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Faced with the integrated system composed of the train power system,

the photovoltaic (PV) power system, and the energy storage system (ESS),

this research studies the energy-efficient operation and energy management

strategy from the perspective of both train optimal control and timetable

optimization, aiming at achieving a long-term energy consumption reduction.

A two-step approach for collaboratively optimizing the train timetable,

speed trajectory, and energy management strategy considering the stochastic

characteristics of PV power generation is proposed to solve this large-scale

complex problem. Before the two-step approach, a mixed-integer linear

programming (MILP)model is established to optimize the energy consumption

of the inter-station operation. On this basis, explicit energy consumption

expressions for all inter-stations of the entire line are obtained by the proposed

data fitting method. The historical PV power data is clustered to generate

scenarios with different probabilities to characterize the stochastic PV power.

The first step of this two-step approach is to minimize the total energy

consumption expectations of all inter-stations determined by the obtained

explicit energy consumption expressions to optimize the timetable while

ensuring the total time and time window constraints are met. The second step

is to minimize the weighted sum of energy consumption under all possible

scenarios to obtain the optimal speed trajectory and energy management

strategy based on the optimized timetable obtained in the first step. The validity

of the model is verified by case studies using the real data of Qingdao Metro

Line 11 under both scenarios with and without PV power. This study provides

a novel method for energy-efficient operation and energy management of

the integrated system and demonstrates the prospect of the proposed two-

step stochastic optimization in reducing the net grid-supplied energy for the

long-term operation of urban rail transportation systems.
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1 Introduction

Renewable energy is considered as a clean and safe
alternative to fossil fuels to alleviate the energy crisis and reduce
carbon emissions. System integration with the renewable energy
system is an effective solution to the sustainable development
of energy systems (Ehteshami et al., 2022). Photovoltaic (PV)
power due to its outstanding economic and environmental
benefits, is considered to have great potential in the field
of system integration with the energy storage system (ESS)
and train traction system (Shen et al., 2020). However, the
integration of renewable energy systems and the ESS demands
intimate coupling between different systems, which brings new
challenges to energy-efficient train control (EETC) and energy
management. For example, the PV power generation and the
energy consumption demand of the train traction system are
intermittent. The increase in the permeability of renewable
energy in the system structure may cause it difficult for the
system operations to match the power supply and demand
(Kanchev et al., 2014). Improving the efficiency of the integrated
system has become more and more important in its sustainable
development and is expected to attract much more attention in
the near future.

Timetable optimization and train speed trajectory
optimization are two main branches of existing research on
EETC (Scheepmaker et al., 2017).

For timetable optimization, the mixed-integer nonlinear
programming model was used to optimize the timetable,
and an efficient hybrid optimization algorithm based on
particle swarm optimization and simulated annealing was
designed to obtain the approximate optimal solution effectively
(Guo et al., 2017). Montrone et al. (2018) proposed a model to
realize real-time timetable optimization. The model searches
the combination of the train regimes to dynamically adjust
the timetable to minimize energy consumption. Liu et al. (2018)
studied the train schedule problem of the integration of the
subway system and the ESS, aiming to maximize the use of
regenerative braking energy.Thenonlinear integer programming
model was adopted, and the tabu search algorithm and
the hybrid simulation algorithm were designed to solve the
problem.

For speed trajectory optimization, in (Lu et al., 2013), a speed
trajectory search space modeling process was proposed. Ant
colony algorithm, genetic algorithm, and dynamic programming
algorithm were used to solve the problem. The results of various
models were analyzed and compared. Huang et al. (2018) and
Wu et al. (2019) studied the speed trajectory optimizationmodel
considering the ESS using dynamic programming and mixed-
integer linear programming, respectively. It was considered that
the regenerative energy generated by the braking train could
be stored in the ESS and provided for the subsequent traction
operation.

Although the speed trajectory and timetable optimization
have been extensively studied, they interact with each other
and the optimization of them separately cannot achieve the
best energy-saving effect. Therefore, some studies were devoted
to collaborative optimization of train speed trajectory and
timetable. Su et al. (2013) proposed a bi-level programming
model, and an iterative method was used to optimize the
time and train speed profile of the two to save the energy
consumption of the whole line. Wang et al. (2021) transformed
collaborative optimization into a discrete decision problembased
on the space-time-speed network method. The global optimal
solution was obtained by the dynamic programming algorithm,
and the approximate optimal solution was quickly obtained
by the discrete difference dynamic programming algorithm.
Wu et al. (2021) proposed a two-step optimization method that
considered collaborative optimization of speed trajectory and
timetable with the integration of the ESS, which could not only
obtain the optimal timetable and speed trajectory but also obtain
the charging and discharging strategy of the ESS.

