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Due to the frequent opening and shutting of turbine valves in the power system,

valve point effect (VPE) that makes the economic dispatching (ED) problem

non-linear, non-smooth and non-convexmay be generated. Moreover, various

constraints appear in the operation process, such as network transmission loss,

and power balance during unit operation, which make it more difficult to find

the global optimum through traditional mathematical methods. Nowadays,

intelligent algorithms have successfully become a useful optimization tool to

deal with nonlinear problems. In this paper, an improved bat algorithm (IBA),

into which random black hole strategy andGaussianmutation are introduced, is

proposed to solve the ED problem. Furthermore, the random black hole

strategy can enhance the diversity of the population and improve the

convergence speed of IBA. Gaussian mutation is adopted to help jumping

out of the local optimum. IBA is tested in 50 and 100 dimensions on 10 sets of

well-known benchmark functions respectively, and compared with the

methods in literature to verify its feasibility. Then, three different scales

economic dispatching problems (3 units, 13 units, 40 units) are solved by

this method, which further proves its effectiveness. The results show that

IBA has obvious advantages and practical application value compared with

other optimization methods.
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1 Introduction

Economic Dispatch problem is a typical optimization problem in power system

operation and has been one of the hot topics of research in recent years. The objective of

the ED problem is to find the appropriate generation value to minimize the cost of

generation while satisfying the equation and inequality constraints that may arise in

power system operation (Ma et al., 2017; Chen and Tang, 2022). Generally, the thermal

power unit would be affected by the valve point effect, which make the ED problem be a

complex optimization problem with non-smooth, non-linear, non-convex and non-

differentiable. There are two general methods to solve this problem: one is the classical

mathematical method, such as quadratic programming, nonlinear programming, etc.,

and the other is the intelligent optimization algorithm, such as genetic algorithm,

particle swarm algorithm, etc. (Singh and Dhillon, 2019; Yang et al., 2021). The former
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requires continuous differentiable function, which is obviously

not suitable for the practical application scene. However, the

latter has no special requirements on the objective function, so

this paper chooses intelligent optimization algorithm instead of

classical mathematical method to solve the ED problem.

In recent years, with the rapid development of intelligent

optimization algorithms, more and more scholars are using it

to solve ED problems (Niu et al., 2014; Dou and Qin, 2020).

grey wolf optimization (GWO) (Singh and Dhillon, 2019),

sailfish algorithm (SFA) (Li et al., 2021), fireworks algorithm

(FWA) (Zare et al., 2021), whale optimization algorithm

(WOA) (Medani et al., 2018), artificial bee colony

algorithm (ABC) (Hassan et al., 2020), ant colony

optimization (ACO) (Zhou et al., 2017), social spider

algorithm (SSA) (Adhvaryyu and Adhvaryyu, 2020), marine

predator algorithm (MPA) (Pan et al., 2021), ant lion

optimizer (ALO) (Mouassa et al., 2017), bat algorithm (BA)

(Rugema et al., 2021), and other optimization algorithms have

been applied to the solution of ED problems. Ref. (Singh and

Dhillon, 2021) proposes an improved directed bat optimizer

with contrastive learning to solve the minimization power

scheduling problem, and the results show that the proposed

algorithm is a potential algorithm to solve the ED problem. An

improved hybrid particle swarm optimization algorithm

based on PSO and HPSOBA is proposed to solve economic

dispatch problems containing conventional as well as hybrid

and renewable energy sources. The results demonstrate the

superior performance of the developed algorithm in terms of

fuel cost reduction, faster convergence and computation time

(Ellahi et al., 2021). Ref. (Guerraiche et al., 2021) presents a

bat algorithm combined with a generalized evolutionary

wandering algorithm to solve the multi-objective

redundancy design problem with series-parallel power

systems. A chaotic bat algorithm based on chaotic sequence

improvement is applied to solve optimal reactive power

scheduling problems with small, medium and large scale

power systems. Simulation results reveal the effectiveness

and interference resistance of the chaotic bat algorithm for

solving such problems (MugemanyiQu et al., 2020). Ref.

(Liang et al., 2018) proposes a bat optimization algorithm

based on a combination of chaotic mapping and stochastic

black hole model for solving economic dispatch problems in

power systems, and the effectiveness of the proposed method

is illustrated on three test cases.

