
A secure edge power system
based on a Docker container

Xinchen Xu1,2, Yixin Jiang3,4, Hong Wen1,2*, Wenjing Hou1,2 and
Songlin Chen1,2

1School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,
Chengdu, China, 2Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of
Sichuan Province, Chengdu, Sichuan, China, 3Electric Power Research Institute, China Southern Power
Grid Co Ltd., Guangzhou, China, 4Guangdong Provincial Key Laboratory of Power System Network
Security, Guangzhou, China

Thanks to the advantages of low latency, high efficiency, and oneself-security,

the edge computing (EC) paradigm is expected to widely be applied in a large

number of scenarios. However, because EC equipment is closer to a wide

variety of terminals in a realistic environment, it is also more vulnerable to

terminal attacks. The security of edge computing equipment itself cannot be

ignored. Docker is a lightweight container technology that closely fits the

existing needs of edge computing for portability, security isolation, and

convenience. In this paper, Docker technology is taken as an edge

computing security support engine and a security monitoring system based

on the Docker container is built. In addition, combined with container

monitoring and objective weighting method, a node security judgment

method is proposed. Finally, according to the results of the node security

judgment, a method for evaluating the security of the unmonitored node is put

forward. Consequently, an edge computing security monitoring system based

on the Docker container is built, and its performance in the real environment of

a smart grid system is implemented to verify the proposed method. The results

prove the efficiency and security protection of the novel edge power system.

KEYWORDS

edge computing, Docker, container monitoring, security judgment, security
evaluation

1 Introduction

Edge computing refers to the technology of computing on the edge of a network. An edge

is defined as any computing and network resource node between the data source and data

center (Taleb et al., 2017). Edge computing has attracted extensive attention because of its low

delay, security, and lightweight (Song et al., 2021a) and it has been applied to smart cities, smart

grids, the Internet of vehicles, the Internet of Things, and many other fields (Liu et al., 2018).

However, edge computing also faces some security problems (Muñoz et al., 2018). At the

beginning of the development of edge computing, the idea of security first was put forward to

avoid the passive security remedy of “patching.” (ECC, 2016; ECC and AII, 2019). For

example, under industry Internet of Things (IIoT) scenarios, the introduction of more

information equipment in the industrial scene also indirectly introduces new security risks

OPEN ACCESS

EDITED BY

Ning Zhang,
University of Windsor, Canada

REVIEWED BY

Gaurav Dhiman,
Government Bikram College of
Commerce Patiala (Punjab), India
Richd Liruo,
freedom mobile Inc., Canada
Shichao Lv,
Institute of Information
Engineering(CAS), China

*CORRESPONDENCE

Hong Wen,
sunlike@uestc.edu.cn

SPECIALTY SECTION

This article was submitted to
Smart Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 22 June 2022
ACCEPTED 11 August 2022
PUBLISHED 09 September 2022

CITATION

Xu X, Jiang Y, Wen H, HouW and Chen S
(2022), A secure edge power system
based on a Docker container.
Front. Energy Res. 10:975753.
doi: 10.3389/fenrg.2022.975753

COPYRIGHT

© 2022 Xu, Jiang, Wen, Hou and Chen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Technology and Code
PUBLISHED 09 September 2022
DOI 10.3389/fenrg.2022.975753

https://www.frontiersin.org/articles/10.3389/fenrg.2022.975753/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.975753/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.975753&domain=pdf&date_stamp=2022-09-09
mailto:sunlike@uestc.edu.cn
https://doi.org/10.3389/fenrg.2022.975753
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.975753

and provides new attack methods for criminals (AII, 2018). Edge

computing devices are also vulnerable to terminal attacks because

they are close to the terminal (Neshenko et al., 2019). In particular,

edge computing faces multiple attacks, such as multiple terminal

access, heterogeneous data storage (Kushida and Pingali, 2014), and

different application running programs, which requires edge

computing devices to provide various forms of security

protection for the terminal data and applications running on

them (Song et al., 2021b); for example, secure transmission

protection, terminal access authentication, data storage,

application protection on edge devices, and so on (Song et al.,

2022). All of these security protection issues need a secure edge

computing support engine.

Docker technology is a container technology that is based on the

concept of a “sandbox,” which has the advantages of lightweight,

convenience, and security isolation (Reis et al., 2022). It first

appeared in 2013 as an open-source cloud project that was

based on the Go language implemented by GitHub. The main

workflow of Docker is shown in Figure 1. According to the user’s

requirements, the Docker registry distributes the Docker image to

the local host (Zhao et al., 2021). The local host then builds Docker

containers of different systems through kernel reuse based on the

“sandbox” mechanism (Liu et al., 2020). Docker’s kernel reuse

function provides a unified operation specification for multiple

operating systems and applications developed in different

languages. Different programs can run on any host installed with

the Docker engine, requiring only the unifiedDocker encapsulation.

By encapsulating the environment and packaging dependently,

multiple independent system container environments can be

provided on a single operating system (Rabay’a et al., 2019).

Docker uses Linux underlying functions (e.g., the Namespace

component and Control groups component) to isolate

containers, processes, and systems from each other, which is the

best counterpart of the EC security requirement (Yadav et al., 2018).

The lightweight, security, and isolation advantages of the

Docker have led to a large number of research efforts (Cai et al.,

2019). For example, an emergency communication system

response to natural disasters has been established using

Docker and Rsync utility, making use of the lightweight and

rapid deployment characteristics of Docker to reduce the use of

system resources (Kumar Pentyala et al., 2017). Agarwal (2022)

designed a user-friendly interface for inspecting, interacting with,

and managing Docker objects, such as containers and Docker

Compose-based applications to quickly install a fusion

experiment data storage and management system (JCDB). Liu

et al. (2018) used Docker to automatically deploy standardized

cloud databases and Web applications. Docker’s image

deployment function has also been studied. For example, Smet

et al. (2018) proposed an on-demand deployment scheme using

the Docker platform to realize the optimal allocation of resources

under the micro service architecture. Meanwhile, Kwon and Lee

(2020) designed a Docker Image Vulnerability Diagnostic System

(DIVDS) for a reliable Docker environment in their article. This

system can diagnose uploading or downloading Docker images

to judge security. Abhishek and Rajeswara (2021). focus on the

security of the Docker container and proposed a framework that

uses an architecture including plugins, and a CI/CD pipeline to

deploy the application to ensure the security of the application

bundled as a Docker image. Şengül (2021) focused on the Docker

container and the security issues of the Docker reuse host kernel,

FIGURE 1
The workflow of Docker.

Frontiers in Energy Research frontiersin.org02

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

and proposed a method including static and dynamic analysis to

ensure Docker image and container security. Rahmansyah et al.

(2021) focused on the security of the Docker daemon. and found

a way to reduce the Docker daemon attack surface by using

rootless mode.

The Docker container on the host node in the edge

computing model still lacks a comprehensive assessment. The

application of Docker technology also faces some problems. First,

can we find a way to make full use of the security of Docker

container with low consumption? Second, when Docker is

applied to nodes as a security engine, can developers judge

the security of host nodes through the security of Docker

containers? Finally, when some nodes in the edge network

deploy Docker containers, how can we evaluate the security of

other nodes without Docker containers? To solve these three

problems, this article first provides a paradigm for Docker

application under edge computing and designs a three-layer

container monitoring model based on container monitoring

software to improve the security performance of Docker.

Based on the results of the Docker container monitoring

model, we propose a novel scheme to judge node security

with the objective weighting method. Finally, based on the

idea of community division and PageRank algorithm, a new

security evaluation scheme for those nodes without monitoring is

proposed.

The rest of this paper is organized as follows. Section 2

proposes an application paradigm of Docker container under the

edge computing model and the three-layer monitoring model.

The security judgment scheme of the monitored nodes is

introduced in Section 3. Section 4 provides a security

evaluation scheme for the unmonitored nodes. Experiments

and results are presented in Section 5. Finally, Section 6

concludes this paper.

