point-line and
box-line plots in Figure 4. Our observations indicate that the overall
emissions will decrease for all four indicators as the MPRs increase
when looking at individual vehicles. For instance, PM emissions
dropped from 0.23 mg/s to 0.14 mg/s when MPR increased to 100%.
However, we also noted some phases of slightly increasing emissions

TABLE 4 The results of parameters calibration and the default in SUMO.

Parameters ACC (m/s2) DEC (m/s2) SPE (m/s) TAU (s) GAP (m)

Calibration 2.2 4.1 13 1.8 2.4

Default 2.6 4.5 55.55 1.0 2.5

FIGURE 3
Fuel consumption and average speed under different MPRs.
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per vehicle at MPRs between 30% to 40% and 80%–90% in the
traffic flow.

Furthermore, the box-line plots revealed a reduction in the median
overall road emissions during a specific period with an increase in MPR.
However, the range of emissions for each group of experiments gradually
increased as MPR increased until the road was filled with CAVs until at
the last period of 90%–100% MPR, it would suddenly fall. Similarly, the
middle one-half of the data fluctuation interval for each group remained
relatively constant until the road was filled with CAVs.

4 Discussion

4.1 Effect of low-speed vehicles

Low-speed vehicles in the traffic flow are one of the significant
factors to influence road speed and overall emissions, and in this

section, we focus on their impacts on the road and consider the road
with mixed traffic flow. The mixed traffic flow generally contains
HDVs and CAVs, as shown in Figure 5. In mixed traffic flows, low-
speed vehicles will be taken into account, and they are usually treated
as HDVs exclusively. In contrast, CAVs usually maintain safe and
steady driving most of the time due to their excellent coordination
and adaptation characteristics.

In the daily traffic flow on the roads, there are usually several reasons
causing vehicles to maintain low speeds. First, most heavy vehicles, such
as trucks and lorries, usually drive at lower speeds due to excessive load
and their horsepower performance (Song and Yu, 2011). Secondly, some
novice drivers will drive at low speeds due to their poor driving skills
(Paul Anthikkat et al., 2013). The above two points are the main reasons
for low-speed driving. In addition, a traffic accident on the road will
cause most the vehicles to pass at a low speed, dramatically reducing the
road’s average speed, causing traffic congestion, and increasing overall
vehicle emissions. Finally, if there are problems with the CAVs, such as

FIGURE 4
Emissions per second and kilometer under various MPRs. (A) PM emissions. (B) HC emissions. (C) CO2 emissions. (D) CO emissions.

FIGURE 5
Mixed traffic flow with low-speed vehicles interference.
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communication andmechanical failures, the vehicle will be taken over by
humans, which will also cause the vehicles to travel at a lower speed
when encountering such problems (Woodman et al., 2019).

Considering that the proportion of low-speed vehicles in the
real-world traffic flow is very low, generally much lower than 5%,
three proportions of 1%, 3% and 5% are selected in this study. To
examine the correlations between the total fuel consumption within
certain road sections and the low-speed vehicles on the road, we
conducted an analysis of overall fuel consumption at different MPRs
for various road segments with varying proportions of low-speed
vehicles, as illustrated in Figure 6. The experiment results indicate
that energy savings are most significant when low-speed vehicles
constitute only 1% of the total vehicles on the road. Although the
overall energy consumption generally decreases as the MPR
increases, the experiment results indicate that as low-speed
vehicles make up 3%–5% of all vehicles on the road, energy
consumption increases significantly, which is not conducive to
energy savings. Notably, in the meantime, the results have also
indicated that when CAVs are fully involved in the road, overall
consumption is approximately 0.008 L per kilometer lower
compared to when low-speed vehicles account for 3%, which
may be due to the fact that autonomous driving system of CAVs
can better identify larger areas and thus reduce energy consumption.
Furthermore, it is clear to be summarized from the figure that the
periodicity observed in short periods of increasing MPR and
contamination may be closely related to the ratio of CAVs to
low-speed vehicles, as they will continuously adapt to road
conditions and impact the overall energy consumption.

The correlation between the overall emissions within the road
sections and the proportion of low-speed vehicles on the road is a
significant concern in addition to the overall energy consumption.
Therefore, we conducted a comprehensive investigation of emission
indicators of PM, HC, CO2, and CO across various levels of MPRs
for road sections with varying proportions of low-speed vehicles
(shown in Figure 7).