The bat algorithm (BA) has the advantages of few

parameters and fast convergence, so it is more often used

in various power system problems (Xu and Xiang, 2021).

However, the convergence speed of BA algorithm is too

fast, which leads it to fall into local optimum easily. From

this, a new improved BA (IBA) algorithm is proposed in this

paper. To address the problem that the original BA algorithm

FIGURE 1
Cost function with and without valve point effect.

FIGURE 2
Pseudo codes of BA.
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easily falls into local optimum, two improvements are made to

the BA algorithm: first, Random black hole strategy is used to

increase the diversity of the algorithm and accelerate the

convergence speed; second, Gaussian mutation is

introduced to reduce the local optimum probability and

improve the global search capability. To verify the

effectiveness of IBA, we tested it on 10 sets of benchmark

functions and three different sizes of ED problems and

compared it with other methods in the literature, and the

results show that IBA has a high convergence accuracy and

can obtain better optimization results compared with other

algorithms.

The rest of the paper is organized as follows. Section 2

describes in detail the mathematical model of the ED

problem. Section 3 introduces the standard BA algorithm and

proposes IBA. Section 4 evaluates comprehensively the

performance of the IBA on benchmark functions. Section 5

gives the summary of the work and makes some briefings to

the later research work.

2 Problem statement

The economic dispatch problem is the task of allocating

reasonably the output of each unit under the premise of meeting

various constraints in power system operation, so as to achieve

the goal of minimizing the total generation cost of the power

system.

2.1 SED problem formulation

The SED problem is mainly considered in this paper, which

can be described as a cost minimization problem, and its

objective function is defined as:

Min∑N
i�1
Fi(Pi) (1)

where Fi(Pi) is the fuel cost function of the ith unit and Pi is the

output power generated by the ith unit.

FIGURE 3
Position Xt−1

i updated by random black holes.

FIGURE 4
Pseudo code of IBA.
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In real life, the power system produces VPE because of the

steam turbine in the power system. Whenever the steam valve is

turned on or off, which could change the input and output

characteristics of the unit. Therefore, the fuel cost function has

two forms: one is a quadratic function without VPE defined as

Eq. 2, the other with VPE is described as Eq. 3.

F(Pi)� ∑N
i�1
ai+biPi+ciP2

i (2)

F(Pi) � ∑N
i�1
{ai + biPi + ciP

2
i +

∣∣∣∣di sin[ei(Pmin
i − Pi)]∣∣∣∣} (3)

where ai, bi, and ci are the fuel-cost coefficients of the ith unit, di
and ei are the fuel cost-coefficients of the ith unit with valve

point effects. In addition, the cost functions without and with

VPE are shown in Figure 1. In this paper, Eq. 3 is used as the

cost function.

2.2 Constraints

(a) Power balance constraints

∑N
i�1
Pi−PL� PD (4)

where PD is the total system load demand, and PL is the

transmission loss. While power network is concentrated, thus

PL is ignored in this paper.

(b) Generating capacity constraints

Pmin
i ≤Pi ≤Pmax

i (5)

where Pmax
i and Pmin

i are the maximum and minimum power

outputs of the ith unit.

3 Improved bat algorithm

3.1 Conventional bat algorithm

Bat algorithm (BA) is a heuristic search algorithm based on

group intelligence proposed by Yang in 2010, which mimics the

behavior of miniature bats to find small insects as prey or avoid

obstacles through echolocation system. Furthermore, bats

perform various activities through echolocation, which can be

summarized as follows (Yang, 2010).

(a) Miniature bats can use echolocation to measure distance and

distinguish between prey and obstacles.

(b) Miniature bats make random flight catch prey at a certain

speed vi, fixed frequency fmin, variable wavelength λ and

loudness A0. Furthermore, the emissivity ε ∈ [0, 1] can be

adjusted. Meanwhile, the frequency and wavelength of the

pulses are related to the distance to the prey.

FIGURE 5
Flow chart of improved bat algorithm.

TABLE 1 Description of single-modal benchmark function.