2 System model

This study presents an application paradigm of the Docker

container under the edge computing model. As shown in

Figure 2, the model’s architecture is divided into three

layers: cloud, edge, and terminal. The cloud server has

cloud computing, data storage, resource sharing, and other

functions to interact with edge computing devices and issue

control instructions (Vaishnav, 2021). The Docker container

can be regarded as the “security support engine” of the

operating system. Databases, control programs, and other

applications on edge computing devices can be run in

isolation by Dockers. The user’s programs on terminal

devices are also isolated using Docker containers to ensure

their security. At the same time, the model needs to build an

external private Docker container image registry. The registry

issues different images according to the needs of edge

computing devices and the user’s need to build Docker

containers with different functions.

FIGURE 2
The edge computing model based on Docker.

Frontiers in Energy Research frontiersin.org03

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

A Docker container has certain security risks. Therefore,

this article uses the container security monitoring software

Prometheus to monitor the running states of the Docker

container and judge its security. Although the container

monitoring system cannot fundamentally solve the risk of a

Docker container based on the Linux system, the monitoring

software can monitor the operation status of the container in

real-time and give a risk alarm to the container with abnormal

operation according to the specified method (Zou et al., 2022).

This provides a certain degree of security enhancement for a

Docker container. We will next introduce the Prometheus

monitoring software.

Prometheus is an open-source project that was developed

in the Go language. Its working principle is to read the status

of monitoring components and display them visually. The

workflow of Prometheus is shown in Figure 3. Prometheus

can capture the status of monitored components through

HTTP protocol. Prometheus has high scalability because it

can connect external components through HTTP. It also has

many other advantages, including support for flexible query

language, single node works independently, data can be

stored in a time series database, and it has support for

chart visualization interface configuration. The specific

workflow of Prometheus is shown in Figure 3. Prometheus

includes five core components, as follows: Server, Exporter,

Alertmanager, Pushgateway, and Web UI. The main function

of the Server component is to collect and store monitoring

data. The data collected by Server component can also be

queried through PromQL database language; The

Alertmanager component is used to realize the alarm

function. The user determines the monitoring threshold of

the container or host by modifying the underlying YML file.

When a monitoring indicator exceeds the threshold set in the

alarm rules, the user can send alarm information to the

monitor by email or other means. Pushgateway is used to

collect the data cache of temporary nodes. When some nodes

do not exist for a long time, the Prometheus server cannot

grab the data. Pushgateway can push the indicators to the

gateway for cache and upload them together when other

indicators are collected. The main function of the

Exporters is to report monitoring data to the server

component.

To improve the security of the edge computing model when

Docker is applied to the edge computing model, we designed a

three-layer container monitoring model based on the container

monitoring software Prometheus. The architecture of the edge

computing model can mainly be divided into three layers: cloud

layer, edge computing layer, and terminal layer. Thus, the

deployment of the monitoring system under edge computing

should also be divided into three layers according to the

architecture of the edge computing system. Specifically, it is

realized through three parts: cloud monitoring, edge self-

monitoring, and edge self-monitoring. According to the

traditional node monitoring system and edge computing

network system architecture, this paper constructs a three-tier

container risk monitoring model from cloud to edge and then to

user, as shown in Figure 4.

As the general control unit of the monitoring model,

Prometheus software should be deployed on the cloud server

to monitor the edge computing node and collect the real-time

monitoring data of the Docker container on the edge computing

node. For Docker containers with abnormal monitoring

indicators, the cloud server needs to take corresponding

response measures (e.g., temporarily stopping the cloud

service until the container indicators return to normal). For a

container with an abnormal time that is too long or with too

many alarms, the cloud can determine that the container is in a

risk state, issue an instruction to delete the container, and then

pull the image from the private Docker image registry to recreate

the container.

FIGURE 3
The workflow of the Prometheus.

Frontiers in Energy Research frontiersin.org04

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

After the Prometheus software is deployed on the cloud server, it

integrates the functions of the master, DB/Hbase and analyzer.

Prometheus software can realize the visual data display function of

the web module by connecting with Grafana software. Prometheus

software completes the task that the master module sends

monitoring items from the cloud to the edge node through the

Prometheus server component, pulls the monitoring indicator

information of the edge node and passes it to the Pushgateway

component, and then generates the data format that Prometheus

software can recognize and display. The Prometheus server

component stores the data and completes the data storage of

DB/HBase module. The administrator configures the monitoring

rules by configuring the YML file of the Prometheus monitoring

software to build the monitoring model, configure the monitoring

indicators of the Alertmanager component to realize the alarm

function, and complete the alarm analysis of the analyzer module.

The edge computing node needs to upload its own container

monitoring indicators upward and collect client container

monitoring data downward. At the same time, the edge

computing node also needs to have certain management

authority over the container. When the cloud sends an

instruction, the edge computing node should stop adding and

deleting the container according to the command sent by the

cloud. The total function of the edge side is divided into two

parts: providing monitoring data to the cloud andmonitoring the

terminal container.

3 Security judgment scheme of the
monitored node

After deploying the Docker and Prometheus software on the

node of edge computing system, new problems have emerged. In

particular, how should developers use Docker monitoring data to

judge the running state of the container and then judge the

security of the node? In this section, a novel security judgment

scheme of monitoring nodes based on the K-means clustering

algorithm and objective weighting method are proposed. The

basic theory used in the scheme will be introduced in Section 3.1.

The specific steps of the new scheme will be described in

Section 3.2.

3.1 Theory

3.1.1 K-means
The K-means algorithm is used to determine the monitoring

indicator threshold in this method. It is a kind of unsupervised

learning algorithm that is commonly used in machine learning.

The principle is to select a division method to make the similarity

between clusters as small as possible and the similarity of nodes

within clusters as large as possible through a given sample set and

clusters to be divided (Esteves et al., 2013). Under a given data

sample set

FIGURE 4
The architecture of three-layer container monitoring model.

Frontiers in Energy Research frontiersin.org05

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

C � {X1, X2, . . . , Xj, . . . ;Xj � (xj1, xj2, . . . , xjd)ϵRd}, Xj

represents a sample value, usually in the form of a vector.

Partition clustering divides the data into K clusters. Cluster

partition needs to meet the following conditions:⎧⎪⎨⎪⎩ C � {C1, C2, . . . , Ck};K≤N
Ci ≠∅; i � 1, 2, . . . , K

Ci ∩ Cj � ∅; i, j � 1, 2, . . . , K, i ≠ j
(1)

Euclidean distance is usually used as an indicator to measure

the similarity between data nodes. The calculation formula of

Euclidean distance is as follows:

d(x, Ci) �
�������������∑m

j�1(xi − Cii)2
√

(2)

where x is the data sample,m is the dimension of the sample data,

Ci is the i-th cluster center, and Cij is the value of the j-th

dimension of the i-th cluster center. The algorithm initially

selects a cluster center, it then computes the Euclidean

distance between each node and the cluster center, judges the

data closest to the cluster center, and divides it into the same

cluster (Kumar and Dhiman., 2021). Afterward it calculates the

average value of all data in the same cluster and takes it as a new

cluster center, and continuously iterates the above steps to update

the position of the cluster center to reduce the error square sum

SSE of the cluster (Chatterjee, 2021). The computing formula of

the sum of squares of errors in the cluster SSE is as follows:

SSE � ∑
x∈Ci

|d(x, Ci)|2 (3)

After each iteration, judging whether the clustering center

remains unchanged or whether the maximum number of

iterations is reached. When these conditions are met, the

algorithm is terminated.

3.1.2 Objective weighting method
3.1.2.1 Entropy weight method

Entropy is a physical quantity that is used to describe the

degree of chaos within a system. The greater the entropy, the

higher the degree of chaos; and the smaller the entropy, the lower

the degree of chaos. The basic idea of the entropy weight method

is to put the indicator into a system and determine the objective

weight according to the possibility of indicator variation (Jiang

et al., 2019). The principle is to determine the weight that should

be given to the indicators through the entropy value between the

indicators. When the entropy value between the indicators is

greater, it proves that the degree of confusion of the indicators is

higher, more information is provided, and the weight should also

be greater. In contrast, if the entropy value is smaller, it proves

that the degree of confusion between indicators is not high, the

degree of similarity between indicators is greater, and the weight

should be smaller. The specific steps are as follows:

Standardize the indicator data matrix α and get the matrix β.
αij represents the elements in matrix and min(αi) represents the

minimum value of each column in matrix α. The computing

formula of elements in the matrix is as follows:

βij �
αij −min(αi)

max(αi) −min(αi) (4)

Compute the information entropy of each indicator. The

information entropy of the j-th indicator is expressed in Ej. The

calculation formula is as follows. In Eq. 5, pij � βij∑n

i�1βij
, if

pij � 0, lim
pij

→ 0

pij ln(pij) � 0.