Based on the above studies, it can be seen that the
optimization of speed trajectory and the optimal allocation of
the timetable have been extensively studied. The collaborative
optimization of the two can achieve better results, which is
considered to be an interesting research direction.However,most
of the above studies on EETC are limited to the traction system.
We have seen that there have been studies on EETC combined
with the ESS, but there are much fewer studies on the impact of
renewable energy system integration. However, the system’s net
energy consumption is determined by a series of interdependent
factors. Consequently, the optimization of integrated systems
should be paidmore attention to, not limited to the energy-saving
of subsystems (González-Gil et al., 2014).

Kaffash et al. (2021) proposed a data-driven method to
obtain the distribution of random PV power and generate
the uncertainty scenario set of PV power generation. This
method was based only on historical PV power data. The
generated scenario sets were used as input, and two-step
stochastic optimization was used to study the PV cell system
management problem. And it was tested in the PV cell system
scheduling of commercial buildings. Park and Salkuti (2019)
proposed an energy management system to manage energy flow
by coordinating the train operation, renewable energy system,
the ESS, and the grid. Using mixed integer linear stochastic
programming, a model of railway station energy management
system considering the ESS, regenerative braking energy, PV
power generation, and the power grid was established in
(Şengör et al., 2017). Similarly, Aguado et al. (2018) considered
the stochastic characteristics of renewable energy through the
scenario tree method and studied the optimization operation
of the integrated railway system. A large-scale nonlinear
optimization model was established to study the efficient
operation of the railway and the ESS.
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Based on the above literature review, the collaborative
optimization of the speed trajectory and the timetable are not
studied thoroughly in the context of integrated system planning.
The coupling of renewable energy systems is rarely considered
in the study of EETC. Therefore, it is an interesting problem
to optimize the train operation from both speed trajectory and
timetable perspectives for the entire railway line considering
the integration of PV, the ESS, and the train traction system in
order to further improve the energy-saving performance of the
system.

This paper proposes a two-step approach to solve the large-
scale nonlinear stochastic problem with high computational
complexity. To indicate the scope and framework of this research
more clearly, the system integration scheme and the two-step
approach framework are demonstrated in Figure 1. The green
block shows the energy flow pattern of the integrated system,
where the solid and colored arrows represent the direction
of the energy flow. The power of train traction is provided
by the power grid, the ESS, and the PV system. The ESS
can recover the regenerative braking energy when the train is
braking and absorb the surplus PV power. The three blocks
on the right show the workflow of the model. The pink block
demonstrates the data preparation process.Theminimumenergy
consumption model for the inter-station operation based on
MILP is proposed. Then, a series of data points are generated
by solving the MILP model under different input combinations

of operation time and PV power. The energy consumption for
each combination corresponds to a data point. Subsequently, an
explicit relationship among the energy consumption, time, and
PV power is obtained by data fitting. The stochastic PV power
is characterized by different scenarios generated by historical PV
power data clustering, which is used as themodel input.The blue
block shows Step 1, where the energy consumption expectation
of the whole line is minimized under the constraints of the
time window and total time to obtain the optimal timetable. The
yellow block presents Step 2, where the optimal train operation
and energy management strategy for the entire railway line are
acquired through MILP models for all inter-station operations.

The study proposed in this paper mainly contributes to the
field in the following two aspects:

1 With a consideration on integrated PV power generation
into the urban rail transportation, the EETC and energy
management of the integrated system composing of the
train traction system and ESS are studied. The train speed
trajectory, timetable, and energy management strategy are
collaboratively optimized to realize the long-term energy-
saving effect of the integrated system.

2 A two-step approach is proposed to solve the large-
scale stochastic optimization problem, which improves the
computational efficiency. The historical data clustering is
used to generate scenarios to characterize the stochastic

FIGURE 1
Schematic of the system energy flow and model framework.
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PV power, which tackles the intermittency of the PV
power generation. The proposed two-step approach has
a low requirement for PV power prediction with strong
applicability and practicability.

The rest of the paper is organized as follows: In Section 2,
the establishment of the MILP model is introduced. Section 3
demonstrates the algorithm of the two-step approach. In
Section 4, the real data is used to do case analysis. Monte
Carlo long-term operation simulation is carried out to verify
the model’s effectiveness and robustness and analyze the energy-
saving effect. Conclusions are drawn in Section 5.

2 Mixed-integer linear programming
model for operation between two
stations

This section proposes an optimization method of the speed
trajectory, timetable, and energy management between two
stations considering PV power generation and energy storage
system (ESS) based on MILP. The nomenclature of parameters
and variables are listed in Table 1.

2.1 Kinematics modeling of the train

Suppose there are D stations in the entire railway line and
D− 1 inter-station sections. Every inter-station section is time-
equally divided into N intervals, where N determines the model
precision. The train is assumed to be uniformly accelerated
in these intervals. A balance between model accuracy and
complexity can be achieved by choosing an appropriate value of
N. For the sake of clarity, subscript k, i denotes the ith interval
of the kth inter-station section. Punctuality of the train for each
inter-station is ensured by Eqs. 1, 2.