Function Dim Range Minf

F1(x) � ∑n
i�1x2i 50 [−100, 100] 0

F2(x) � ∑n
i�1 |xi| + ∑n

i�1|xi| 50 [−10, 10] 0

F3(x) � ∑n
i�1(∑i

j−1xj)2 50 [−100, 100] 0

F4(x) � max{|xi|, 1≤ i≤ n} 50 [−100, 100] 0

F5(x) � ∑n−1
i�1 [100(xi+1 − x2i )2 + (xi − 1)2] 50 [−30, 30] 0

F6(x) � ∑n
i�1([xi + 0.5])2 50 [−100, 100] 0
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(c) Here, the loudness may be anywhere from a big positive A0

to a constant value Amin of the minimum.

Like most evolutionary algorithms, the population Xi,j(i �
1, 2, ...,N; j � 1, 2, ...,D) of BA is composed of N individuals

withD variable. InD dimensional search space, each bat adjusts

its frequency f before updating its speed, and then updates its

speed according to its current speed and the distance between

its current position and the current optimal position. The

position and speed are updated as follows:
f i� fmin+β(fmax−fmin) (6)
vti� vt−1i +f i(Xt

i−Xp) (7)
Xt

i� Xt−1
i +vt (8)

where f i is the frequency of the ith bat, fmin is the minimum

frequency, fmax is the maximum frequency. For convenience,

fmin = 0, fmax = 100, as described in reference (Yang, 2010). β is a

uniformly distributed random number in [0, 1], Xp is the current

global optimal position.

If the random number is greater than the pulse number, bats

can carry out random flight. The formula for random flight is as

follows:

Xnew � Xold+εAt (9)
where ε is a random number in [−1, 1],At is the average loudness

of all bats at tth iteration. With the iteration going on, the

loudness and rate of pulse emission need to be updated

accordingly, and the formulas are as follows:

At+1
i � αAt

i (10)
rt+1i � r0i (1 − exp(−γt)) (11)

TABLE 2 Description of multimodal benchmark function.

Function Dim Range Minf

F7(x) � −20 exp(−0.2
�������
1
n∑n

i�1x2i
√

) − exp(1n∑n
i�1 cos(2πxi)) + 20 + e 50 [−5.2, 5.12] 0

F8(x) � 1
4000∑n

i�1x2i −∏n
i�1 cos( xi�

i
√ ) + 1 50 [−32, 32] 0

F9(x) � π
n {10 sin(πy1) +∑n−1

i�1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2} + ∑n
i�1u(xi, 10, 100, 4) 50 [−600, 600] 0

yi � 1 + xi+1
4

u(xi , a, k,m) �
⎧⎪⎨⎪⎩

k(xi−a)m xi > a
0 −a< xi < a

k(−xi−a)m xi < − a

F10(x) � 0.1{sin2(3πx1) +∑n
i�1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]} + ∑n

i�1u(xi , 5, 100, 4) 50 [−50, 50] 0

FIGURE 6
(A–H) Typical two-dimensional diagram of benchmark function.
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where α and γ are constants, α = γ = 0.9, as described in reference

(Yang, 2010). A0
i and r0i are random number in [1, 2] and

random number in [0, 1], respectively.
The pseudo code of bat algorithm (Yang, 2010) is shown in

Figure 2.

3.2 Improved bat algorithm proposed

BA algorithm can be regarded as a reduced version of particle

swarm. In addition to adding frequency to control bat flight speed,

two variables of pulse rate ri and loudness Ai are added. It also

removes the fact that particle swarm optimization can move

towards local and global optimal positions, which leads to faster

convergence, but it is easy to fall into local optimization, which is

its disadvantage. Therefore, based on the above deficiencies, some

strategies need to be modified to get out of the local optimal

problem and improve the performance of the BA algorithm.

This section proposes a new and improved bat algorithm for

SED problem. Firstly, the random black hole strategy is used to

update the bat position randomly, and then the Gaussian

distribution function is used to jump out of the local

optimum. In summary, two major improvements to IBA can

be described as follows.

3.2.1 Random black hole strategy
According to the black hole theory, particles could be absorbed

by the black hole within a certain range, namely capture, but may

also be spit out with a certain probability by the black hole, namely

escape. Suppose that the bat swarm is a swarm of particles, and a

TABLE 3 Comparison of the results (Dim=50,FES=4e+5).