Ej � − 1
ln(n)∑n

i�1pij ln(pij) (5)

Compute the weight of each indicator by entropy, the weight

of i-th is represented by Wi, the Eq. 6 illustrates the computing

method of the weight.

Wi � 1 − Ei

k −∑Ei
(i � 1, 2, . . . , k) (6)

3.1.2.2 Critic method

The Critic method comprehensively measures the objective

weight of indicators based on the contrast strength of evaluation

indicators and the conflict between indicators (Khorramabadi

and Bakhshai, 2015). The weighting factors of the Critic method

are mainly divided into two aspects: the variability between

indicators and the correlation between indicators.

The variability between indicators is usually expressed in the

form of standard deviation. The larger the standard deviation, the

greater the fluctuation; that is, the greater the value difference

between schemes, the higher the weight will be. The correlation

between indicators is reflected through the correlation

coefficient. If there is a strong positive correlation between the

two indicators, then it shows that they have less conflict and

lower weight. For the Critic method, when the standard deviation

is fixed, the greater the correlation between indicators, the

smaller the weight. The smaller the correlation, the greater the

weight. When the degree of positive correlation between the two

indicators is greater, the correlation coefficient is closer to 1. This

indicates that the information characteristics embodied by the

two indicators have great similarities. The specific steps are as

follows:

The matrix β indicates that the elements in the matrix are

represented by βij. If the indicator is a positive indicator, then the

expected value of the indicator of the indicator is bigger. The

calculation is as follows:

βij �
αij −min(αi)

max(αi) −min(αi) (7)

If the indicator is a reverse indicator (i.e., the expected value

of the indicator is smaller), then the calculation is as follows:

βij �
max(αi) − αij

max(αi) −min(αi) (8)

Frontiers in Energy Research frontiersin.org06

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

The indicator variability is also reflected in the form of

standard deviation. the mean value of the de dimensioned

indicator is computed by

�β � 1
n
∑n

i�1βij (9)

The computing way of standard deviation follows:

θj �

��������������∑n

i�1(βij − βj)2

√√
(10)

The indicator conflict is reflected in the form of correlation

coefficient, and Rj represents the indicator conflict. The

computing way is shown as

Rj � ∑k

i�1(1 − rij) (11)

Here, rij represents the correlation coefficient between indicator i

and indicator j, and the computing way is shown as

rij �
∑n

i�1(βi − βi)(βj − βj)
θi × θj

(12)

Amount of information is represented by Cj, and the

computing way is shown as

Cj � θj × Rj (13)

Finally, according to the amount of information, the weight is

computed by

Wj � Cj∑k
i�1Ci

(14)

3.2 Proposed scheme for node security
judgment through monitoring model

In this subsection, we have proposed a novel scheme of node

security judgment through the monitoring model. The

monitoring model described in Section 2 is based on the

Docker container. All of the applications on the node are

encapsulated in containers, and containers are monitored by

the Prometheus software. Therefore, the security of nodes can be

judgment indirectly by the security of containers. The next part

will present the details of the novel scheme, and the specific steps

are shown in Figure 5.

First, select the edge nodes as the monitoring node setXE and

terminal nodes set XT under the edge computing network. The

terminal node set XT includes n monitored nodes and m

unmonitored nodes. The monitored node set is represented by

FIGURE 5
The security judgment scheme of the monitored node.

Frontiers in Energy Research frontiersin.org07

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

XA, the unmonitored node set is represented by XB. The

relationship among the three sets is XT � XA ∪ XB. The

Docker container is deployed on the selected monitored node

set XA as the security support engine, and the Prometheus

monitoring software is deployed on the monitoring node set

XE to collect the monitoring information of the container on the

monitored node set XA.

Second, collect the monitoring indicators of the monitored

node set XA. Each container collects k indicators. Assuming that

there are i containers on each node, each node totally collects

i × k indicators. In the monitored node set XA, the monitoring

indicators of the j-th node are shown as follows:

A1
j � [j11, j12, . . . , j1k]T

A2
j � [j21, j22, . . . , j2k]T

:
Ai

j � [ji1, ji2, . . . , jik]T (15)

where j � 1, 2, . . . , n, Ai
j represents the whole monitoring

indicator of the i-th Docker container on the j-th node. jik in Ai
j

indicates k-th monitoring indicator of the i-th Docker container

on the j-th node.

Third, according to the time ratio 1:1, setting the operation

status of the container to normal operation and abnormal

operation, respectively. Then, collect data of the j-th node in

the monitored node set to get the sample set of container

operation indicators D � (d1, d2, . . . , dn). Select a division D �
D1 ∪ D2 ∪ . . .Dk so that Di ∩ Dj � ∅, i, j ∈ [1, k]. After that,

take D1 as the testing set and D2, D3, . . . , Dk as the training set.

Set the cluster result of parameter classification as 2, the

maximum number of iterations as N, and selecting two data

points in the sample set as the cluster center. K-means algorithm

is used for dichotomous classification. Taking D1 to Dk as test

sets, respectively, the lower bound of the risk indicator

σ1, σ2, . . . , σk is obtained by clustering. The average value �σ

of σ1, σ2, . . . , σk is used as the monitoring threshold. The

monitoring threshold value of each container follows

�σ(A1
j) � [�σ11, �σ12, . . . , �σ1k]T�σ(A2

j) � [�σ21, �σ22, . . . , �σ2k]T :
�σ(Ai

j) � [�σ i1, �σ i2, . . . , �σ ik]T
(16)

where j � 1, 2, . . . , n, �σ(Ai
j) represents monitoring indicator

threshold of the i-th Docker container on the j-th node. �σ ik
indicates the k-th monitoring indicator threshold of the i-th

Docker container.

Fourth, configure the alarm rules of Prometheus monitoring

software. When any indicator of any container in the node

exceeds the threshold, the Prometheus client on the edge

monitoring node sends an alarm email to the specified

mailbox. Count the number of indicator alarm messages

received by all nodes in the specified mailbox within a certain

time. αij represents the number of alarmmessages received by the

j-th indicator of the i-th node. The total number of alarm

messages can be expressed in the following matrix:

α � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ α11 / α1n
..
.

1 ..
.

αk1 / αkn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

Fifth, the objective weightingmethod is used to give weight to

each indicator. The objective weighting methods that we used

include entropy weight method and Critic method. Score the

node according to the weight, which will be computed by Eq. 18:

Si � 100 × ∑n

j�1Wj × Pij (18)

whereWj is the weight value of the j-th indicator, Pij is the ratio

of the i-th sample to all samples of the j-th indicator. By setting

the safety label division value, the score is divided into multiple

segments, and the safety label information is added accordingly.

4 Security evaluation scheme of an
unmonitored node

In edge computing networks, there may be some nodes that

do not install the Docker engine and monitoring model. In this

section, we provide a novel scheme based on the ideas of

community detection and PageRank algorithm to evaluate the

security of unmonitored nodes, which will predict the security

state of the unmonitored nodes by taking advantages of the

Docker nodes. The basic theory including the community

detecting and the PageRank algorithm will be introduced in

Section 4.1. Section 4.2 will illustrate the specific steps of the

novel method.

4.1 Theory

4.1.1 Community detection
The community detecting algorithm is a segmentation

algorithm that is based on the graph model (Yang and Cao,

2022). Its basic purpose is to divide the nodes in the graph model

into several communities, so that there is a closer connection

between the nodes in the community (Hu et al., 2020). In this

paper, the community detecting algorithm is used to segment the

graph model and determine the security label of each node. We

chose four classical algorithms—LPA, SLPA, Louvain, and

GN—to divide the community and we then compared their

division result through modularity.

