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Load behaviors significantly impact the planning, dispatching, and operation of

the modern power systems. Load classification has been proved as one of the

most effective ways of analyzing the load behaviors. However, due to the issues

of data collection, transmission, and storage in current power systems, data

missing problems frequently occur, which prevents the load classification tasks

from precisely identifying the load classes. Simultaneously, because of the

diversities of the load categories, different loads contribute various amounts

of data, which causes the class imbalance issue. The traditional load data

classification algorithms lack the ability to solve the aforementioned issues,

which may deteriorate the load classification accuracy. Therefore, this study

proposed an improved deep learning algorithm based on the load classification

approach in terms of raising the classification performances with solving the

data missing and class imbalance issues. First, the LATC (low-rank

autoregressive tensor completion) algorithm is used to solve the data

missing issue to improve the quality of the training dataset. A Borderline-

SMOTE algorithm is further adopted to improve the class distribution in the

training dataset to improve the training performances of biGRU (bidirectional

gated recurrent unit). Afterward, to improve the classification accuracy in the

classification task, the biGRU algorithm, combined with the attention

mechanism, is used as the underlying infrastructure. The experimental

results show the effectiveness of the proposed approach.
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1 Introduction

It is admitted that loads could significantly influence the planning, dispatching, and

operation of the modern power systems (Xu et al., 2017; Liu et al., 2020; Liu et al., 2021;

Ullah et al., 2022). Hongbo et al. (2019) and Hong and Hsiao (2022) pointed out that the

load is one of the most important factors that determine the locations and the capacities of

generators in power system planning. Jia et al. (2019) and Yao et al. (2019) suggested that

loads are also a key factor of modern power system economic dispatch. Ross and Mathieu

(2021) and Harishma et al. (2022) demonstrated that power system safe operation also

depends on load characteristics. Therefore, although challenging, it is important to figure

out an effective way of analyzing load in the power system field. Currently, the load
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classification has been proven as the most suitable method for

obtaining load awareness (Yang et al., 2018; Alam et al., 2020;

Phyo and Jeenanunta, 2021).

Traditionally, researchers mainly focused on the

unsupervised machine learning algorithms, such as K-means

(Sinaga and Yang, 2020), FCM (fuzzy C-means) (Sun et al.,

2019a), and DBSCAN (density-based spatial clustering of

applications with noise) (Aref et al., 2020) algorithms. Peng

et al. (2014) identified the patterns of the power load using

K-means, K-medoids, SOM (self-organizing maps), and FCM.

Based on the experimental results, the authors verified the

effectiveness of these algorithms. Hu et al. (2018) optimized

the initial centroids using the density parameters to overcome the

disadvantages of K-means in load classification and successfully

improved the performance of K-means. Xu et al. (2015)

presented a clustering hierarchy process based on the kernel

fuzzy C-means algorithm. Their approach also showed

effectiveness in classification tasks. However, many works

have pointed out that the aforementioned machine learning

algorithms are extremely sensitive to the distribution of data

instances in the dataset, which may deteriorate the load

classification performances (Saravanan and Sujatha, 2018; Lin

et al., 2019; Tian and Compere, 2019; Zhang et al., 2020a;

Gramajo et al., 2020).

Therefore, supervised learning classification algorithms, such

as SVM (support vector machine) (Dongsong and Qi, 2017),

Bayesian network (Wang and Wang, 2005), and ANNs

(approximate nearest neighbors) (Guo and Zhu, 2019), are

developed and widely used in the classification problems. To

achieve high accuracy of classifying user load profiles, Cai et al.

(2017) improved the SVM algorithm by using the GMM

(Gaussian mixture model). Wang and Wang (2005) combined

the wavelet decomposition with the Bayesian network to classify

the power quality disturbances. Wang et al. (2020) used zero-

mean, batch-normalization, and rectified linear unit (ReLU) to

optimize the input layer and hidden layers of BPNN (back

propagation neural network) to improve the training of the

BPNN. However, it has been pointed out by Niu et al. (2005);

Yang et al. (2016); and Sun et al. (2019b) that these algorithms

still encounter the prominent issues of low efficiency and

overfitting, especially with the increasing load data dimension

and the load data volume.

In this case, deep learning algorithms, such as RNN

(recurrent neural network), have been adopted by researchers

to analyze the high-dimensional load data (Greff et al., 2017; Lee

et al., 2020). However, it is difficult for original RNNs to tackle

the gradient disappearance and the long-term dependency issues.

Therefore, Oslebo et al. (2019) presented the LSTM (long

short–term memory) algorithm by adding the cell states into

RNNs. Nonetheless, the LSTM algorithm could be affected by a

large number of parameters, which finally results in overfitting

(Pan et al., 2020; Sajjad et al., 2020). For this purpose, Le et al.

(2016) further presented the GRU algorithm, which could

effectively reduce the number of intrinsic parameters and

thereby reduce the risk of over-fitting based on the simpler

model. Moreover, the biGRU algorithm is proposed by

Almuzaini and Azmi (2020) to make full use of the past and

future data and this algorithm is further combined with the

attention mechanism to highlight the important data

characteristics. The authors demonstrated the ability of the

proposed algorithm in terms of improving the classification

efficiency and accuracy.

It is emphasized that the performance of the classification

algorithm intensively depends on the data quality of the training

dataset (Deng et al., 2019; Li et al., 2020). However, considering

the complex and vulnerable process of data collection, transition,

and storage, incomplete data situations due to data loss are

inevitable and could even occur frequently (Park et al., 2020),

which would certainly impact the quality of the training dataset.