Sk,1 = S
s
k (1)

Sk,N+1 = S
e
k (2)

Ssk and Sek are the starting and ending position of the kth section
of the journey, k = 1,2,…,D− 1.The position, average speed, and
acceleration are calculated as Eqs. 3–5, where v̄k,j is the average
speed of the ith period of the kth section, vk,i is the speed at the
beginning of the ith period of the kth section.

Sk,i+1 = Sk,1 +
i

∑
j=1

v̄k,jΔtk, i = 1,2,3,…,N (3)

v̄k,i =
vk,i + vk,i+1

2
(4)

ak,i =
vk,i+1 − vk,i

Δtk
(5)

Theoperation time is tk for the k
th inter-station operation. For

every interval, the period of time is Δtk = tk/N.Themagnitude of
the acceleration is limited asEq. 6, 7 to ensure passenger comfort.

ak,i ≤ Aam (6)

−ak,i ≤ Abm (7)

Aam and Abm are the maximum values of acceleration and
deceleration. The drag force during train travels is expressed by
Davis formula (Scheepmaker et al., 2017) shown in Eq. 8. The
value of coefficientsA,B andC are referred fromWu et al. (2019).

fk,i = A+Bv̄k,i +Cv̄
2
k,i (8)

The train is required to operate at the speed under the limit,
as Eq. 9 shows.

vk,i ≤ V
lim
k,i (9)

Vlim
k,i is the speed limit, which is regarded as a function related to

distance.

2.2 Energy flow management modeling

For the convenience of description, the energy consumption
of the train power system is divided into two parts, namely the
consumption during traction Etk,i,E

t
k,i > 0 and the consumption

during braking Ebk,i,E
b
k,i ≤ 0. The coasting regime is also be

included in Ebk,i, when Ebk,i = 0, which means that the train
traction system does not consume or generate energy.

During the traction phase, according to the energy flowmode
shown in Figure 1, the energy consumption can be expressed as
Eq. 10.

Etk,i = E
c
k,iηc +E

PV,t
k,i ηt +E

dch
k,i ηESS (10)

Eck,i,E
PV,t
k,i ,E

dch
k,i are energy consumed from the power grid, PV

power system, and the ESS, respectively. ηc,ηt ,ηESS are the
according efficiencies. During the braking phase, the train
traction system is regarded as the energy source due to the
regenerative braking, as shown in Eq. 11. Regenerative braking
energy may be inadequately recovered.

−Ebk,i = E
RB
k,i +E

RB,Loss
k,i (11)

ERBk,i is the energy that can be recovered. E
RB,Loss
k,i is the energy that

cannot be recovered constrained by the ESS power and capacity,
which is consumed as heat. The energy recovered by the ESS
comes from the regenerative braking energy ERBk,i and PV power
energy to charge the system EPV,chk,i , as shown in Eq. 12.

Echk,i ≤ E
RB
k,i ηESS +E

PV,ch
k,i ηch (12)
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TABLE 1 Nomenclature.

Parameters
D Number of stations of the railway line
N Number of intervals for each enter-station section
tk Running time for the kth inter-station section
Δtk Time interval for kth inter-station section
Ssk,S

e
k Start and end distance of the kth station of the railway line

Aam,Abm Maximum value of acceleration and deceleration
A,B,C Davis formula coefficients
ηc,ηt ,ηch,ηESS Efficiencies of the power grid supply, train traction, PV charging for ESS, ESS charging and discharging
PESS Maximum power of the ESS
Ecap Capacity of the ESS
Einik Initially stored energy of the ESS for the kth station
SOEmin,SOEmax Minimal and maximal value of the state of energy
PPVk,i PV power for the ith time interval in the kth inter-station section
P̄PVk Average PV power during the kth inter-station section
P̄PVk,w Average PV power during the kth inter-station section under the wth scenario
pw Possibility for the occurrence of the wth scenario
M Total mass of the train
G Gravitational acceleration
Ptm,Pbm Maximum power of the motor traction or braking
Ftm,Fbm Maximum force of the motor traction or braking
Vmin,Vmax Minimum and maximum speed of the train
V̄min, V̄max Minimum and maximum average speed of the train
J PWL precision
Vlim
k,j ,Hk,j Discretized PWL nodes on the speed limit and altitude function curves

Tk,Tk Upper bound and lower bound of the kth time window
Ttotal Total running time for the entire journey
Variables
Sk,i Distance at the beginning of the ith time interval of the kth inter-station section
vk,i Instantaneous speed at the beginning of the ith time interval of the kth inter-station section
v̄k,i Average speed for the ith time interval of the kth inter-station section
In the following description, all the subscript k, i refers to the index for the ith time interval of the kth inter-station section
ak,i Acceleration
Ek,i Change of the mechanical energy of the train
fk,i Average drag force
Vlim
k,i Speed limit