No Result Methods

IBA QBA CBA PSOBA MSCA ISCA IISCA WPBOA

F1 Mean 0 6.38E+02 1.26E+05 1.27E+05 1.67E+05 1.67E+05 1.67E+05 4.49E+03

Std test 0 2.51E+03 9.04E+03 1.21E+04 2.07E+04 2.05E+04 2.08E+04 3.06E+02

– 1 1 1 1 1 1 1

F2 Mean 3.56E-256 3.70E+11 3.03E+18 9.97E+18 2.23E+34 7.68E+33 1.12E+34 3.86E+01

Std test 0 2.03E+12 1.04E+19 2.68E+19 4.82E+35 8.23E+34 1.74E+35 1.26E+00

– 1 1 1 1 1 1 1

F3 Mean 0 3.17E+03 3.31E+05 3.16E+05 4.45E+06 4.19E+06 4.58E+06 9.93E+03

Std test 0 1.64E+04 1.07E+05 7.47E+04 5.13E+06 5.40E+06 5.35E+06 1.80E+03

– 1 1 1 1 1 1 1

F4 Mean 1.22E-256 4.37E+00 9.12E+01 9.11E+01 9.82E+01 9.80E+01 9.80E+01 1.77E+01

Std test 0 7.69E+00 2.29E+00 3.21E+00 1.80E+00 1.78E+00 1.99E+00 0.38E+00

– 1 1 1 1 1 1 1

F5 Mean 4.85E+01 2.01E+05 5.16E+08 5.12E+08 7.92E+08 7.97E+08 7.92E+08 6.78E+05

Std test 0.01E+00 1.08E+06 6.39E+07 5.58E+07 1.60E+08 1.54E+08 1.58E+08 1.58E+08

– 1 1 0 1 1 1 1

F6 Mean 1.25E+01 2.31E+03 1.21E+05 1.29E+05 1.67E+05 1.66E+05 1.68E+05 4.51E+03

Std test 0 8.58E+03 1.47E+04 1.18E+04 2.07E+04 2.06E+04 2.06E+04 2.98E+02

– 1 1 0 1 1 1 1

F7 Mean 4.44E-15 1.33E+00 2.07E+01 2.07E+01 2.12E+01 2.12E+01 2.12E+01 1.07E+01

Std test 0 3.69E+00 0.08E+00 0.10E+00 0.17E+00 0.17E+00 0.16E+00 0.24E+00

– 1 1 1 1 1 1

F8 Mean 0 1.87E+01 1.17E+03 1.10E+03 1.49E+03 1.48E+03 1.50E+03 4.12E+01

Std test 0 8.37E+01 9.11E+01 9.82E+01 1.91E+02 1.87E+02 1.99E+02 3.36E+00

– 1 1 1 1 1 1 1

F9 Mean 1.47E+00 8.00E+02 1.19E+09 1.19E+09 2.06E+09 2.03E+09 2.09E+09 2.31E+01

Std test 7.36E-16 4.35E+03 2.07E+08 1.87E+08 4.70E+08 4.41E+08 4.61E+08 2.09E+00

– 1 1 -1 1 1 1 1

F10 Mean 0.39E+00 6.34E+04 2.31E+09 2.25E+09 3.72E+09 3.68E+09 3.70E+09 8.59E+04

Std test 0.06E+00 2.61E+05 3.52E+08 3.07E+08 7.93E+08 7.21E+08 8.07E+08 2.54E+04

– 1 1 0 1 1 1 1
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bat near the current optimal bat is a black hole. The radius of the

black hole is R. Within radius R, bats are captured by the black

hole, but those caught still have a chance to escape. Introducing the

random black hole strategy, if bats are captured, is conducive to

accelerating the convergence; Conversely, it can increase the

diversity of the population (Chen and Cheng, 2013; Zong et al.,

2016; Liang et al., 2018; LV et al., 2019). The principle of the

random black hole model is shown in Figure 3.

The position updating formula by the random black hole

strategy can be formulated as follows:

Xt
i� { Xt−1

i +vt, L≥ p
Xp+2R(r3−0.5), L< p (12)

where R is the radius of the black hole, r3, L and p are all random

numbers in [0, 1]. And the threshold p represents the capture

capability of the black hole. If L < p, bats are attracted to the

black hole.