Therefore, the classification accuracy may benefit from

improving the data integrity of the training dataset (Du et al.,

2020). Currently, data completion algorithms, such as

interpolation methods (Hosseini and Sebt, 2017; Yu et al.,

2020; Zhang et al., 2021), KNN (K-nearest neighbor)

completion algorithm (Marchang and Tripathi, 2021), and

tensor completion algorithm (Yuan et al., 2018) (Su et al.,

2019), have been widely adopted for maintaining and

recovering the data integrity. Azarkhail and Woytowitz (2013)

and Chu (2011) mentioned that the widely utilized data

completion methods, such as the interpolation completion,

can effectively complete the missing data. However, those

algorithms are unable to handle the dataset with sequential

features. Zhu et al. (2011) presented a data completion

method based on the machine learning. Although the

algorithm performs with good accuracy, it is difficult to

obtain the complete data sequence. Chen and Sun (2020)

presented the tensor completion algorithm, which can

effectively reduce data completion errors and process time

series data. This algorithm can be a suitable underlying

infrastructure to compensate the dataset and improve the load

classification accuracy.

Recently, a group of researchers pointed out that another

data quality issue, namely, the class imbalance issue, should be

carefully handled (Jing et al., 2017; Ebenuwa et al., 2019). This

issue could also severely impact the training performance of

machine learning algorithms. The imbalanced majority classes

may overwhelm the minority classes, which leads to the

insufficient training of the classification algorithm, and finally

leads to low classification accuracy. In this case, Jeon and Lim

(2020) adopted the undersampling method to solve the class

imbalance issue. However, the method may mistakenly remove

important sample information. Polat (2019) proposed the

SMOTE (Synthetic Minority Over-sampling Technique)

algorithm to overcome this issue of the undersampling

method, but in addition, the occurrence possibility of overlap

between classes and futile samples increases. Ghorbani and
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Ghousi (2020) further adopted the SMOTE algorithm by

strengthening the border between the majority and minority

classes. Their Borderline-SMOTE algorithm is able to create new

samples at the borderline so that the majority and minority

classes have higher chances to be distinguished in the training

phase.

Currently, some researchers (Wang et al., 2019; Dogo et al.,

2020; Dharmasaputro et al., 2022; Lepolesa et al., 2022)

hybridized the three methods to implement the classification

with data integrity and class imbalance issues. Lepolesa et al.

(2022) addressed dataset weaknesses such as missing data and

class imbalance problems through data interpolation and

synthetic data generation processes. Dharmasaputro et al.

(2022) proposed a preprocessing process to combine

multiple imputation by chained equations (MICE) and

SMOTE and tested it with three machine learning methods.

Dogo et al. (2020) studied the methods including seven missing

data and eight resampling methods, on 10 different learning

classifiers. However, the algorithms adopted in those research

studies have a certain defect which the studies mentioned

before.

Therefore, this study proposed an improved deep learning

method to raise classification performances. The LATC

algorithm is used to complete the missing data and improve

the quality of the training dataset. Different from the other data

completion algorithms, it can achieve low-error data completion.

Thereafter, the Borderline-SMOTE algorithm is adopted to

resolve the class imbalance issue in the training dataset,

especially tackling the instances at the borderline. At last, the

attention mechanism integrated the biGRU algorithm is adopted

to improve the classification accuracy. Based on the experimental

results, the proposed improved deep learning method shows

remarkable performance and effectiveness for the load

classification tasks with the load data and with the data

integrity and class imbalance issues.

The rest of the study is organized as follows: Section

2 proposes the details of the methodologies for the deep

learning method improvements; Section 3 shows the

experimental results; Section 4 concludes the study.

2 An improved biGRU based on LATC
and Borderline-SMOTE algorithms

An incomplete dataset with time series representing

electric power consumption is donated as TM×D×n, where M

represents the member,D represents the number of days, and n

represents the test time for load in a day. The dataset has the

class imbalance issue. This section introduces the LATC

algorithm which solves the data missing issue and details

the Borderline-SMOTE algorithm that can improve the class

distribution in the dataset. Afterward, we introduced the

attention mechanism–integrated biGRU algorithm. The

process of the proposed algorithm is shown at last.

2.1 Low-rank autoregressive tensor
completion

The tensor is a high-dimensional array. Its dimension is

usually referred as order. For an incomplete tensor

Y ∈ Rl1×l2×/×lN , ln represents the nth dimension. Furthermore,

as the extended form of the matrix, the tensor can possess the

low-rank characteristic of the matrix (Yuan et al., 2018). Thus,

the low-rank tensor completion (LRTC) algorithm is able to

utilize the aforementioned characteristic to obtain the different

low-rank structure of the time series data, which indicates the

characteristic of users’ load. Therefore,Y can be completed as the

recovered tensor X by solving the following optimization

problem.

min
X

rank(X )
s.t.PΩ(X ) � PΩ(Y), (1)

where PΩ represents an orthogonal projection operator onto the

observed set Ω such as

PΩ(X )i,j � {xi,j, if(i, j) ∈ Ω
0, otherwise.

(2)

However, the problem Eq. 1 is generally NP-hard (Chen and

Sun, 2020) due to the non-convex and potentially discontinuous

nature of the rank function. The optimization problem can be

reformulated as Eq. 3 by using the nuclear norm (NN):

min
X

‖X‖p
s.t.PΩ(X ) � PΩ(Y). (3)

The NN is defined as ‖X‖p � ∑
k
σk‖X(k)‖p, where σk is a

non-negative weight parameter with ∑
k
σk � 1. X(k) represents

the kth-mode unfolding of X .