Etk,i Traction energy consumption
Ebk,i Regenerative energy generation
Eck,i Energy consumption form the power gird
EPV,tk,i PV energy consumed by the train traction
EPV,chk,i PV energy consumed by charging the ESS
EPV,Lossk,i Wasted PV energy
Echk,i ESS charging energy
Edchk,i ESS discharging energy
ERBk,i Recovered regenerative braking energy
ERB,Lossk,i Wasted regenerative braking energy
λk,1,i,λk,2,i Two sets of binary variables to control the power flow
αk,i,j,βk,i,j,γk,i,j Three SOS2 to realize the PWL
v2k,i,PWL, v̄

2
k,i,PWL, v̄

3
k,i,PWL Piecewise linearized speed-related variables

vlimk,i,PWL,Δhk,i,PWL Piecewise linearized distance-related variables

Due to the constraints of ESS power, the charging and
discharging energy are constrained to Eq. 13, 14.

Edchk,i ≤ PESSΔtk (13)

Echk,i ≤ PESSΔtk (14)

PESS is the maximum power of ESS charging or discharging.
The state of energy of the ESS is shown in Eq. 15, it has the range

as Eq. 16 shows.

SOEk,i =
{{{{
{{{{
{

Einik
Ecap
, i = 0

Einik +∑
i
j=1

Echk,j −∑
i
j=1

Edchk,j
Ecap

i = 1,2,…,N
(15)

SOEmin ≤ SOEk,i ≤ SOEmax (16)
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Einik is the initial energy stored in the ESS, Ecap is the ESS
capacity. SOEmin and SOEmax are the minimum and maximum
state of energy of the ESS. For the PV power system, the energy
conservation is determined by Eq. 17.

EPV,tk,i +E
PV,ch
k,i +E

PV,Loss
k,i = P

PV
k,i Δtk (17)

PPVk,i is the PV output power, it is consumed by train traction or
ESS charging, which is EPV,tk,i and EPV,chk,i , respectively. EPV,Lossk,i is
the PV energy that cannot be fully utilized. For the train power
system, the energy conservation is shown in Eq. 18, where Ek,i is
Etk,i during traction and Ebk,i during braking.

Ek,i −
1
2
M(v2k,i+1 − v

2
k,i) − fk,iv̄k,iΔtk −MgΔhk,i ≥ 0 (18)

M is the total mass of the train, g is the gravitational
acceleration. Δhk,i is the altitude change of the railway line.
Eqs. 19–22 are the constraints of motor for traction system from
both force and power perspectives.

Etk,i ≤ PtmΔtk (19)

−Ebk,i ≤ PbmΔtk (20)

Etk,i ≤ Ftmv̄k,jΔtk (21)

−Ebk,i ≤ Fbmv̄k,jΔtk (22)

Ptm and Pbm are the maximum power for traction and
breaking. Ftm and Fbm are the maximum traction and braking
force. Eqs. 23, 24 are used to control the energy flow of the train
traction power system and the ESS.

Ek,i = λk,1,iE
t
k,i + (1− λk,1,i)E

b
k,i (23)

λk,1,i,λk,2,i are two independent binary variables. Eq. 23
ensures that Ek,i can only be either Etk,i (when λk,1,i = 1) or E

b
k,i

(when λk,1,i = 0), whichmeans that the train can only be in either
traction phase or braking phase. Eq. 24 are to ensure that the
power grid, PV power system, and ESS do not provide energy
for train traction under coasting or braking phase.

{{
{{
{

Eck,i = 0
Edchk,i = 0 λk,1,i = 0
EPV,tk,i = 0

(24)

Eqs 25, 26 prevent simultaneous charging and discharging of
ESS.

Edchk,i = 0 λk,2,i = 0 (25)

Echk,i = 0 λk,2,i = 1 (26)

So far, the model has been constructed. However, there are
nonlinear terms in the constraints, which need to be linearized
in the following section by the piecewise linearization (PWL)
technique.

2.3 Piecewise linearization approach

The piecewise linear (PWL) method is used to linearize the
nonlinear constraints in the above-mentioned model, so as to
reduce the complexity and improve the computational efficiency.
The special ordered set of type 2 (SOS2) is used to realize the
linearization. Suppose there are three groups of SOS2 αk,i,βk,i,γk,i
corresponding to the variables which need to be linearized at
ith interval in the kth section. The subscript j denotes the jth

elements in that SOS2. j ranges from1 to Jwhere J is the piecewise
precision. k ranges from 1 to D− 1. The range of i is consistent
with the linearized variable. If no range is specified, all the
following subscripts indicate that the formula is applicable to any
subscript in its range. In SOS2, there are at most two elements
that are non-zero. If there are two, they must be adjacent. Others
are all zero. Eqs. 27, 28 are constraints added to realize the PWL
process. The same with βk,i,j as shown in Eqs. 29, 30 and γk,i,j as
shown in Eqs. 31, 32.