3.2.2 Gaussian mutation
Since the bat algorithm itself is easy to fall into local

optimum, in view of this, Gaussian distribution function is

introduced to help IBA to escape from local optimum (Kaur

and Narang, 2019; Xie et al., 2021), which is depicted

below:

Xt
i � Xt

i · (0.5 + τ ·N(0, 1)) (13)

TABLE 4 Comparison of the results (Dim=100,FES=4e+5).

No Result Methods

IBA QBA CBA PSOBA MSCA ISCA IISCA WPBOA

F1 Mean 0 9.25E+03 2.73E+05 2.76E+05 3.32E+05 3.34E+05 3.32E+05 1.01E+04

Std test 0 2.33E+04 1.33E+04 1.64E+04 3.05E+04 3.02E+04 2.84E+04 4.78E+02

– 1 1 1 1 1 1 1

F2 Mean 1.26E-255 1.42E+34 5.48E+45 8.37E+45 8.94E+64 1.79E+66 1.29E+64 8.29E+01

Std test 0 7.80E+34 2.78E+46 4.05E+46 1.18E+66 3.10E+67 1.26E+65 1.96E+00

– 1 1 1 1 1 1 1

F3 Mean 0 7.36E+04 1.18E+06 1.41E+06 1.65E+07 1.59E+07 1.78E+07 3.97E+04

Std test 0 2.44E+05 3.55E+05 5.65E+05 2.08E+07 1.83E+07 2.02E+07 6.60E+03

– 1 1 1 1 1 1 1

F4 Mean 1.39E-252 4.71E+00 9.60E+01 9.56E+01 9.90E+01 9.90E+01 9.90E+01 1.85E+01

Std test 0 9.17E+00 1.55E+00 1.00E+00 1.02E+00 0.91E+00 1.00E+01 2.30E-02

– 1 1 1 1 1 1 1

F5 Mean 9.80E+01 6.28E+06 1.19E+09 1.17E+09 1.61E+09 1.60E+09 1.63E+09 1.63E+06

Std test 0.02E+00 2.55eE07 8.69E+07 1.01E+08 2.05E+08 2.14E+08 2.17E+08 1.51E+05

– 1 1 0 1 1 1 1

F6 Mean 2.50E+01 2.25E+03 2.79E+05 2.78E+05 3.34E+05 3.33E+05 3.35E+05 9.99E+03

Std test 0 4.33E+03 1.57E+04 1.60E+04 2.86E+04 2.98E+04 2.30E+04 4.75E+02

– 1 1 0 1 1 1 1

F7 Mean 4.44E-15 2.92E+00 2.09E+01 2.09E+01 2.12E+01 2.12E+01 2.12E+01 1.10E+01

Std test 0 5.21E+00 0.08E+00 0.06E+00 0.11E+00 0.10E+00 0.10E+00 0.47E+00

– 1 1 1 1 1 1 1

F8 Mean 0 7.93E+01 2.46E+03 2.51E+03 3.00E+03 3.01E+03 2.98E+03 8.89E+01

Std test 0 1.50E+02 1.47E+02 1.47E+02 2.76E+02 2.71E+02 2.61E+02 5.46E+00

– 1 1 1 1 1 1 1

F9 Mean 1.33E+00 2.62E+05 2.83E+09 2.87E+09 4.08E+09 4.08E+09 4.07E+09 2.70E+01

Std test 1.30E-16 1.14E+06 3.23E+08 2.41E+08 6.49E+08 6.18E+08 6.58E+08 1.74E+01

– 1 1 -1 1 1 1 1

F10 Mean 0.92E+00 3.02E+06 5.44E+09 5.42E+09 7.38E+09 7.44E+09 7.44E+09 2.53E+05

Std test 0.12E+00 1.14E+07 5.78E+08 4.49E+08 1.07E+09 1.07E+09 1.10E+09 3.70E+04

– 1 1 1 1 1 1 1
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where Xt
i is the position of ith bat at the tth iteration, τ is a

random number in [0, 1], and N(0, 1) represents

the normal distribution with mean value of 0 and variance

of 1.