However, a time series load data collected before

preprocessing is usually expressed as a second-order matrix.

Therefore, the incomplete matrix of the time series load data

Y ∈ RM×(IJ) can be covered into tensor S(Y) ∈ RM×I×J. The

operator S(.) converts the multivariate time series matrix into a

third-order tensor. Correspondingly, S−1(.) denotes the inverse
operator that converts the third-order tensor into a multivariate

time series matrix.

Moreover, the time series load data can be more randomized

(Chen and Sun, 2020) than other data, which means the missing

data Ij are closely related to Ij−1 and Ij+1. For this purpose, the
autoregressive norm (Chen and Sun, 2020) is used to effectively

model the short-term or local trends. The autoregressive norm of

matrix Z with a lag set H and coefficient matrix A is defined as

Eq. 4.
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‖Z‖A,H � ∑
m,t
⎛⎝zm,t −∑

i
am,izm,t−hi⎞⎠

2

, (4)

where hi ∈ H � {h1,/, hd} represents a time lag, and

Z ∈ RM×(IJ).
Therefore, the optimization problem of the low-rank

autoregressive tensor completion (LATC) algorithm can be

defined as

min
X ,Z,A

‖X‖p + λ‖Z‖A,H, (5)

s.t.{ X � S(Z),
PΩ(Z) � PΩ(Y), (6)

where X represents the recovered tensor. λ represents a weight

parameter that balances the trade-off between the two terms in

the objective function.

In order to simplify the evaluation of the coefficient matrixA,
the independent autoregressive model is used. In addition,

auxiliary variables X k are introduced to solve the

optimization problem.

min
{Xk}3k�1 ,Z,A

∑
k
αk
����X k(k)

����
p
+ λ‖Z‖A,H, (7)

s.t.{X k � S(Z), k � 1, 2, 3,
PΩ(Z) � PΩ(Y), (8)

where Xk(k) represents the kth-mode unfolding of Xk.

Furthermore, the parameter iteration process can be

derived from the alternating direction method of multiplier

(ADMM) framework and the three lemmas in Chen and Sun

(2020).

X l+1
k :� foldk(D αk

ρ
(S(Zl)(k) − T l

k(k)/ρ)), (9)

Zl+1[: hd]:�
1
3
∑

k
S−1(X l+1

k + T l
k/ρ)[: hd], (10)

zl+1m,[hd+1: ]:�
1

3(ρ + λ)∑k
S−1(ρX l+1

k + T l
k)m,[hd+1: ] +

λ

ρ + λ
Qmα

l
m,

(11)
αl+1m :� Q+

mz
l+1
m,[hd+1: ], (12)

T l+1:� T l + ρ(X l+1
k − S(Zl+1)). (13)

Ultimately, the recovered tensor X can be obtained.

2.2 Borderline-SMOTE algorithm

The Borderline-SMOTE (Chen et al., 2021) algorithm, which

is developed from SMOTE, divides the minority samples into

three classes: safe, danger, and noise classes. If there are more

than half minority samples surrounding the target sample, the

target sample is indicated as a safe sample. If there are more than

half majority samples surrounding the target sample, the target

sample is indicated as a dangerous sample. If the samples

surrounding the target sample are all majority samples, the

target sample is indicated as a noise sample. In order to avoid

the aliasing phenomenon existing in SMOTE, only danger

samples can be further processed. The process of the

Borderline-SMOTE algorithm is as follows:

1) In the training dataset T, for each sample pi(i �
1, 2,/, pnum) in the minority class P, calculate a set of m

nearest neighbors. From the nearest neighbors, the number of

majority samples is m′(0≤m′≤m)
2) If pi belongs to the safe samples, pi need not to be further

processed. If pi belongs to the danger samples, pi need to have

the step 3). If pi belongs to the noise sample, pi has to be

neglected.

3) For each borderline sample p′
i ∈ B, calculate the number of k

nearest neighbors from the minority class P, and then a

number of s points are randomly selected from the k

neighbors to have linear interpolation with p′
i . As a result,

a new instance synthetic pj � p′
i + rj · (p′

i − p′
j) can be

ultimately synthesized. rj denotes a random value between

0 and 1.

The algorithm is able to create new instances to tackle the

class imbalance issue as well as to identify the border between two

classes. However, it should be also noted that the parameter k

affects the performance of the Borderline-SMOTE algorithm.

Therefore, the optimal value of k is selected from a series of

pretreatment experiments in the later algorithm evaluation parts.

2.3 Attention mechanism–integrated
biGRU algorithm

High-dimensional load data could reduce the classification

accuracy (Wang and Wang, 2005; Cai et al., 2017; Guo and Zhu,

2019). It has been shown that the GRU algorithm outperforms in

handling high-dimensional data compared with algorithms such

as traditional LSTM (Pan et al., 2020; Sajjad et al., 2020), and

additionally can reduce the number of parameters. Therefore,

this study used biGRU as the underlying algorithm to conduct

the classification task. In addition, the attention mechanism is

also integrated to highlight the important features of the

load data.