J

∑
j=0

αk,i,j = 1 (27)

0 ≤ αk,i,j ≤ 1, j = 0,1,2,…, J (28)

J

∑
j=0

βk,i,j = 1 (29)

0 ≤ βk,i,j ≤ 1, j = 0,1,2,…, J (30)

J

∑
j=0

γk,i,j = 1 (31)

0 ≤ γk,i,j ≤ 1, j = 0,1,2,…, J (32)

Eq. 33 shows the process of linearizing the instantaneous
speed square.

v2k,i,PWL =
J

∑
j=0
[Vmin + j(

Vmax −Vmin

J
)]

2
αk,i,j (33)

Vmin,Vmax are the minimum and maximum value are the
lower and upper limits of the PWL range, which are constant.
Similarly, Eqs. 34, 35 shows the linearization for average speed
square and cube.

v̄2k,i,PWL =
J

∑
j=0
[V̄min + j(

V̄max − V̄min

J
)]

2
βk,i,j (34)

v̄3k,i,PWL =
J

∑
j=0
[V̄min + j(

V̄max − V̄min

J
)]

3
βk,i,j (35)
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Replace v2k,i, v̄
2
k,i, v̄

3
k,iwith v

2
k,i,PWL, v̄

2
k,i,PWL, v̄

3
k,i,PWL, respectively,

all nonlinear terms related to speed and average speed in
Eqs. 8–18 are linearized.

In addition, the altitude and speed limit are nonlinear
functions related to distance and the corresponding relationship
between distance and time needs to be established in our time-
based model. Eq. 36 combined with Eq. 3 builds a relationship
between time and distance by SOS2 variables γk,i.

Sk,i =
J

∑
j=0

j(
Sek − S

s
k

J
)γk,i,j (36)

vlimk,i,PWL = f(Sk,i) =
J

∑
j=0

Vlim
k,j γk,i,j (37)

Δhk,i,PWL = g(Sk,i+1) − g(Sk,i) =
J

∑
j=0

Hk,jγ
j
k,i+1

−
J

∑
j=0

Hk,jγk,i,j (38)

f(S),g(S) are the piecewise functions representing the speed
limit and altitude, and Vlim

k,j ,Hk,j are discretized points on
f(S),g(S), respectively. Eqs. 37, 38 realize the linearization for
the altitude and speed limit by replacing vlimk,i ,Δhk,i in Eqs. 9–18
withVlim

k,i,PWL,Δhk,i,PWL. So far, all nonlinear constraints have been
linearized.

2.4 Stochastic optimization considering
intermittent PV power

PPVk,i is uncertain in Eq. 17. To consider the stochastic
behavior of the PV power, historical PV power generation data
are used for clustering to generate different scenarios. Each
scenario represents a specific type of generated weather. Suppose
there are W scenarios generated by the historical data, for each
scenario, the net energy consumption can be written as Eq. 39,

where P̄PVk =
N
∑
i=1

PPVk,i /N. As a renewable energy, PV power is
free and thus not involved in the net energy consumption. The

difference between the total charge anddischarge energy
N
∑
i=1

Echk,i −
N
∑
i=1

Edchk,i is the energy stored in the ESS, which can be consumed
in the subsequent operation. For that reason, it is subtracted
from the energy provided by the grid. As a result, the net energy
consumption shown in Eq. 39 is equivalent to the net energy
supplied by the grid. In this paper, net energy consumption and
net grid-supplied energy are interchangeable.

ek (P̄
PV
k ) =

N

∑
i=1

Eck,i −(
N

∑
i=1

Echk,i −
N

∑
i=1

Edchk,i )

=
N

∑
i=1

Eck,i −
N

∑
i=1

Echk,i +
N

∑
i=1

Edchk,i (39)

For each scenario, there is one corresponding net energy
consumption expression with the form of Eq. 39. The objective
of stochastic optimization is tominimize the expected net energy
consumption in all scenarios. In that case, the optimal solution
obtained by the stochastic optimization is expected to perform
well no matter how the future PV power changes. The stochastic
optimization objective function is the expectation of Eq. 39,
namely Eq. 40.

obj = E(ek (P̄
PV
k )) =

w=W

∑
w=1

pwek (P̄
PV
k,w) (40)

W is the number of scenarios. pw and ek(P̄
PV
k,w) are the

probability of the occurrence of the wth scenario and the
corresponding net energy consumption, respectively.