LPA and SLPA algorithms are community detecting

algorithms that are based on the label propagation (Li et al.,

2015). The basic principle of LPA is that according to the

connection relationship between nodes in the graph model,

the labels of each node are diffused to the whole graph to

obtain stable results, and the nodes with the same label are

divided into the same community (Ravi Kiran, 2011). Compared

with LPA, SLPA is different in that it introduces the strategies of

Frontiers in Energy Research frontiersin.org08

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

the listener and speaker. The speaker node sends label

information to each listener node connected to the speaker

node according to a certain propagation method (Gupta,

2022). The listener node that receives the label selects the

transferring label of each speaker node according to a certain

receiving method.

In contrast from the label propagation idea of the LPA and

SLPA algorithm, the Louvain algorithm is designed based on

modularity Q. It regards each node as a community, and merges

each node and its adjacent nodes into a new community. It then

iterates until modularity is stable. Modularity is the evaluation

index used to measure the advantages and disadvantages of

community division. It is the first evaluation index to measure

the quality of community division results (Su and Havens, 2015).

This index is mainly used to measure the results of community

division in the undirected graph without weight. The calculation

method of modularity Q is given as follows:

Suppose that the graph model is divided into k communities,

then define a k × k Matrix e, and the element eij in the matrix

represents the proportion of the number of edges connecting the

i-th community and the j-th community in the total number of

edges. The trace of matrix e represents the set of edges between

nodes in the same community, which is calculated by

Tre � ∑
i
eii. (19)

The trace of the matrix alone cannot fully reflect the

community structure because when the graph model is

divided into only one community, the trace of the matrix is 1.

Therefore, a new value ai is defined to represent the proportion of

the number of edges connected to the i-th community in the total

number of edges. The computing method of ai follows:

ai � ∑
j
eij. (20)

According to the above two definitions, the computing

method of modularity Q is given as:

Q � ∑
i
(eii − a2i). (21)

The GN algorithm is a community that is based on discovery

method based on modularity and betweenness of the edge.

Assume that the community division of the graph has been

obtained. We can regard that there are fewer edges between

communities and more edges within communities. The idea of

the GN algorithm is to remove edges between communities

(Shukla, 2022b). The concept of edge-betweenness is proposed

to describe the “importance” of edges. The betweenness of the

edge is defined as the number of the shortest paths through this

edge in the graph. The GN algorithm removes the edge with the

largest edge-betweenness in each iteration until the modularity

reaches a local peak value.

The workflow of the GN algorithm is shown in Figure 6. First,

input the graph structure and the number of nodes. We then set

the initial modularity Q0. Then, count the betweenness of each

edge in the graph. Afterward, remove the edge with the largest

betweenness to form a new graph. For the new graph, compute

themodularityQi after i-th iteration. The next step is to minimize

the modularity of the graph. The GN algorithm compares the

modularity Qi of the new graph with the initial modularity Q0.

After that, judge whether the modularity Qi of the new graph is

locally optimal. If Qi ≤Q0, then terminate the algorithm and

output the community division result. If Qi >Q0, then set Q0 �
Qi and turning back to step 2. Compute the betweenness and

removing the edge with the largest betweenness to update the

graph by the iteration. Terminate the algorithm until the

modularity Qi reaches the local optimization. It must be noted

that the termination condition of the algorithm is not necessary

to make the modularity Qi locally optimal. Although we

introduced one of the termination conditions, the termination

of the algorithm changes according to the actual situation.

4.1.2 PageRank algorithm
The PageRank algorithm is an algorithm for Google Web

page recommendation, which was first proposed by Google

founder Larry Page. Based on the idea of the random walk,

the algorithm evaluates the relevance and importance of web

pages according to the user’s access records (Sharma et al.,

FIGURE 6
The workflow of the GN algorithm.

Frontiers in Energy Research frontiersin.org09

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

2022a). By using the connectivity between web pages to judge the

importance of web pages, the correlation is quantified as a PR

value and an optimal solution is obtained through continuous

iteration (Hao, 2015). The specific steps of the algorithm are

described as follows:

Step 1. First, initialize the same PR value for each node.

Generally, the access probability is used as the PR value of the

node; that is, the initial PR value of each node is 1 /

N, and N is

the number of all nodes in the community. To make the PR

value of the two iterations fully close and the output of the

algorithm tend to be stable, we set the parameter ϵ0. When the

error of two iterations is smaller than ϵ0, the algorithm is

terminated.

Step 2. Suppose that the user starts from a node and

randomly selects a node connected to the current node as the

next access node. Each node distributes the currently accessed PR

value to all nodes that the node may access, and updates its own

PR value through the PR value transmitted by other nodes. The

update method is shown as follows:

PR(x) � 1 − α

N
+ α∑n

i�1
PR(Ti)
C(Ti) , (22)

whereN is the total number of all nodes, node Ti belongs to one

of all nodes to which node x is connected, and C(Ti) represents
the number of all nodes to which node Ti can connect, α is the

damping coefficient.

Step 3. Repeat Step 2 until the error satisfies the condition

ϵ< ϵ0. Obtain the possible access probability of each node and

output the results.

ϵ � |Pn+1 − Pn|. (23)

4.2 Scheme for node security evaluation
without monitoring

In this subsection, we propose a new security evaluation

scheme for unmonitored terminal nodes in the edge computing

scenario. In an edge computing network, not all nodes can use

Docker as a security engine. Some nodes with Docker container

can judge the security through monitoring model, while others

are not monitored. Therefore, a new scheme based on the graph

to evaluate the security of unmonitored nodes through the

security of monitored nodes is proposed. The novel method

will be illustrated in detail, and the specific steps are shown in

Figure 7.

According to the proposed security judgment method of the

monitored node described in Section 3, we collect the monitoring

indicators of each container on the node and label the node with

security label. If the node is monitored by container technology,

then we can label the node by its security level. Otherwise, the

unmonitored node is labeled with label 0. Based on the

connection relationship of each node, the Neo4j software is

used to establish the graph model and generate the adjacency

matrix and adjacency table.

The adjacency table is used as the input data set of the

community detecting algorithm. Four algorithms are used to

divide the community. We calculate and compare the average of

the community partition results of each algorithm. The

modularity of the Louvain algorithm is represented by QLv

and the modularity of the GN algorithm is represented by

QGN. The LPA and the SLPA algorithm will lead to multiple

results. We use the statistics the probability of each classification

result and weighted average the modularity of each result. Pi
L and

Pi
S represent the probability of each result of the LPA and SLPA,

respectively. The modularity of each division of each of the

results of the LPA and SLPA are indicated by Qi
L and Qi

S,

respectively. The computing method of the total modularity of

the LPA algorithm and SLPA algorithm follows:

QL � ∑a

i�1P
i
L × Qi

L (24)
QS � ∑b

i�1P
i
S × Qi

S (25)

The purpose of community division is to divide nodes with

stronger relevance into the same community. We compared the

community partition results of four algorithms by modularity.

After the algorithm results with better classification are obtained,

we chose the unmonitored node as the initial node and used the

PageRank algorithm to predict the access probability of initial

node to the other monitored nodes. If the initial node has higher

probability to access the node with high-risk label, then it is

evaluated to be higher risk. If it has higher probability to access

the node with low-risk label, then it is predicted to be lower risk.

The probability of accessing high-risk label nodes is represented

by Ph, the probability of accessing medium-risk label nodes is Pm,

and the probability of accessing low-risk label nodes is

represented by Pl.