2.3.1 GRU algorithm and biGRU algorithm
The GRU (gated recurrent unit) algorithm is proposed based

on the LSTM algorithm (Zhang et al., 2020b). It significantly

simplifies the cell structure by aggregating the forgotten gate and

the input gate into an update gate, which observably leads to the

reduction of the parameters. Therefore, the GRU algorithm has a

great potential of outperforming LSTM in terms of efficiency and

accuracy. The internal structure of the GRU algorithm is shown

in Figure 1.
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zt � σ(Wz · [ht−1, xt]), (14)
rt � σ(Wr · [ht−1, xt]), (15)

h̃t � tanh(W · [rtpht−1, xt]), (16)
ht � (1 − zt)pht−1 + ztph̃t, (17)

where zt, rt, h̃t, ht represent the update gate, reset gate, new

memory, and hidden state, respectively. The hidden layer is

consisted of the new memory and the hidden state. xt

represents the input in time t. Also, Wz, Wr ,W represent the

weight matrixes.

Normally, a GRU layer in a deep learning model consists of

GRUs to accomplish the classification tasks. It should be noted

that the GRU layer can process the time series data in one

direction. However, the time series data at time t are related to the

time series data at t-1 and t+1 from both directions. The biGRU

model, which consists of the forward GRU and the backward

GRU, can handle the aforementioned problem. It can potentially

provide a high-accuracy classification method. The structure of

the biGRU model is shown in Figure 2.

2.3.2 Attention mechanism
The attention mechanism especially concentrates on the

available information for specific tasks. The attention assigns

different values to different features of the time series, which can

filter and highlight the most important features from the original

features of a training dataset. The process of the attention

mechanism is introduced as follows:

1) One array of the time series data in a training dataset can be

represented as X � (x1, x2,/, xn) for the input of the

attention mechanism. Each xi can be regarded as a <key,
value > pair, where key represents the address of the time

series data; and value represents the value of the time series

data. In addition, the attention value can be described as the

mapping of the <key, value> about the query, where query

represents the hidden status of time t.

2) The matrix of Q (K, V) can be obtained by multiplying the X
and WQ (WK, WV), which can be acquired by training with

the dataset.

Q � (q1, q2,/, qi),
K � (k1, k2,/, ki),
V � (v1, v2,/, vi).

(18)

3) The correlation value between query and key can be

calculated.

4) The
��
d

√
is divided in order to avoid the overlarge result, which

is the number of the hidden size.

5) The final attention value can be obtained by multiplying the

matrix V and the SoftMax function that is used to normalize

the weight coefficient of each key corresponding to the value.

The attention value can be eventually expressed as in Eq. 19.

AttentionQ,K,V � softmax(QKT��
d

√ )V. (19)

2.4 An improved deep learning algorithm

Traditional classification methods generally lack the ability to

handle the missing and imbalanced dataset. Therefore, LATC

and Borderline-SMOTE algorithms are used to enhance the

classification accuracy of the proposed deep learning algorithm.

Being a supervised learning classification algorithm, the

biGRU algorithm requires a training dataset with labels to

conduct the training process. The LATC algorithm is adopted

for the sake of completing the missing data to improving the

quality of the training dataset. Moreover, because the random

selection may aggravate the imbalance issue, the Borderline-

SMOTE algorithm is further used to solve the class imbalance

FIGURE 1
Internal structure of the GRU unit.

FIGURE 2
Structure of the biGRU model.
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problem in the training dataset after the data missing issue has

been addressed. At last, the attention mechanism–integrated

biGRU algorithm is used to classify the training dataset. The

training procedure is shown as in Figure 3.

A raw dataset usually contains invalid information for

classification. Therefore, the data preprocessing is conducted

first to exclude the invalid information and the load dataset

TM×D×n can be obtained. The load dataset TM×D×n is reshaped as

in Eq. 20.

TM×D×n � T(M×D)×n � TITEM×n � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I11 / I1n
..
.

1 ..
.

IITEM1 / IITEMn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

where IITEMn means the ITEMth electric power consumption of

the dataset TITEM×n at the nth time point. However, the load data

in TITEM×n do not have labels, which means it cannot be directly

used with any supervised algorithm to train the classification

model. Therefore, a K-means algorithm–based approach to label

the original load data is proposed first. A number of samples are

randomly selected from the original dataset and then the

K-means algorithm is applied to process these samples. The

preset number of clusters will influence the training performance.

In this case, silhouette coefficient, inertia score, and Calinski

Harabasz score are adopted to find out the optimal number of

clusters.

Silhouette coefficient:

S(i) � b(i) − a(i)
max(a(i), b(i)), (21)

where a(i) that represents the average distance between i and

other samples in the same category reflects the density of

clusters. b(i) that represents the average distance between i

and other samples in the different category reflects the

dispersibility of clusters. If S(i) is closer to 1, the cluster

results are more rational.

Inertia score:

SSE � ∑k

i�1∑p∈Ci

∣∣∣∣p −mi

∣∣∣∣2, (22)

where Ci is the ith cluster, p is the sample in Ci,mi is the centroid

of Ci, and SSE is the clustering error of all samples.

Calinski Harabasz score:

CH(k) � trB(k)/(k − 1)
trW(k)/(n − k), (23)

B(k) � ∑
q
nq(cq − c)(cq − c)T, (24)

W(k) � ∑k

q�1∑x∈Cq
(x − cq)(x − cq)T, (25)

where n represents the number of clustering samples, k

represents the current cluster, tr represents the trace of

matrix, cq represents the core point of the q cluster, Cq

represents the rendezvous point, and nq represents the

center. B(k) is the covariance between categories and W(k)
is the covariance matrix within categories. The larger CH

value means strong connections within a class and week

connection between classes, and thereby indicates a better

clustering result.