3 A two-step optimization approach
for the entire railway line

3.1 Data points generation and surface
Fitting

Firstly, we assume that the influences of scheduled time
and PV power on the net energy consumption are mutually
independent and the superposition of the two determines the
minimum net energy consumption. Secondly, the objective of
this study is to give the long-term optimal control strategy
of the integrated system by stochastic optimization. From this
viewpoint, the consideration of real-time PV power is not
necessary. Moreover, the ESS can compensate for the uncertainty
caused by stochastic optimization. So, the average power of PV
during the scheduled time is the independent variable.Therefore,
we assume that the general relationship between the minimum
energy consumption concerning the scheduled time and PV
power has the form of Eq. 41.

Emin
k = fk (T) + gk (P̄

PV) (41)

Another obvious advantage of using the average PV power is
avoiding repeated fittings when the PV power condition changes.
It is only needed to calculate the average PV power according
to the scheduled time as input before the fitting process. When
we perform optimization for a specified railway line, the fitting
parameters only depend on the system itself and are independent
of the input PV power time-series data. Therefore, we only need
to fit once to obtain the characteristics of the train operation
energy consumption. This avoids the trouble of repeated fitting
since a large number of data points are generated through
the MILP model before each fitting process, which is time-
consuming.

In addition, it is notable that although we calculate the
average PV power according to the time before the timetable
optimization, this has little effect on the model accuracy.
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The reason is that the time window is relatively short on a
scale of seconds, during which the PV power will not change
dramatically, compared with the PV prediction time scale in
minutes or hours.

Wu et al. (2021) studied the relationship between the
minimum net energy consumption and the inter-station
operation time and suggested using the modified inverse
function for fitting, namely fk(T) = Ak +Bk/(Ck +T). We use
a specific case with a journey of 1.8 km and a scheduled time
of 112 s to verify this result. The corresponding minimum net
energy consumption is obtained and fitted according to the
formula fk(T) = Ak +Bk/(Ck +T) by changing the operation
time. The results are shown in Figure 2A. The parameters
are Ak = 18.89,Bk = 590.4,Ck = −79.4 and the performance is
R2 = 0.9994. The results show that it is feasible to approximate
the relationship between Emin and T with the modified inverse
function. Without loss of generality, the increase in PV power
is assumed to reduce the net energy consumption linearly. This
assumption is based on the reality that PV power is not too
sufficient to lead to great energy waste. Therefore, the overall
utilization rate of PV power will not decrease significantly
due to the increase of the PV power within the scope of our
research interest. This suggests that gk(P̄

PV) = Dk +EkP̄
PV. The

same special case is used for verification. The results are shown
in Figure 2B The parameters are Dk = 45.7,Ek = −0.1013. The
performance isR2 = 0.9997.These results imply that themodified

inverse and linear function can separately estimate the energy
consumption versus time and PV power. Therefore, Emin

k (T, P̄
PV)

can be expressed as Eq. 42 after parameters combination.

Emin
k = Ak +

Bk

Ck +T
+DkP̄

PV (42)

The stochastic PV power can be characterized by different
scenarios and their probabilities. Note that Eq. 42 is explicit
and the term P̄PV is linear. Therefore, we can directly write
the expectation of the objective function for the stochastic
optimization model considering multiple scenarios as Eq. 43
shows.

E(Emin
k ) = Ak +

Bk

Ck +T
+DkE(P̄

PV) = Ak +
Bk

Ck +T

+Dk

W

∑
w=1

pwP̄
PV
w (43)

An example for generating data points and fitting the surface
is shown in Figure 3, which is the result for the inter-station
operation from Station HZZX to Station QDEZ. We select
the real line data of Qingdao Metro Line 11 (22 stations)
and apply the MILP model mentioned above with various
combinations of the time and PV power to obtain a matrix of
3D spatial data points Emin(T, P̄PV), as shown in the black points
in Figure 3A. Then fit the surface according to Eq. 42 using
the least square method to obtain the fitted curve as shown in

FIGURE 2
Fit performance of Emin versus time and PV power. (A1) Fit result of Emin versus time. (A2) Corresponding residual. (B1) Fit result of Emin versus
PV power. (B2) Corresponding residual.
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FIGURE 3
Data fitting results for the inter-station operation from Station HZZX to Station QDEZ. (A) Generated data points and fitted surface. (B) Residual
plot.

TABLE 2 Fitting results ofminimum energy consumption parameters for all inter-station sections on thewhole line.