5 Experimental results

We set up the experiment under the power system to verify

the effectiveness and feasibility of the proposed novel scheme. In

the power system, the container monitoring model were

deployed in two different real scenarios, including smart

energy system and relay protection system. The Docker

technology was used as the security engine in the different

systems. All of the applications in the server were

encapsulated in the Docker container. They were run in

isolation from each other to ensure their own safety. The

power edge board can be used to collect and process meter

data, and has certain computing power. We installed the Docker

engine on it. We used three Windows desktop computers as the

monitoring node set XE � {A13, A14, A15}, and 12 power edge

boards are used to simulate terminal node setXT, which includes

nine monitored nodes and three unmonitored nodes. Nine

Frontiers in Energy Research frontiersin.org10

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

monitored nodes to form a set of monitored nodes

XA � {A1, A2, A3 . . .A9}. Three unmonitored nodes constitute

a set of unmonitored nodes XB � {A10, A11, A12}. The Docker

engine and Cadvisor software were installed on the set of

monitored nodes XA. Each node deploys 1 Docker container.

The Prometheus server collects the Docker container running

data from the container on monitored nodes. In addition, we

construct a private Docker registry to ensure the security of the

Docker image. The specific steps of the configuration follow:

The configuration of the Docker environment consists of two

parts: the installation of Docker engine on the host and the

establishment of the Docker private image registry. Docker

technology can be regarded as a lightweight virtual machine

technology, which is also implemented through the Linux

container function. The prerequisite for installing Docker on

the Windows system is that the system must support Hyper-V

virtualization. Docker officially released the Docker for desktop

version under the Windows system (the installation can be

directly downloaded from the Docker official website https://

www.Docker.com). After successful installation, add the Docker

installation directory to the path environment variable, restart

the computer, and click the desktop Docker icon to run Docker.

The Docker private image registry needs to be established in

the monitoring model. We will next describe how to establish a

private Docker image registry and upload the compiled image.

Users can use the browser to access http://localhost:5000/v2/_

catalog to view the new image uploaded to the private Docker

image registry. The specific steps are as follows:

• Enter the Docker command “Docker pull registry” in the

command line to download the registry image from

Dockerhub;

• Enter “Docker run—it registry bin/bash,” create containers

by registry images, and build private Docker image

registry;

• Create a new container using the existing Docker image;

• Compile the Docker private image, enter the command

“Docker commit container ID + image name” to compile

the Docker container into a new image;

• Enter “Docker tag + image name + 127.0.0.1:5000/+ image

name” to label the new image;

• Enter “Docker pull + 127.0.0.1:5000/+ image name” to

upload the Docker image to the private Docker image

registry.

The Prometheus software of the edge node is configured with

Docker container monitoring indicators. In this experiment, a

total of five container monitoring indicators are selected

(i.e., CPU occupancy, memory occupancy, input flow, output

flow and block read flow). When one or more indicators exceed

the threshold, Prometheus software sends an alarm email to the

specified mailbox. Prometheus is connected with Grafana in the

FIGURE 7
The workflow of security evaluation method of the unmonitored node.

Frontiers in Energy Research frontiersin.org11

Xu et al. 10.3389/fenrg.2022.975753

https://www.Docker.com
https://www.Docker.com
http://localhost:5000/v2/_catalog
http://localhost:5000/v2/_catalog
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

form of HTTP to visually display the monitoring indicators. The

specific operation is as follows:

First, enter the Docker command “Docker pull Google/

cadvisor” to pull the Docker image of the Cadvisor from the

Docker official image registry. Next, create a new container by

this image to run the Cadvisor component. Users can login to the

http://localhost:8080/ port to view the monitoring indicators

collected by Cadvisor.

Install the Prometheus software on the monitoring node setXE.

The Cadvisor component exposes the monitoring indicators to

Prometheus monitoring software through HTTP connection, and

configures container monitoring and alarm rules. Additionally, the

alarm module is realized through the Alertmanager component

under Prometheus and the alarm rule is set to use email alarm. Users

can configure the YML file to set receiving mailbox and alarm mail

type. The Grafana component finally is used to achieve the visual

display. The user enters the Docker command “Docker pull grafana/

grafana” to download the Grafana image and create a Docker

container by this image. The visual interface can be viewed by

logging into the website at http://localhost:3000.

Each monitored node includes five monitoring indicators, the

monitoring indicators of the container on the j-th node are

expressed as A1
j � [j11, j12, j13, j14, j15]T, j ∈ [1, 9]. The Prometheus

server collects five Docker container running indicators from the

container on themonitored node every second.We set the container

to normal state and abnormal state respectively, andmake them run

for 5 min in both states to collect a total of 600 pieces of data. Repeat

the operation for 10 times to get 10 monitoring data sets. Afterward,

the K-means algorithm is used to divide the data into two categories

by setting K � 2. We take the average value of the lower bound of

abnormal data in 10 classifications �σ � [�σ11, �σ12, �σ13, �σ14, �σ15]T as the

monitoring threshold, where �σ11 represents the first monitoring

indicator of the first container, �σ12 represents the second

monitoring indicator of the first container and so on. The

Docker container monitoring indicator threshold is shown in

Table 1. Configure the Prometheus alarm rules of the edge node

according to the monitoring threshold �σ. When the monitoring

value is bigger than the operation indicator threshold, the

Prometheus client sends an alarm email to the specified mailbox.

5.1 Security results of a monitored node

After deploying the monitoring model, we proposed a novel

scheme to judge the security of monitored nodes in the terminal

node setXT. In this experiment, the terminal node is achieved by

the power edge board. By counting the number of alarm emails

received by nine monitored nodes within 24 h, we get a 9 × 5

matrix α, where αij indicates the number of alarm messages

received by the i-th indicator of the j-th node. From left-hand to

right-hand, each row of the matrix indicates CPU alarm times,

memory alarm times, input network traffic alarm times, output

network traffic alarm times and block read traffic alarm times.

The entropy weight method and the Critic method are used to

weigh and score each monitoring indicator. The scoring value is

divided into three segments, based on which three security levels

of nodes are given, and the label collection of nine monitored

nodes is obtained.

Configuring the monitoring rule according to monitoring

threshold, and the result matrix α is obtained by counting the

number of Prometheus sends alarm emails, as shown below. αij
represents the j-th monitoring indicator of the i-th node.

α �

⎡⎢⎢⎢⎣

3 0 1 1 0
0 1 1 2 0
1 1 0 0 1
1 1 3 0 0
1 0 4 0 0
0 1 0 1 2
0 1 0 0 1
0 0 0 0 1
1 0 0 2 0

⎤⎥⎥⎥⎦
(26)

Before weighting the indicator, the matrix α carries out

standardization processing to obtain the data standardization

matrix β, which is shown as

β �

⎡⎢⎢⎢⎣

0.9960 0.0020 0.2505 0.4990 0.0020
0.0020 0.9960 0.2505 0.9960 0.0020
0.3333 0.9960 0.0020 0.0020 0.4990
0.3333 0.9960 0.7475 0.0020 0.0020
0.3333 0.0020 0.9960 0.0020 0.0020
0.0020 0.9960 0.0020 0.4990 0.9960
0.0020 0.9960 0.0020 0.0020 0.4990
0.0020 0.0020 0.0020 0.0020 0.4990
0.3333 0.0020 0.0020 0.0020 0.0020

⎤⎥⎥⎥⎦
(27)

The entropy method and the Critic method are used to weigh

the result matrix α and the weight of each indicator is computed,

as shown in Table 2. The classification principle follows the

principle that the higher the weighted value, the higher the risk of

nodes. In the weighting results of the entropy method, the weight

of output flow and input flow is the largest. This indicates that the

information entropy of these two indicators is smaller and the

TABLE 1 Docker container monitoring indicator threshold.

Monitoring indicator CPU usage
(%)

Memory usage
(%)

Input flow
(MB)

Output flow
(MB)

Block read
flow (GB)

Threshold 45.87 17.18 15.71 3.68 9.60

Frontiers in Energy Research frontiersin.org12

Xu et al. 10.3389/fenrg.2022.975753

http://localhost:8080/
http://localhost:3000
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

degree of information variation is the highest, which is more

important in the overall evaluation system. The weight value of

the memory indicator is the smallest. This indicates that the

indicator has greater information entropy and a low degree of

information variation, which is the least important in the overall

evaluation system. Among the weighting results of the Critic

method, the weight of memory occupancy rate is the largest. This

indicates that the correlation between indicator memory

occupancy rate and other indicators is lower. The weight of

CPU occupancy is the smallest. This indicates that the correlation

between CPU occupancy and other indicators is higher. The two

weighting methods are basically consistent in the weighting of

indicator CPU occupancy and indicator block device reading. In

terms of indicator memory occupancy, the weight given by the

entropy method is far less than that given by the Critic method.