Based on the optimally clustering number of k, the sample

data can be clustered into several clusters. Also then, in each

cluster, we select a number of points which are close to the

centroid as the training data Ttrain
item×n with labels Tlabel

item×1.

The selection is based on the Euclidean distance as the following

equation:

dis(pi, pj)< δ, (26)

where dis(pi, pj) represents the Euclidean distance between pi

and pj, and δ represents the threshold value of the distance.

Furthermore, it is common that at some time points, some

users are collecting their power consumption data, while others

are not. This causes the load data of the users that are not

collecting their power consumption data to be filled with 0, which

is similar to occurrence of data missing. Therefore, it is essential

to inspect whether data Ij belong to the data missing issue via

Eq. 27.

{ Ij−1,j+1 ≠ 0
Ij � 0

, j � 2, 3,/, n − 1. (27)

After a series of processes mentioned before, Ttrain is able to

be completed via the LATC algorithm. Y � Ttrain and X �
Ttrain

item×n are applied in Algorithm 1 to solve the class

imbalance problem. αks represents non-negative weight

FIGURE 3
Classification model training process.
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parameters with ∑
k
αk � 1. ρ represents the learning rate of the

ADMM algorithm. λ represents a weight parameter that balances

the trade-off between the two terms in the objective function. θ

represents a non-negative integer.

Algorithm 1. LATC algorithm.

It can be assumed that Titem×n
train has k clusters and the number

of samples in different categories, respectively,

are n1, n2,/, nk−1, nk.

Ttrain
item×n � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11 / I1n
..
.

1 ..
.

Iitem1 / Iitemn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

After tackling the data integrity issue, Ttrain
item×n only having

the class imbalance issue needs to be processed. Thus, the sample

rate is σ � nj
nk
(j � 1, 2,/, k), n1′, n2′,/, nk−1′, n′k is the number of

new samples in different categories by adopting the Borderline-

SMOTE algorithm, Tlabel
item′×1 is a set of new labels, and

Ttrain
item′×n is the training dataset after balancing. If

0< σ < σ max, then the minority samples, nj should be taken

into the Borderline-SMOTE algorithm to get n1′, n2′ ,/, nk−1′ , n′k,

Tlabel
item′×1 and Ttrain

item′×n.

Ttrain
item′×n �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11 / I1n
..
.

1 ..
.

Iitem1 / Iitemn

I(item′−item+1)1′ / I(item′−item+1)n′
..
.

1 ..
.

Iitem′1
′ / Iitem′n

′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

The deep learning method is utilized to classify the dataset

Ttrain
item′×n after being processed with LATC and Borderline-

SMOTE algorithms. In order to enhance the classification

accuracy and precision, the attention mechanism–integrated

biGRU algorithm is adopted to highlight the necessary

features in the time series. The architecture of the proposed

deep learning algorithm is shown in Figure 4.

From Figure 4, it can be seen that the training dataset is

sequentially processed by the biGRU algorithm and the attention

mechanism. Therefore, in order to fully consider the information

in the forward and backward directions, Eq. 30 is adopted. In

addition, the attention mechanism is considered to consist of a

dense layer and a merge layer. The softmax function (Almuzaini

and Azmi, 2020) is utilized to compute the reliability zi for the ith

class as shown in Eq. 31. The load data need to be further

processed in the output layer after the two steps. However, it is

common that the load data classification is a multi-label task.

Therefore, the sigmoid activation function is used as shown in

Eq. 32.

hi�hFi ⊕ hBi , (30)
Softmax(zi) � exp(zi)∑

i
(zi) , (31)

S(t) � 1
1 + e−t

, (32)

where hFi represents the forward sequence, and hBi represents the

backward sequence.

FIGURE 4
Architecture of the proposed deep learning algorithm.
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After the proposed deep learning algorithm processing, the

samples in different categories n1″, n2″,/, nk−1″ , n″k and a set of new

labels Tlabel
′ item′×1 can be obtained. The indexes, such as precision,

recall rate, and f1-score, are used to evaluate the classification result.

The classification determination indexes employed in the Eqs 33–35

are shown in Table 1. If so, the method can be utilized to classify the

test dataset Ttest.

Precision � TP

TP + FP
, (33)

Recall � TP

TP + FN
, (34)

f1 − score � 2 × Precision × Recall

Precision + Recall
. (35)

3 An improved biGRU based on LATC
and Borderline-SMOTE algorithms

The experiments are organized into four parts. To evaluate

the performance of the LATC algorithm in the incomplete

dataset, the first experiment uses the MAPE and RMSE. The

second part adopts the precision, recall rate, and f1-score indexes

in order to evaluate the performance of the Borderline-SMOTE

algorithm dealing with the class imbalance issue. The third part

utilizes the accuracy and the same indexes used in the second part

to evaluate the classification performance of the biGRU

algorithm based on the attention mechanism in the Iris

dataset and Wine dataset. Finally, the electric dataset of the

UCI database is utilized to evaluate the classification

performance of the proposed improved deep learning method.

The details of the experimental environment are listed in Table 2.

3.1 Study of the LATC algorithm

In this part, the subset of the electric dataset (Dua and Graff,

2019) of the UCI database is utilized to study the accuracy and

efficiency of the LATC algorithm in completing themissing data. The

details of the dataset are shown in Table 3. The subset of 321 users in

5 weeks is adopted from the original dataset in experiments. The

cubic spline interpolation and quadratic interpolation algorithms are

also implemented to compare with the LATC algorithm. MAPE and

RMSE are applied to evaluate the classification result.