k Ak Bk Ck Dk R2 Start station End station

1 −27.638 820.116 −41.173 −0.046 0.988 MLL → HZZX
2 8.956 567.623 −49.172 −0.089 0.994 HZZX → QDEZ
3 9.998 602.661 −70.628 −0.092 0.980 QDEZ → QDKD
4 36.456 356.352 −77.293 −0.109 0.971 QDKD → ZC
5 26.457 265.505 −34.316 −0.074 0.993 ZC → KT
6 8.274 1922.959 −65.970 −0.097 0.978 KT → HYDX
7 2.478 536.030 −108.800 −0.125 0.993 HYDX → SBY
8 54.720 463.100 −159.400 −0.153 0.955 SBY → BZ
9 −12.260 3872.000 −112.400 −0.092 0.955 BZ → BJS
10 34.090 4330.000 −203.400 −0.192 0.982 BJS → MS
11 0.145 517.400 −129.800 −0.076 0.960 MS → PL
12 22.550 1059.000 −195.100 −0.144 0.965 PL → ASW
13 5.378 503.080 −119.221 −0.120 0.972 ASW → SDDX
14 −6.874 464.111 −82.393 −0.089 0.970 SDDX → LSGG
15 −30.040 1386.000 −85.320 −0.074 0.967 LSGG → SP
16 −17.990 8346.000 −24.870 −0.109 0.965 SP → BLZX
17 −13.470 3749.000 −85.910 −0.094 0.958 BLZX → WQD
18 23.365 493.865 −122.710 −0.150 0.960 WQD → GY
19 28.760 610.100 −92.670 −0.089 0.969 GY → ZC
20 −6.669 981.600 −119.800 −0.082 0.983 ZC → QGS
21 17.115 2984.563 −98.310 −0.141 0.958 QGS → ASW

the surface in Figure 3A. Figure 3B shows the corresponding
residuals. The fitting parameters and performances for the entire
railway line are shown in Table 2. The abbreviations are the
station names, such as MLL, HZZX, etc. It is observed that
all the R2 values are larger than 0.95, indicating a good fitting
performance.

3.2 Step 1 optimization: timetable

The algorithm of step 1 optimization is shown in
Algorithm 1. The input of step 1 optimization includes the time
window and PV average power for all scenarios. By minimizing
the objective function which is Eq. 44, we can obtain the optimal

allocation of the timetable while ensuring the constraints of total
time and time windows for each section.

min
D−1

∑
k=1

E(Emin
k )

s.t. Tk ≤ Tk ≤ Tk
D−1
∑
k=1

Tk = Ttotal

(44)

In Eq. 44, Tk,Tk are the lower and upper bound of the time
window for the kth inter-station operation, E(Emin

k ) represents the
correspondingminimumenergy consumption expectation.Ttotal
is the total operation time for the entire railway line.
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Algorithm 1. Step 1 Optimization: timetable allocation

Algorithm 2. Step 2 Optimization: train operation and energy management

optimization

3.3 Step 2 optimization: speed trajectory
and energy management

Step 2 is to optimize the train operation and energy flow
management for the entire line through the MILP model for all
inter-station segments. The basic structure of the MILP model
has been provided in Section 2. Step 2 is to apply this MILP
model to all inter-station operations. Therefore, the solutions
of Step 2 are obtained by solving MILP models of different
inter-station operations respectively and connecting them in
sequence. The differences for the models are different starting
and ending position and the operation time for different inter-
station operations. The optimal timetable obtained by step 1, PV
power, altitude, and the speed limit are the model input. The
algorithm of step 2 is shown in Algorithm 2.

3.4 Model solving and algorithm
evaluation

All the results in this paper are obtained by Gurobi academic
solver version 9.1.2 on a computer with CPU of Intel(R)
Core(TM) I3-7100U @ 2.40 GHz. To reduce the computational
complexity, a two-step approach is proposed to decompose large-
scale problems, and the nonlinear constraints are linearized by
the PWL technique.

For step 1 optimization, the problem size is approximately 85
rows and 42 columns, with 189 non-zero variables, 42 continuous
variables and 21 bilinear constraints. The decision variables
related to speed, acceleration, force, and energy are continuous.
The binary variables related to energy flow control and the
variables related to PWL are integer. The solving time is about
oneminute. For step 2 optimization, each inter-station operation
problem is aMILPmodel with a scale of about 135 rows and 3370
columns, 11,724 nonzero variables, 3427 continuous variables,
60 binary variables, and 95 SOS constraints. The solving time of
each inter-station operation ranges from second-level to minute-
level.

It should be noted that in the MILP model, two types of
variables are linearized by the PWL technique. The first type
is the speed-related nonlinear term, and the second type is the
altitude and speed limit related to distance. It should be pointed
out that the second type is necessary because themodel proposed
in this paper is based on time, while the actual altitude and
the speed limit are nonlinear functions related to distance. The
corresponding relationship between time, altitude and speed
limit needs to be established through PWL. To illustrate the
effectiveness of the PWL of speed-related nonlinear terms
to reduce problem complexity without significantly sacrificing
accuracy, the results of step 2 optimization of the MILP model
and the mixed-integer nonlinear programming (MINLP) model
without PWL processing on speed-related nonlinear terms were
compared. The difference between MILP and MINLP model is
that the MINLP model does not introduce SOS2 variables alpha
and beta mentioned above, and directly takes the speed-related
nonlinear terms as decision variables of the model. Numerical
experiments show that there is only a 0.33% difference in the
energy consumption of the step 2 optimization (733.37 MJ for
theMILPmodel and 730.95 MJ for theMINLPmodel).However,
the average solving time of the MILP model is reduced to
9.53% of the MINLP model (149.4 s for the MILP model and
1567.8 s for theMINLPmodel), which significantly improves the
computational efficiency.