From the technical perspective, our study investigated the
correlation between both fuel consumption and emission of

CAVs and shows it is feasible to promote the use of electric
CAVs in our daily traffic scenes. Since our experiment results
suggest that as MPR increases, there will be a substantial
reduction in all four emission indicators as the share of electric
CAVs increases. It is also notable that the lowest traffic emissions
were observed when low-speed vehicles accounted for only 1% of the
share, highlighting the positive impact of autonomous driving
systems of CAVs in reducing road emissions. In addition, when
autonomous vehicles formed 90%–100% of the traffic flow,
emissions were reduced significantly across all four indicators,
confirming the environmental friendliness of autonomous
systems. Therefore, from the perspective of economics and
environmentally friendly policies, we should encourage the wide
use of electric CAVs since their green effects on emissions.
Meanwhile, we should also introduce a bill to restrict low-speed
traffic since our analysis has revealed that the trend of the four
emissions is consistent for low-speed vehicle shares of 3%–5%.
Moreover, our investigation indicates that at a 3% low-speed
vehicle share, CO2 emissions were 2,400 mg/km lower than at a
5% low-speed vehicle share.

In this section, we have undertaken an analysis of the correlation
between the aggregate energy consumption and emissions levels of a
given traffic flow and the share of low-speed vehicles present on the
road under different MPRs. The experiment results indicate a
downward trend in overall energy consumption and emissions as
the percentage of CAVs on the roadway increases, specifically in
scenarios that involve low-speed vehicles. Furthermore, we have
observed a proportionate increase in energy consumption and
emissions as the number of low-speed vehicles on the roadway
increases, although such patterns may exhibit slight variability
over time.

4.2 Electricity consumption

The subsequent analysis is intended to examine the electric
consumption of CAVs based on different MPRs, as illustrated in
Figure 8. When pure electric vehicles are considered, the data
demonstrates that the electricity consumption will rise from
112Wh/km to 160 Wh/km as the MPR increases from 0% to
100%, in contrast to the previous scenario of completely fuel-
driven vehicles. This implies that the overall electricity
consumption of the vehicles utilizing the roadway will increase
when CAVs take over the road section entirely. The probable
explanation is that communication, detection, and collaboration
among the vehicles consume more power as the percentage of self-
driving vehicles on the road increases (Qu et al., 2022).

4.3 Carbon emissions analysis

Carbon emissions serve as a crucial determinant impacting the
ecological environment, with automobile carbon emissions
specifically proving to be a crucial target for accomplishing
carbon neutrality. As a result, thorough analysis of carbon
emissions from varying energy vehicles and the implementation
of corresponding optimization measures remains central focuses of
the present research. In this section, we present a comparative and

FIGURE 6
Fuel consumption under differentMPRswith different proportion
of low-speed vehicles.
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analytical exploration of the carbon emissions produced by fuel and
electric vehicles different MPR levels, with particular attention to the
associated results. Given the heavy reliance of fully electric vehicles

on electricity, formula (4) is applied as a uniform unit for analyzing
and comparing the CO2 emissions from these vehicles’ electricity
consumed.

E CO2( ) � 1 × 103 · E elec( ) · ε (4)

FIGURE 7
Emissions under various MPRs with different proportion of low-speed vehicles. (A) PM emissions. (B) HC emissions. (C) CO2 emissions. (D) CO
emissions.

FIGURE 8
Electricity consumption under various MPRs.

FIGURE 9
Comparison of carbon emissions with electricity conversion.
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where, E(CO2) is the emission of CO2, mg/km; E(elec) is the electricity
consumption, Wh/km; ε is the conversion coefficient, it is 0.785 in
this paper.

The results of the comparison between carbon emissions of fuel
and electric vehicles after conversion are presented in Figure 9. The
graph demonstrates that as CAVs increase in the traffic flow, the
carbon emissions of fuel vehicles gradually decrease from 28,000 to
24,000 mg/km. However, these indicators still remain at a higher
emission level. On the other hand, when the CAVs fully occupy the
road section, the carbon emissions of pure electric vehicles increase
slightly, yet maintaining an overall lower level at about 110,000 mg/
km. This value is 13,000 mg/km lower than the emissions of fuel-
driven vehicles when the MPR approaches 100%. These findings
highlight the potential of pure electric autonomous vehicles to
reduce carbon emissions and promote environmental protection
significantly. Therefore, implementing pure electric vehicles with
autonomous driving capabilities could be a crucial and feasible
approach to reducing carbon emissions.

5 Conclusion

This study examines vehicles’ energy consumption and
emissions in autonomous driving intervention traffic extensively
on the investigation of energy and electric CAVs. Furthermore, we
have also investigated the correlation of fuel, speed, and exhaust
emissions on CAVs in the daily urban traffic. The findings
demonstrate that as the number of autonomous vehicles on the
road increases, the collective energy consumption and emissions of
electric and fuel vehicles decrease. Moreover, electric vehicles
produce significantly fewer carbon emissions than their fuel
counterparts, which serves as a practicable means and a
theoretical framework for limiting carbon emissions. Therefore,

increasing the percentage of electric vehicles on the roads and
transitioning from manual to autonomous driving systems are
crucial to curbing carbon emissions.
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