Figure 5 shows the MAPE and RMSE of classification results,

which are obtained by different data completion methods with

the rising loss rate. It can be seen that the performances of

different completion methods with the low loss rate are quite

close. However, as the loss rate rises, the LATC algorithm

outperforms the other two methods. Especially, the RMSE of

the cubic spline interpolation algorithm shows an exponential

growth trend. It is worth noting that the large error can reduce

the quality of the dataset, which will further lead to the failure of

the classification to some extent. However, even when the loss

rate reaches 90%, the MAPE of the LATC algorithm is still lower

than 0.2, which can help the dataset classify successfully as soon

as possible. In addition, the efficiency of completion results is

shown in Table 4. It can be seen that the efficiency of LATC is

lower than that of others. However, due to the outstanding

completion ability, LATC can find a compromise between the

accuracy and efficiency.

3.2 Study of the Borderline-SMOTE
algorithm

This section first uses the Iris dataset (Fisher, 2019a), which

has the low-dimensional feature to evaluate the Borderline-

SMOTE algorithm. SMOTE and ADASYN (adaptive synthetic

sampling approach for imbalanced learning) algorithms are also

implemented for comparison. However, the number of classes in

the original Iris dataset is quite average, which is unable to

evaluate the class balance methods directly. Therefore, the

original Iris dataset needs to be processed to obtain the class-

imbalanced Iris dataset. The details of the class-imbalanced Iris

dataset and the dataset after the class balance methods processing

are shown in Table 5. Subsequently, the GRU algorithm is

applied to directly judge which category the new instances

belong to. Eventually, the precision, recall rate, and f1-score

TABLE 1 Classification determination.

Predict True Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

TABLE 2 Details of the experimental environment.

Experimental environment

CPU: Intel Core i7-10750H 2.6 GHz

MEM: 16 GB

OS: Win10 64 bit

Python: 3.6.12

TABLE 3 Details of the subset of the electric dataset of the UCI
database.

Time 2011–2014

Unit of the values in the electric dataset kW

Sampling frequency 4 times per hour

Number of users 370
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are used to evaluate the performance of different class-balanced

methods.

From Table 6, it can be emphasized that all three algorithms

perform stably. Although the recall rate of SMOTE/ADASYN in

class 2 is 0.88/0.93, its evaluation result in other classes can reach

a high level. In addition, it can be seen that in dealing with the

low-dimensional dataset, the performances of all three methods

are quite close. Especially, the class imbalance process result of

the Borderline-SMOTE algorithm has the highest precision/

recall rate/f1-score, the average of which is 1.

In order to further evaluate the performance of the Borderline-

SMOTE algorithm in terms of dealing with the high-dimensional

class imbalanced dataset, the Wine dataset (Chen et al., 2021) is

utilized. Different from the Iris dataset, the class imbalance issue

already exists in the original Wine dataset. Therefore, the Wine

dataset can be processed directly by class balance methods. The

details of the Wine dataset and the dataset after the class balance

method processing are shown in Table 7.

The precision, recall rate, and f1-score of class balance

methods using the Wine dataset are shown in Table 8. From

Table 8, it can be seen that although the average recall rate of the

SMOTE/ADASYN algorithm is 0.85/0.92, its minimal recall rate

is only 0.64/0.83 in the experiment. In addition, the minimal

precision and f1-score of the SMOTE/ADASYN algorithm are,

respectively, 0.73/0.83 and 0.74/0.83, though its average precision

and f1-score are more than 0.85. Therefore, compared with the

low-dimensional Iris dataset, SMOTE and ADASYN algorithms

lack the ability to deal with the higher-dimensional dataset stably.

Moreover, the average precision/recall rate/f1-score of the

Borderline-SMOTE algorithm can reach 0.97. Therefore, in

terms of weakening the high-dimensional class imbalance, the

performance of the Borderline-SMOTE algorithm is remarkably

better than that of the ADASYN algorithm and subsequently

better than the SMOTE algorithm.

3.3 Study of the attention
mechanism–integrated biGRU algorithm

The Iris dataset (Fisher, 2019a) is used to study the

performance of the biGRU with the attention mechanism

algorithm. The training and the testing instances are

randomly generated. The numbers of training and the testing

instances of the Iris dataset are shown in Table 9. In order to

compare with the attention mechanism–integrated biGRU

algorithm, the attention mechanism–integrated RNN, LSTM,

GRU, and biLSTM algorithms are also implemented.

Figure 6 shows the loss and accuracy of RNN, LSTM, GRU,

and biLSTM with the attention mechanism algorithms and the

FIGURE 5
The (A)MARE and (B) RMSE of data completion methods with
the rising loss rate.

TABLE 4 Comparison of data completion methods in the efficiency.

Data completion methods Test 1 Test 2 Test 3

Tensor completion 21s 22s 21s

Cubic spline interpolation 8s 8s 9s

Quadratic interpolation 7s 8s 7s

TABLE 5 Details of the class imbalanced Iris dataset and the dataset
after the class balance methods processing.