The pseudo code of the improved bat algorithm is shown in

Figure 4.

The flow chart of the improved bat algorithm is shown in

Figure 5.

FIGURE 7
(A–F) Comparison of convergence curves on 50-dimensional.

TABLE 5 Results of case I with 850 mw load demand (3-unit system with valve point effect).

Evolution method Minimum cost ($) Maximum cost ($) Mean cost ($) Mean time (sec.)

CEP (Sinha et al., 2003) 8234.07 8241.83 8235.97 20.46

FEP (Sinha et al., 2003) 8234.07 8241.78 8234.24 4.54

MFEP (Sinha et al., 2003) 8234.08 8241.80 8234.71 8.00

IFEP (Sinha et al., 2003) 8234.07 8234.54 8234.16 6.78

CBA 8241.67 8488.02 8369.66 0.0083

PSOBA 8258.91 8520.68 8396.10 0.0085

MSCA 8240.94 8964.43 8610.91 0.0048

ISCA 8234.14 8943.21 8626.42 0.0043

IISCA 8251.76 8957.13 8622.12 0.0039

BA 8234.22 8242.16 8241.90 0.0079

IBA 4638.06 6705.63 5099.38 0.0081

Bold value denotes the best result.
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4 Experimental analysis

This section conducts simulation experiments based on

10 commonly used benchmark functions (Mirjalili and Lewis,

2016). Firstly, the definitions of these 10 functions are given in

Table 1 and Table 2, and then IBA performance is compared with

other seven algorithms including CBA (Adarsh et al., 2016), QBA

(Zhu et al., 2016), PSOBA (Tchapda et al., 2017), WPBOA (Guo

et al., 2021), MSCA (Wang and Lu, 2021), ISCA (Zadehparizi and

Jam, 2022) and IISCA (Long et al., 2019). All experiments in this

study are conducted in a PCwithWindows 10 system, 3.8 GHz Intel

Core, 8 GB RAM, and MATLAB R2018b.

Generally speaking, benchmark functions can be divided

into four groups: single-modal, multimodal, fixed

dimensional multimodal and composite functions. In this

paper, the performance of the proposed IBA method is

analyzed and verified by using single-mode and multi-

mode functions. The definitions of single-mode and multi-

mode benchmark functions are listed in Tables 1 and 2,

respectively. Figure 6 shows a typical two-dimensional

diagram of some benchmark functions in this paper.

Among these 10 benchmarks, F1 to F6 are unimodal

functions, and the unimodal function has only one

optimal value. However, for the multi-modal functions

F7 to F10, the number of local minima increases as the

problem dimension increases. In order to make a fair

comparison between different algorithms, the function

evaluation number (FES) (Kazikova et al., 2021) is utilized

to measure the running time of the algorithm. All test

functions in this paper have the same FES when searching

for the global minimum.

FIGURE 8
(A–F) Comparison of convergence curves on 100-dimensional.

TABLE 6 Distribution of best results of 3 unit SED problems.

Unit 1 2 3

Output(MW) 396.2894 53.7106 400.0000

Fuel cost($) 4638.06
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TABLE 7 Results of case 2 with load demand of 1800 MW (13 unit system with valve point effect).

Evolution method Minimum cost ($) Maximum cost ($) Mean cost ($) Mean time (sec.)

CEP (Sinha et al., 2003) 18048.21 18404.04 18190.32 294.96

FEP (Sinha et al., 2003) 18018.00 18453.82 18200.79 168.11

MFEP (Sinha et al., 2003) 18028.09 18416.89 18192.00 317.12

IFEP (Sinha et al., 2003) 17994.07 18267.42 18127.06 157.43

PSO (Victoire and Jeyakumar, 2004) 18030.72 – 18205.78 77.37

ABC (Hemamalini and Simon, 2010) 17963.86 17995.11 17987.22 16.39

HGA (He et al., 2008) 17963.83 – 17988.04 8.48

CBA (Zhu et al., 2016) 17963.83 17995.2256 17965.4889 0.97

PSOBA (Guo et al., 2021) 18533.4 19656.8 19189.1 –

MSCA 18475.19 19935.18 19324.68 0.2400

ISCA 18532.86 19843.64 19325.93 0.1706

IISCA 18572.49 19964.21 19335.33 0.1737

BA 18163.26 18285.85 18264.41 1.0335

IBA 11396.51 11971.64 11768.75 1.1043

–Indicates data not available in the corresponding literature; Bold value denotes the best result.