In terms of input and output flow, the weight given by the

entropy method is slightly higher than that given by the Critic

method.

The scoring results of each monitored node in XA are shown

in Figure 8. Using the same threshold division and comparing the

scoring results of the entropy weight method and the Critic

method, it can be regarded that the results are basically the same.

The scoring results of node A8 and node A9 are small, which

means they are in a low-risk state. The scoring results of nodes

A1, A2 and A6 are in a high-risk state. Intermediate node A3,

node A4 and node A5 can be determined to be in a medium-risk

state. Only node A7 is in an unstable state under the current

threshold and the score result of the entropy method is lower, so

it is judged to be in a low-risk state. The score of Critic method is

slightly higher, and it is judged as medium-risk. We take a

division interval [0,9], [9,14], [14,20] to make the two

methods have the same security division result. When score

Si ∈ [0, 9], it is determined that the node is in a low-risk state and

label 1 is assigned to the node. When score Si ∈(9, 14], it is
determined that the node is in a medium-risk state and label 2 is

assigned to the node. When score Si ∈(14, 20], it is determined

that the node is in a high-risk state. It can be determined that

node 1, node 2 and node 6 are in a high-risk state. NodeA3, node

A4, node A5 and node A8 are in the medium-risk state, and node

A7 and nodeA9 are in the low-risk state. We can add labels to the

nodes according to the scoring result of two methods to form key

value pairs [A1, 3], [A2, 3], [A3, 2], [A4, 2], [A5, 2], [A6, 3], [A7, 2],

[A8, 1], [A9, 1].

5.2 Security results of an unmonitored
node

After labeling the node by the security judgment method, the

graph model is established according to the connection

relationship of each node under the edge side network, as

shown in Figure 9. The nodes in the terminal node set XT �
{A1, A2, . . . , A12} are represented by the solid line circles. The

blue circles represent monitoring nodes, red circles represent

high-risk nodes, the yellow circles represent medium-risk nodes,

the green circles represent low-risk nodes, and unmonitored

nodes are represented by dotted line circles. The nodes in edge

node set XE � {A13, A14, A15} because monitoring nodes are in

low-risk state by default. The graph model is derived as an

adjacency table as follows: [4 14, 1 12, 3 15, 8 15, 3 9, 9 15,

11 14, 13 14, 12 15, 14 15, 13 15, 5 14, 7 11, 7 13, 1 13, 10 13, 2 13,

5 6, 6 14].

The LPA and the SLPA will lead to multiple division results.

We count the probability of each result and compute the

modularity by weighted average method. Taking the adjacency

table as the input, the LPA is used to divide the community of the

model, and the algorithm is run repeatedly for 10 times to obtain

TABLE 2 Weight of the objective weighting method.

Weight CPU usage Memory usage Input flow Output flow Block read
flow

Entropy method 0.1671 0.1379 0.2275 0.2671 0.2004

Critic method 0.1651 0.2360 0.1902 0.2160 0.1927

FIGURE 8
Security score of the Entropy method and the Critic method.

Frontiers in Energy Research frontiersin.org13

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

three division results. The first division result is [4,5,6,14],

[3,8,9,15], [1,2,7,10,11,12,13]. The second division result is

[3,8,9,15], [4,5,6,11,14], [1,2,7,10,12,13]. The third division

result is [3,8,9,12,15], [1,2,10,13], [4,5,6,7,11,14].

To compare the classification results of the algorithms, the

concept of modularity is introduced to measure. Compute the

modularity of each classification result to get the modularity of

three division result Q1
L � 0.3920, Q2

L � 0.4003 Q3
L � 0.3947. The

probability of result 1 in 10 experiments is 0.2, the probability of

result 2 is 0.65, and the probability of result 3 is 0.15. According

to the probability of the three results, the total modularity of LPA

is obtained after weighted computing of each modularity QL �
0.3978.

The SLPA is used to divide the community of the model.

Repeat the operation for 10 times and remove the division results

of overlapping communities and missing nodes. We obtain two

kinds of division results of communities without loss and

repeated division. The first division is [1, 12], [2, 4, 5, 6, 7, 10,

11, 13, 14], [3, 8, 9, 15]. The second division is [1, 2, 7, 10, 12, 13],

[4, 5, 6, 11, 14], [3, 8, 9, 15]. Compute the modularity of each

classification result to get the modularity of the first division

result Q1
S � 0.3283 and the modularity of the second division

result Q2
S � 0.7050. The probability of result 1 in 10 experiments

is 0.78 and the probability of result 2 is 0.22. The total modularity

of SLPA is obtained after weighted computing of eachmodularity

QS � 0.4112.

When compared to the LPA and SLPA algorithms, the

Louvain and the GN algorithms are more stable. For these

two algorithms, only one division result will be generated

separately. The division of the Louvain algorithm is [11, 7],

[4, 5, 6, 14], [3, 8, 9, 10, 15], [2, 1, 12, 13]. Similarly, computing

the modularity of the division to get QLv � 0.5789. The result of

the GN algorithm is shown in Figure 10. The division is [4, 5, 6,

10, 14], [1, 2, 12, 13], [3, 8, 9, 15], [11, 7]. Computing the

modularity of the division to get QGN � 0.8144.

We used four community detection algorithms to divide the

community for this graph model. The comparison of the four

FIGURE 9
The graph model built on edge side.

FIGURE 10
The division result of the GN algorithm.

Frontiers in Energy Research frontiersin.org14

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

algorithms is shown in Table 3. The letter m represents the

number of edges in the graph and the letter n represents the

number of nodes in the graph.

In Table 3, we can see the division results of the LPA and the

SLPA are unstable and their community division results are

random. Comparing the modularity of the four algorithms, it is

easy to find that QGN >QLv >QS > QL. Although the complexity

of the GN algorithm is larger than the other three algorithms,

because the graphmodel established in this article is not complex,

the slightly lower efficiency of GN algorithm is acceptable.

Therefore, we select the community division result of the GN

algorithm. There are four communities—[4, 5, 6, 10, 14], [1, 2, 12,

13], [3, 8, 9, 15], and [11, 7]—in the division result.

Nodes in the same community have stronger correlation. We

assume that a user randomly accesses any associated node in the

community from an unmonitored node. The access probability of

each node is described by the PR value. We evaluate the security of

the initial node by its access probability to each node. If the user has a

higher probability of accessing high-risk nodes, thenwe evaluate that

the initial node (unmonitored node) has a higher correlation with

the high-risk node, and the risk of the node is also higher. In

contrast, if the user has a higher probability of accessing low-risk

nodes, then we evaluate that the risk of the initial node is lower.

Setting the error ϵ0 � 0.0001 to make sure the PR value of the two

iterations fully close and the algorithm tends to be stable. The

number of the node in community is N � 5,and the initial PR value

of each node PR(x) � 1 /

N � 0.2. This means that the unmonitored

nodes have equal probability to access the whole nodes in the initial

state. In community [4, 5, 6, 10, 14], we take A10 as the initial node

and use PageRank algorithm to update the PR value until

|Pn+1 − Pn|< ϵ. The PR value is shown in Table 4.

In Table 4, Node A14 is low-risk node, nodes A4 and A5 are

medium-risk nodes, node A6 is high-risk node, and nodes A10 is

unmonitored node. We can calculate that the probability that

node A10 may access the high-risk label in probability of

Ph � 0.1949, the probability of accessing the medium-risk

label is Pm � 0.3070, and the probability of accessing the low-

risk label is Pl � 0.3861. It can be evaluated that node A10 is a

low-risk node.