Dataset Class 1 Class 2 Class 3

Original Iris dataset 50 50 50

Iris dataset after pretreatment 50 30 10

Iris dataset after SMOTE 50 50 50

Iris dataset after Borderline-SMOTE 50 50 30

Iris dataset after ADASYN 50 50 49
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proposed algorithm. It can be seen that the aforementioned

five methods can classify the Iris dataset effectively. Especially,

the loss of the RNN algorithm has an obvious downward

trend. In addition, benefiting from the simple features in the

Iris dataset, the accuracy of the RNN algorithm is 0.93 in the

10th epoch. Table 10 shows the precision, recall rate, and f1-

score of load classification methods in different classes. It can

be seen that the LSTM algorithm performs the most unstably

for Iris. Although the LSTM algorithm precision of classes

1 and 2 are both 1, the precision of class 3 only has 0.70. Also,

the LSTM algorithm recall rate/f1-score of class 2 is only 0.43/

0.6, which is the least desirable result in the whole comparison.

Compared with the LSTM algorithm, the average precision/

recall rate/f1-score of other load classification is more than

0.9. Especially, it should be noted that the biGRU with the

attention mechanism algorithm obviously outperforms the

other classification methods, the average precision of which

reaches 0.983.

TABLE 6 Comparison of class balance methods with different classes using the Iris dataset.

Class
balance
methods

Class 1 Class 2 Class 3

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

SMOTE 1 1 1 1 0.88 0.93 0.89 1 0.94

Borderline-
SMOTE

1 1 1 1 1 1 1 1 1

ADASYN 1 1 1 1 0.93 0.97 0.94 1 0.97

TABLE 7 Details of the Wine dataset and the dataset after the class balance methods processing.

Dataset Class 1 Class 2 Class 3

Original Wine dataset 71 59 48

Wine dataset after SMOTE 71 71 71

Wine dataset after Borderline-SMOTE 71 71 71

Wine dataset after ADASYN 73 71 71

TABLE 8 Comparison of class balance methods with different classes using the Wine dataset.

Class
balance
method

Class 1 Class 2 Class 3

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

SMOTE 0.73 0.92 0.81 0.88 0.64 0.74 1 1 1

Borderline-
SMOTE

1 0.91 0.95 0.9 1 0.95 1 1 1

ADASYN 0.93 0.93 0.93 0.83 0.83 0.83 1 1 1

TABLE 9 Numbers of training and the testing instances of the Iris dataset.

Dataset Class 1 Class 2 Class 3

Number of training instances 33 36 31

Number of testing instances 17 14 19

Number of total instances 50 50 50
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In addition, the Wine dataset (Aeberhard, 2019b) with

higher-dimensional samples is further applied to evaluate the

performance of the biGRU algorithm based on the attention

mechanism. The details of the training and testing datasets are

shown in Table 11.

Figure 7 shows that high dimension severely influences the

performance of the classification methods. Although the RNN

algorithm performs well in the Iris experiment, its accuracy in the

Wine dataset classification task is less than 0.70, which strongly

suggests that the RNN algorithm lacks the ability of dealing with

the high-dimensional dataset. However, compared with the RNN

algorithm, the LSTM/GRU algorithm shows a better

performance in preprocessing the Wine dataset. Table 12

further shows that the the RNN algorithm classifies the high-

dimensional dataset unstably, especially in class 2. It is

emphasized that biGRU with the attention mechanism

algorithm shows excellent and stable classification ability. In

terms of classification precision, recall rate, and f1-score, the

GRU algorithm–based models outperform the other models.

Especially, the biGRU algorithm based on the attention

mechanism shows the greatest classification ability. The

average of its precision/recall rate/f1-score reaches 0.98, while

others are less than 0.95.

3.4 Study of the improved deep learning
algorithm

To entirely evaluate the proposed improved deep learning

algorithm, this part uses the complicated electric dataset (Dua

and Graff, 2019) of the UCI database. This section randomly

FIGURE 6
The (A) Loss and (B) Accuracy of load classification methods
using the Iris dataset.

TABLE 10 Comparison of precision of load classification methods in different classes using the Iris dataset.

Load
classification
method

Class 1 Class 2 Class 3

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

RNN 1 1 1 0.93 0.93 0.93 0.95 0.95 0.95

LSTM 1 1 1 1 0.43 0.6 0.7 1 0.83

biLSTM +
attention

1 1 1 0.74 1 0.85 1 0.74 0.85

GRU 1 1 1 1 0.86 0.92 0.9 1 0.95

biGRU + attention 1 1 1 1 0.93 0.96 0.95 1 0.97

TABLE 11 Numbers of training and testing instances of the Wine
dataset.

Dataset Class 1 Class 2 Class 3

Number of training instances 52 56 62

Number of testing instances 19 15 9

Number of total instances 71 71 71
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selects a part of the dataset, which includes the load data in

2 weeks of 196 users. However, the selected dataset only contains

the real user load data without its corresponding label. Therefore,

the unsupervised learning is adopted to obtain the labels (Gu and

Iyer, 2017; Hussein et al., 2019). Finally, four experiments are

designed to study the availability of the improved deep learning

algorithm:

1) The biGRU algorithm with the attention mechanism.

2) The biGRU algorithm with the attention mechanism and

LATC algorithm.

3) The biGRU algorithm with the attention mechanism and

Borderline-SMOTE algorithm.

4) The proposed improved deep learning algorithm.

The precision, the recall rate, and the f1-score of different

experiments are shown in Figure 8. From Figure 8, it can be seen

that although all methods have the ability to accurately classify

the dataset, the improved deep learning algorithm outperforms

the others. It is worth noting that the methods without the class

imbalance processing (experiments 1 and 2) have a weaker

classification ability than the methods with the Borderline-

SMOTE algorithm (experiments 3 and 4). Especially in

experiment 2, the precision of the fourth class is only 0.63.