TABLE 8 Distribution of best results of 13 unit problems.

Unit 1 2 3 4 5 6 7

Output(MW) 449.5160 150.6522 208.1061 157.6421 108.7338 169.6950 94.3623

Unit 8 9 10 11 12 13

Output(MW) 136.7151 60.0000 57.8553 83.0436 65.6161 58.0623

Fuel cost($) 11396.51

TABLE 9 Results of case III with 10500 MW load demand (40 unit system with valve point effect).

Evolution method Minimum cost ($) Maximum cost ($) Mean cost ($) Mean time (sec.)

CEP (Sinha et al., 2003) 123488.29 126902.89 124793.48 1956.93

FEP (Sinha et al., 2003) 122679.71 127245.59 124119.37 1039.16

MFEP (Sinha et al., 2003) 122647.57 124356.47 123489.74 2196.10

IFEP (Sinha et al., 2003) 122624.35 125740.63 123382.00 1167.35

PSO (Sa-Ngiamvibool et al., 2011) 121830.68 122083.17 121962.57 87.37

ABC (Hemamalini and Simon, 2010) 121441.03 122123.77 121995.82 32.45

PSO-LRS (Selvakumar and Thanushkodi, 2007) 122035.79 123461.67 122558.45 15.86

ACO (Pothiya et al., 2010) 121532.41 121679.64 121606.45 52.45

NPSO-LRS (Selvakumar and Thanushkodi, 2007) 121664.43 122981.59 122209.31 16.81

CBA (Zhu et al., 2016) 121412.54 121436.15 121418.98 1.55

PSOBA (Guo et al., 2021) 130426.80 158797.70 141211.00 –

MSCA 130479.70 164826.97 150981.54 1.3584

ISCA 131114.88 165120.63 151137.64 0.4090

IISCA 132162.18 166503.30 150849.64 0.4386

BA 116533.87 124641.86 119686.50 6.0295

IBA 75502.17 79210.95 77501.25 5.0169

–Indicates data not available in the corresponding literature; Bold value denotes the best result.
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4.1 Performance verification of IBA

IBA method is further evaluated on 10 benchmark functions

and compared with other seven methods the above mentioned.

In this paper, Wilcoxon signed rank test (Yang et al., 2021) is

utilized to compare the differences between IBA and other

algorithms in the literature, and the significant level α is set to

0.05, max_FESs on 10 benchmark functions under 50 and

100 dimensions are all 4E+05. In order to obtain better

results, each algorithm runs independently for 30 times. The

population sizes of IBA and the other seven methods are allN 20,

and the other parameters of the seven methods are derived from

the literature.

Table 3 and Table 4 summarize the average results, standard

deviation and Wilcoxon signed rank test results of

30 independent runs on 50 and 100 dimensional benchmark

functions. The best results of the average and standard deviation

are marked in bold. When the test = 1, 0 and −1, IBA is superior,

TABLE 10 Distribution of best results of 40 unit problems.

Unit Output (MW) Unit Output (MW) Unit Output (MW) Unit Output (MW)

1 42.4405 11 362.8970 21 473.4723 31 110.0000

2 61.9452 12 367.8126 22 474.2985 32 110.0000

3 79.5318 13 422.2350 23 105.9820 33 110.0000

4 83.9341 14 182.4522 24 27.0412 34 507.2215

5 97.0000 15 493.0717 25 86.7288 35 375.0000

6 132.8338 16 472.9907 26 59.1070 36 375.0000

7 300.0000 17 550.0000 27 190.0000 37 377.4806

8 300.0000 18 550.0000 28 114.2801 38 430.6044

9 228.9456 19 532.7167 29 104.5628 39 106.8364

10 284.9755 20 508.7328 30 126.7891 40 181.0801

Fuel cost($) 75502.17

FIGURE 9
Convergence of IBA and other six algorithms in test case 1 (unit 3).
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FIGURE 10
Convergence of IBA and other six algorithms in test case 2 (unit 13).