Similarly, we take A12 as the initial node and use the

PageRank algorithm to update the PR value in community [1,

2, 12, 13], the PR value is shown in Table 5. Node A1 and A2 are

in high-risk state, node A13 is a low-risk node, and node A12 is an

unmonitored node. We can count that A12 has the probability of

Ph � 0.5000 to access the high-risk node. The probability of

accessing the low-risk node is Pl � 0.3246. Therefore, nodeA12 is

judged as a high-risk node. Because node A11 is only in the same

community with a high-risk nodeA7, it is judged that nodeA12 is

in the low-risk state.

We combined the community detecting algorithms and the

PageRank algorithm to provide a method to preliminarily

evaluate the security of unmonitored nodes, but this method

still has defects. On the one hand, the community division

algorithm is used to divide the more closely connected nodes

into the same community. When we chose the community

detecting algorithm, we were concerned about the stability of

algorithms and compared their division results by the

modularity. However, the complexity of the algorithm should

also be concerned in the actual scenario. A larger algorithm

complexity means more computing resource consumption. In

our experiment, the GN algorithm has the largest modularity but

the highest complexity. The graphmodel that is built in our paper

is simple (15 nodes and 19 edges). In the real scene, the graph

model usually is constructed by millions of nodes and edges.

Therefore, it is necessary to consider the algorithm complexity

and computing resource consumption in real scenarios. On the

other hand, the PageRank algorithm assumes that the user walks

randomly within the community and indirectly evaluates the

security of nodes according to the probability of users accessing

each label. In this method, the label of the unmonitored nodes

highly depends on the label in the same community. Taking the

division result of the GN algorithm as an example, node A7 and

node A11 belong to the same community, and there are no other

nodes in the community, the label value of the unmonitored node

A11 completely depends on node A7. Therefore, the premise of

using this method is that there should be more nodes with known

labels in the community than unmonitored nodes.

6 Conclusion

This paper developed a security scheme using a Docker

container in the edge computing system. A container risk

TABLE 3 The comparison of four community detection algorithms.

Index LPA SLPA Louvain GN

Complexity O(m) O(m × n) O(nlogn) O(m2n)
Number of results 3 2 1 1

Modularity 0.3978 0.4112 0.4709 0.8144

TABLE 4 The PR value when A10 is taken as the initial node.

Node A4 A5 A6 A10 A14

PR value 0.1121 0.1949 0.1949 0.1121 0.3861

TABLE 5 The PR value when A12 is taken as the initial node.

Node A1 A2 A12 A13

PR value 0.3246 0.1754 0.1754 0.3246

Frontiers in Energy Research frontiersin.org15

Xu et al. 10.3389/fenrg.2022.975753

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

monitoring model based on container monitoring software was

designed. Based on Docker monitoring, we proposed a novel

node security judgment scheme under Docker monitoring.

Meanwhile, a new security evaluation scheme for

unmonitored nodes through the node security judgment

scheme was proposed. Finally, we built a container

monitoring model for a power system and verified the

feasibility of the proposed method by experiment, which

proved that our scheme is highly secure to the EC protection.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, and further

inquiries can be directed to the corresponding author.

Author contributions

XX: conceptualization, methodology, software,

writing—original draft; YJ: resource, formal analysis; HW:

writing—review and editing, supervision, project

administration; WH: writing—review and editing; SC: data

curation, visualization.

Conflict of interest

Author YJ was employed by China Southern Power Grid

Co Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abhishek, M. K., and Rajeswara Rao, D. (2021). Framework to secure docker
containers,” in 2021 Fifth World Conference on Smart Trends in Systems Security
and Sustainability. London, United Kingdom: WorldS4, 152–156.

Agarwal, S. (2022). “GUI docker implementation: Run common graphics user
applications inside docker container,” in 2021 10th International Conference on
System Modeling & Advancement in Research Trends (SMART) MORADABAD,
India, 424

AII (2018). Introduction to edge computing in IIoT. Available at: https://www.
iiconsortium.org/pdf/Introduction_to_Edge_Computing_in_IIoT_2018-06-18-updated.
pdf (Accessed on June 18, 2018).

Cai, L., Qi, Y., Wei, W., and Li, J. (2019). Improving resource usages of containers
through auto-tuning container resource parameters. IEEE Access 7, 108530–108541.
doi:10.1109/ACCESS.2019.2927279

Chatterjee, I. (2021). Artificial intelligence and patentability: Review and
discussions. Int. J. Mod. Res. 1, 15–21. doi:10.1093/oso/9780198870944.003.0006

ECC and AII (2019). The edge computing advantages. Available at: https://www.
iiconsortium.org/pdf/IIC_Edge_Computing_Advantages_White_Paper_2019-10-
24.pdf (Accessed on Octorber 24, 2019).

ECC (2016). White paper of edge computing consortium. Available at: http://
www.ecconsortium.net/Uploads/file/20161208/1481181867831374.pdf (Accessed
on November 28, 2016).

Esteves, R. M., et al. (2013). Competitive K-means, a new accurate and distributed
K-means algorithm for large datasets in 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science (Bristol, UK), 17–24.

Gupta, V. K. (2022). Crime tracking system and people’s safety in India using
machine learning approaches. Int. J. Mod. Res. 2 (1), 1–7. doi:10.1109/
indiscon53343.2021.9582222

Hao, Z. (2015). “An improved PageRank algorithm based on web content,” in
2015 14th International Symposium on Distributed Computing and
Applications for Business Engineering and Science (Guiyang, China):
DCABES), 284.

Hu, J., Du, Y., and Liu, J. (2020). Detecting and evolving microblog community
based on structure and gravity cohesion. IEEE Access 8, 176624–176639. doi:10.
1109/ACCESS.2020.3022836

Jiang, W., Wang, Y., Huang, Y., and Zhao, Q. (2019). Top invulnerability nodes
mining in dual-direction different-weight complex network based on node double-
level local structure weighted entropy. IEEE Access 7, 86597–86610. doi:10.1109/
ACCESS.2019.2925572

Khorramabadi, S. S., and Bakhshai, A. (2015). Intelligent control of grid-
connected microgrids: An adaptive critic-based approach. IEEE J. Emerg. Sel.
Top. Power Electron. 3, 493–504. doi:10.1109/JESTPE.2014.2331188

Kumar Pentyala, S. (2017). “Emergency communication system with Docker
containers, OSM and Rsync,” in 2017 International Conference On Smart
Technologies For Smart Nation (SmartTechCon) (Bengaluru, India),
1064–1069.

Kumar, R., and Dhiman, G. (2021). A comparative study of fuzzy
optimization through fuzzy number. Int. J. Mod. Res. 1, 1–14. doi:10.1109/
icmlc.2007.4370325

Kushida, T., and Pingali, G. S. (2014). Industry cloud - effective adoption of cloud
computing for industry solutions,” in IEEE 7th International Conference on Cloud
Computing. Anchorage, AK, USA), 753–760.

Kwon, S., and Lee, J. -H. (2020). Divds: Docker image vulnerability
diagnostic system. IEEE Access 8, 42666–42673. doi:10.1109/ACCESS.2020.
2976874

Li, H., Lu, H., Lin, Z., Shen, X., and Price, B. (2015). Inner and inter label
propagation: Salient object detection in the wild. IEEE Trans. Image Process. 24,
3176–3186. doi:10.1109/TIP.2015.2440174

Liu, Q., Zheng, W., Zhang, M., Wang, Y., and Yu, K. (2018). Docker-based
automatic deployment for nuclear fusion experimental data archive cluster. IEEE
Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 46, 1281–1284. doi:10.1109/TPS.
2018.2795030

Liu, Y., Shou, G., Chen, Y., and Chen, S. (2020). Toward edge intelligence:
Multiaccess edge computing for 5G and Internet of things. IEEE Internet Things J. 7,
6722–6747. doi:10.1109/JIOT.2020.3004500

Muñoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martinez, R., Tsuritani, T., et al.
(2018). Integration of IoT, transport SDN, and edge/cloud computing for dynamic
distribution of IoT analytics and efficient use of network resources. J. Light. Technol.
36, 1420–1428. doi:10.1109/JLT.2018.2800660