The reason is that the class balancing processing highlights the

feature of the minority data, which is quite helpful to

distinguish the minority and majority. Consequently, the

classification precision is dramatically improved. Meanwhile,

the methods with the LATC algorithm (experiments 2 and 4)

have weaker classification abilities than the methods without it

(experiments 1 and 3). The reason is that missing data cause a

decrease of the characteristics in the dataset, which leads to a

low precision in the classification. The comparison of training

and testing time of different methods are shown in Figure 9. It

can be seen that although the class-balanced methods can

effectively improve the precision, the run-time of

classification algorithms based on class-balanced methods

will rise sharply. The run-time of experiments 3 and 4 is

more than 200s, while the run-time of experiments 1 and

2 is 70s. Therefore, it can be interpreted that the Borderline-

SMOTE algorithm improves the classification precision;

however, it generates more overheads.

FIGURE 7
The (A) Loss and (B) Accuracy of load classification methods
using the Wine dataset.

TABLE 12 Comparison of precision of load classification methods with different classes using the Wine dataset.

Load
classification
method

Class 1 Class 2 Class 3

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

Precision Recall
rate

F1-
score

RNN 0.23 0.23 0.23 0 0 0 0.5 1 0.67

LSTM 0.76 1 0.86 0.9 0.6 0.72 0.88 0.78 0.82

biLSTM +
attention

0.79 1 0.88 0.9 0.6 0.72 0.89 0.89 0.89

GRU 0.83 1 0.9 1 0.67 0.8 0.9 1 0.95

biGRU + attention 0.95 1 0.97 1 0.93 0.97 1 1 1
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The average precisions, the recall rates, and the f1-scores of

different experiments are shown in Table 13. The average precision

in experiment 3 reaches 0.99 while it is 0.98 in experiment 4. This is

because the data completion algorithm will enrich the complexity

and characteristics of the dataset. Therefore, the dataset after the

completionmay spendmore training and testing time. Although the

performance of the improved deep learning algorithm is worse than

experiment 3 in terms of the precision, recall rate, and f1-score, its

classification result is closer to reality with the balancing processing.

As a result, the test dataset is classified into four categories. The

category mean center model (Gu and Iyer, 2017) is further used to

analyze the loadmicro fluctuation at eachmoment. The comparison

of category centers in different experiments is shown in Figure 9.

Figure 10A indicates that the load curve of category 1 shows a

weak fluctuation. In addition, most load data belonging to

category 1 are at a low level.

Figure 10B indicates that the load curve of category 2 shows a

strong fluctuation. Especially, some users in the 3 h or 4 h have a

sudden increase in load. The highest load can reach 1800 kW.

Figure 10C indicates that the load curve of category 3 shows

the same fluctuation as that of category 1. However, different

from category 1, the average load of category 3 is about 250 kW.

Figure 10D indicates that the load curve of category 4 shows

the strongest fluctuation in the whole category. It can be seen that

some load curves in 3 h–6 h and 12 h–20 h in category 4 have an

intense fluctuation. Especially, the highest load of the category

4 is more than 2000 kW.

Above all, the proposed deep learning algorithm can achieve

a high precision, recall rate, and f1-score classification. In

addition, the classification result shows the different features

of each category.

FIGURE 8
The (A) Precision a, (B) Recall Rate and (C) F1-score of
different experiments with different classes.

FIGURE 9
Comparison of time of different experiments.
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4 Conclusion

This study proposed an improved deep learning algorithm

in enabling load data classification for the power system. The

algorithm first completes the missing dataset using the LATC

algorithm, which not only improves the quality of the training

dataset but also enriches the characteristics of the training

dataset. Afterward, the Borderline-SMOTE algorithm is used to

handle the class imbalance issue. The algorithm only generates

the new samples for the borderline samples of the minority

class to improve the class distribution. Also then, the attention

mechanism is an integrated biGRU algorithm to further

improve the accuracy and the recall rate. At last, this study

designed four experiments to verify the effectiveness of the

presented algorithm. The first experiment is designed to verify

the great accuracy of LATC in data completion field. The

TABLE 13 Average of evaluation indexes of different experiments.

Experiment Precision Recall rate F1-score

biGRU + attention 0.89 0.95 0.91

biGRU + attention based on LATC 0.88 0.93 0.9

biGRU + attention based on Borderline-SMOTE 0.99 0.99 0.99

biGRU + attention based on LATC and Borderline-SMOTE 0.98 0.98 0.98

FIGURE 10
The load mean centers of (A) category 1, (B) category 2, (C) category 3 and (D) category 4.
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second experiment uses the recall rate to prove the ability of

tackling the imbalanced issue of Borderline-SMOTE. The third

experiment adopts the Iris and Wine datasets to evaluate the

classification performance of the biGRU based on the attention

mechanism. The UCI dataset is used to verify the effectiveness of

the presented algorithm in the last experiment. Based on the

experimental results, the presented method outperforms most of

the deep learning methods. Although this study proves that the

presented algorithm shows a remarkable advantage in processing

the load data, we need to point out that the disadvantage of the

presented algorithm is the time cost in the training phase, which

can be focused on in future research. Therefore, we consider to

integrating ensemble learning with the presented algorithm in

distributed computing, which will help the presented algorithm

deal with the load data efficiently and accurately.
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