FIGURE 11
Convergence of IBA and other six algorithms in test case 3 (unit 40).
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equivalent and lower than the methods in the above literature

respectively. Among the 10 benchmark functions solved by IBA,

the results of three functions (F1, F3, and F8) reach the

theoretical optimal value, which is better than CBA, QBA,

PSOBA, WPBOA, MSCA, ISCA, and IISCA. The results of

the other seven functions that do not reach the theoretical

optimal value are significantly better than the results of the

compared algorithms, and are closer to the theoretical optimal

value. The Wilcoxon signed rank test is used to test IBA and the

methods in the literature. The results show that IBA is better than

most algorithms compared. Equally unsurprisingly, only IBA can

obtain optimal solutions or suboptimal solutions with the scale of

the problems. It can be seen that the improved IBA algorithm has

higher computation accuracy. In the case of statistical results, no

method is better than the proposed IBA. In order to more

intuitively express the convergence rate of IBA, Figure 7 and

Figure 8 show the convergence characteristic curves of the

average value of 30 independent tests of six functions. It can

be seen from the figure that five algorithms are very close on

some benchmark functions, which look like a curve. However,

the convergence curves of IBA are all located at the bottom of the

figure with the fastest convergence speed and the highest

calculation accuracy. It can be concluded that IBA algorithm

proposed in this paper is better than the algorithms in the

literature, which shows that IBA has strong optimization

ability. To sum up, it proves that IBA not only has high

precision, but strong stability.

4.2 Application to SED

Three power system cases considering the valve point effects

from the reference, that are as follows: 1) 3 units and power load

demand 850MW; 2) 13 units and power load demand 1800MW;

3) 40 units and power load demand 10500 MW. The details of the

three cases can be obtained from reference (Sinha et al., 2003; Niu

et al., 2014). All test data are from the literature published for fair

comparison. Furthermore, termination criteria max_FESs of 3-

unit, 13-unit, and 40-unit systems are respectively set to 100,

30000, and 60000.

The results of minimum, maximum, average cost and average

calculation time are shown in Table 5, Table 7 and Table 9. The

best results of three cases obtained by IBA are better than all other

algorithms. Even the maximum fuel costs of IBA is better than

the method in the literature. Although the computation time of

IBA is not as fast as other algorithms, its results are still

competitive. Table 6, Table 8, and Table 10 show the dispatch

of the best results obtained by IBA meeting all constraints.

Therefore, it can be concluded that IBA is effective to solve

the SED problem. Figure 9, Figure 10, and Figure 11 show the

convergence curves of IBA algorithm and other algorithms. It can

be seen that compared with other algorithms, IBA can jump out

of the local optimum and find the global optimum quickly. From

the above discussion, it is evident that the improved BA is

effective, for which the detailed reasons are listed as the

following: First, Random black hole strategy disables the

population to be gathered in the process of evolution to some

extent, which further improves the convergence of the IBA;

second, Gaussian mutation is adopted in IBA to increase its

ability of local search and to improve the quality of the solution.

In brief, IBA algorithm overcomes the poor local search

capability and the precocious phenomena of the traditional

BA, and also effectively improves the global search ability of

the BA.

5 Conclusion

This paper proposes an improved bat algorithm (IBA)

with random black hole strategy and Gaussian mutation.

Random black hole strategy can make the algorithm

converge quickly and increase the population diversity.

Gaussian mutation can improve the global search ability of

the IBA. Furthermore, IBA is tested on ten benchmark

functions compared with the algorithms from the literature.

The results show that the performance of IBA algorithm has

been improved significantly. Finally, the proposed IBA

method is used to solve three different scale of power

system problems, in which valve point effect and power

balance constraints are considered. The experimental

results show that for the SED problem with valve point

effect, IBA has better effect on the SED problem in terms

of fast convergence speed and high-quality solution. In

addition, the good performance of IBA also shows its

potential in solving large-scale optimization problems. To

sum up, it can be proved that IBA has achieved satisfactory

results on benchmark function and SED problem, and

provides a competitive alternative to solve nonlinear and

nonconvex optimization problems. Furthermore, the

combination of large-scale and renewable resources is also

a topic for future research.
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