Frontiers in Energy Research frontiersin.org16

Xu et al. 10.3389/fenrg.2022.975753

https://www.iiconsortium.org/pdf/Introduction_to_Edge_Computing_in_IIoT_2018-06-18-updated.pdf
https://www.iiconsortium.org/pdf/Introduction_to_Edge_Computing_in_IIoT_2018-06-18-updated.pdf
https://www.iiconsortium.org/pdf/Introduction_to_Edge_Computing_in_IIoT_2018-06-18-updated.pdf
https://doi.org/10.1109/ACCESS.2019.2927279
https://doi.org/10.1093/oso/9780198870944.003.0006
https://www.iiconsortium.org/pdf/IIC_Edge_Computing_Advantages_White_Paper_2019-10-24.pdf
https://www.iiconsortium.org/pdf/IIC_Edge_Computing_Advantages_White_Paper_2019-10-24.pdf
https://www.iiconsortium.org/pdf/IIC_Edge_Computing_Advantages_White_Paper_2019-10-24.pdf
http://www.ecconsortium.net/Uploads/file/20161208/1481181867831374.pdf
http://www.ecconsortium.net/Uploads/file/20161208/1481181867831374.pdf
https://doi.org/10.1109/indiscon53343.2021.9582222
https://doi.org/10.1109/indiscon53343.2021.9582222
https://doi.org/10.1109/ACCESS.2020.3022836
https://doi.org/10.1109/ACCESS.2020.3022836
https://doi.org/10.1109/ACCESS.2019.2925572
https://doi.org/10.1109/ACCESS.2019.2925572
https://doi.org/10.1109/JESTPE.2014.2331188
https://doi.org/10.1109/icmlc.2007.4370325
https://doi.org/10.1109/icmlc.2007.4370325
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/TIP.2015.2440174
https://doi.org/10.1109/TPS.2018.2795030
https://doi.org/10.1109/TPS.2018.2795030
https://doi.org/10.1109/JIOT.2020.3004500
https://doi.org/10.1109/JLT.2018.2800660
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., and Ghani, N. (2019).
Demystifying IoT security: An exhaustive survey on IoT vulnerabilities and a first
empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutorials
21, 2702–2733. doi:10.1109/COMST.2019.2910750

Rabay’a, A. (2019). “Fog computing with P2P: Enhancing fog computing
bandwidth for IoT scenarios,” in 2019 International Conference on Internet of
Things (iThings) (Atlanta, GA, USA), 82–89.

Rahmansyah, R., et al. (2021). “Reducing docker daemon attack surface using
rootless mode,” in 2021 International Conference on Software Engineering &
Computer Systems and 4th International Conference on Computational Science
and Information Management (ICSECS-ICOCSIM) (Pekan, Malaysia: ICSECS-
ICOCSIM), 499

Ravi Kiran, B. (2011). “An improved connected component labeling by recursive
label propagation,” in 2011 National Conference on Communications (NCC)
(Bangalore, India), 1

Reis, D., Piedade, B., Correia, F. F., Dias, J. P., and Aguiar, A. (2022). Developing
docker and docker-compose specifications: A developers’ survey. IEEE Access 10,
2318–2329. doi:10.1109/ACCESS.2021.3137671

Şengül, Ö. (2021). “Implementing a method for docker image security,” in
2021 International Conference on Information Security and Cryptology
(ISCTURKEY) (Ankara, Turkey: ISCTURKEY), 34.

Sharma, T. (2022a). Breast cancer image classification using transfer learning and
convolutional neural network. Int. J. Mod. Res. 2 (1), 8–16. doi:10.31234/osf.io/w9rb2

Shukla, S. K. (2022b). Self-aware execution environment model (SAE2) for the
performance improvement of multicore systems. Int. J. Mod. Res. 2 (1), 17–27.
doi:10.1002/cpe.2948

Smet, P., Dhoedt, B., and Simoens, P. (2018). Docker layer placement for on-
demand provisioning of services on edge clouds. IEEE Trans. Netw. Serv. Manage.
15, 1161–1174. doi:10.1109/TNSM.2018.2844187

Song, C., Han, G., and Zeng, P. (2022). Cloud computing based demand response
management using deep reinforcement learning. IEEE Trans. Cloud Comput. 10,
72–81. doi:10.1109/TCC.2021.3117604

Song, C., Sun, Y., Han, G., and Rodrigues, J. J. (2021a). Intrusion detection based
on hybrid classifiers for smart grid. Comput. Electr. Eng. 93, 107212–107310. doi:10.
1016/j.compeleceng.2021.107212

Song, C., Xu, W., Han, G., Zeng, P., Wang, Z., and Yu, S. (2021b). A cloud
edge collaborative intelligence method of insulator string defect detection for
power IIoT. IEEE Internet Things J. 8, 7510–7520. doi:10.1109/JIOT.2020.
3039226

Su, J., and Havens, T. C. (2015). Quadratic program-based modularity
maximization for fuzzy community detection in social
networks. IEEE Trans. Fuzzy Syst. 23, 1356–1371. doi:10.1109/TFUZZ.2014.
2360723

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017). On
multi-access edge computing: A survey of the emerging 5G network edge cloud
architecture and orchestration. IEEE Commun. Surv. Tutorials 19, 1657–1681.
doi:10.1109/COMST.2017.2705720

Vaishnav, P. K. (2021). Analytical Review analysis for screening COVID-19. Int.
J. Mod. Res. 1, 22–29. doi:10.31838/ijpr/2021.13.01.268

Yadav, R. R., Sousa, E. T. G., and Callou, G. R. A. (2018). Performance
comparison between virtual machines and docker containers. IEEE Lat. Am.
Trans. 16, 2282–2288. doi:10.1109/TLA.2018.8528247

Yang, S., and Cao, J. (2022). A multi-label propagation algorithm
with the double-layer filtering strategy for overlapping
community detection. IEEE Access 10, 33037–33047. doi:10.1109/access.
2022.3161553

Zhao, N., Tarasov, V., Albahar, H., Anwar, A., Rupprecht, L., Skourtis, D., et al.
(2021). Large-scale Analysis of docker images and performance implications for
container storage systems. IEEE Trans. Parallel Distrib. Syst. 32, 918–930. doi:10.
1109/TPDS.2020.3034517

Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., and Long, D. (2022). A docker
container anomaly monitoring system based on optimized isolation
forest. IEEE Trans. Cloud Comput. 10, 134–145. doi:10.1109/TCC.2019.
2935724

Frontiers in Energy Research frontiersin.org17

Xu et al. 10.3389/fenrg.2022.975753

https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1109/ACCESS.2021.3137671
https://doi.org/10.31234/osf.io/w9rb2
https://doi.org/10.1002/cpe.2948
https://doi.org/10.1109/TNSM.2018.2844187
https://doi.org/10.1109/TCC.2021.3117604
https://doi.org/10.1016/j.compeleceng.2021.107212
https://doi.org/10.1016/j.compeleceng.2021.107212
https://doi.org/10.1109/JIOT.2020.3039226
https://doi.org/10.1109/JIOT.2020.3039226
https://doi.org/10.1109/TFUZZ.2014.2360723
https://doi.org/10.1109/TFUZZ.2014.2360723
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.31838/ijpr/2021.13.01.268
https://doi.org/10.1109/TLA.2018.8528247
https://doi.org/10.1109/access.2022.3161553
https://doi.org/10.1109/access.2022.3161553
https://doi.org/10.1109/TPDS.2020.3034517
https://doi.org/10.1109/TPDS.2020.3034517
https://doi.org/10.1109/TCC.2019.2935724
https://doi.org/10.1109/TCC.2019.2935724
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975753

	A secure edge power system based on a Docker container
	1 Introduction
	2 System model
	3 Security judgment scheme of the monitored node
	3.1 Theory
	3.1.1 K-means
	3.1.2.1 Entropy weight method
	3.1.2.2 Critic method

	3.2 Proposed scheme for node security judgment through monitoring model

	4 Security evaluation scheme of an unmonitored node
	4.1 Theory
	4.1.1 Community detection
	4.1.2 PageRank algorithm

	4.2 Scheme for node security evaluation without monitoring

	5 Experimental results
	5.1 Security results of a monitored node
	5.2 Security results of an unmonitored node

	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