In summary, there are two types of PWL in the modeling,
namely, the PWL of speed-related nonlinear terms and the
PWL of distance-related altitude and speed limit. The PWL
of the speed-related nonlinear term significantly improves the
computational efficiency without sacrificing accuracy, and the
PWL of the distance-related altitude and speed limit achieves
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the distance-time correspondence in the time-based model, thus
allowing the spatial constraints to be considered in the time-
based model.

4 Case studies

The data for the following cases including railway line data
such as the length, altitude, speed limit, and operation data
including timetable, time window, dwelling time all come from
Qingdao Metro Line 11. The raw data and source code can be
found in the SupplementaryMaterials S1. The length of Line 11
is 58.35 km and the total operation time including the dwelling is
about 1 h.The first train leaves at 06: 15 and the last train leaves at
22: 00 in 1 day. It can be seen that the operation time includes zero
PV power generation time periods in the morning and at night.
Therefore, the following case analysis is divided into two parts:
without PV power (4.1) and with PV power (4.2). The results
for no PV power are used to simulate very low PV power in the
morning and night.

Historical PV power data is from (Networks, 2014). Sixty
days of data from June 11 to August 10 is used to cluster and
generate three hypothetical weather types. All 60-days data is
presented in Figure 4A. K-means method is used to implement
the clustering (Thomas et al., 2017). The multi-day PV power
data in the same cluster at 1 day’s same moment are averaged,
resulting in one curve, which is considered to be the average
level of PV power for that cluster. The number of clusters is
chosen as three, which is commonly used as the number of
weather classification and can roughly meet the needs of the
forecast (Jie et al., 2015; Zhang et al., 2019). This number should
be selected considering the balance between accuracy andmodel
complexity, also considering the level of weather forecasts that
can be achieved in reality. The clustering results are shown in
Figure 4B.

4.1 Under the scenario without PV power

This case is designed to simulate the train operation in the
morning and evening when the PV power is very low. The PV
input to themodel is always zero. In addition, since the stochastic
PV power is not involved, this case can independently verify the
effectiveness of the proposed two-step approach.

The time table comparison between the original timetable
(MILPmodel) and the optimized timetable (two-stepmodel) are
shown in Figure 5A. The lengths of time windows are all 12 s,
namely ±6 s from the original timetable.The behavior of the ESS
and optimal speed trajectory are shown in Figure 6.

Through Figure 5A, we observe that the optimized result
allocates operation time for each section with total run time
and time window constraints. Figure 6C shows the distance-
based station distribution and the optimal speed trajectory of
the whole line. Figure 6B shows the comparison of the speed
trajectory under two control strategies. In the following case
studies, the term “MILPmodel” refers to the speed trajectory and
corresponding control strategy obtained from the MILP model
on the original timetable. The term “two-step model” refers to
the results of collaborative optimization of timetable and speed
trajectory by the proposed two-step approach. Figure 6A shows
the performance of the ESS corresponding to the results of the
two-step model, including the charging and discharging power
and the state of energy. It should be noted that due to the absence
of PV input in this case, the system state does not change during
the dwelling time. Therefore, the dwelling time is omitted in this
Figure.

Figure 6B indicates that the two-step optimization approach
coordinating the timetable and speed trajectory leads to changes
on the timetable and speed. The energy consumption impact
brought by these two different operations is that for the result
optimized by MILP using the original timetable, the net energy
consumption is 883.73 MJ. It is reduced by 3.2% through the

FIGURE 4
(A) Historical data of PV power in sixty consecutive days. (B) The average power of PV power generation after clustering.
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FIGURE 5
Comparison of the timetable obtained from the MILP model and the two-step model. (A) Under the scenario with no PV power. (B) Under the
scenario with PV power, stochastic optimization results.
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FIGURE 6
(A) Optimized charge and discharge strategy and SOE of the ESS obtained from the two-step model. (B) Comparison of speed trajectory
between the MILP model and the two-step model. (C) Optimal speed trajectory and altitude for the whole line obtained from the two-step
model.

proposed two-step approach, whose net energy consumption is
855.85 MJ.

It can be observed from Figure 6A that the ESS provides
energy when the train is in the traction phase, and the state of
energy decreases. The regenerative braking energy is recovered
in the braking stage, and the state of energy increases.

This case verifies the effectiveness of the proposed two-
step optimization approach in the condition without PV power
generation and shows that the energy consumption can be
further reduced by collaborative optimization of timetable
and train speed trajectory than by simply optimizing speed
trajectory.

4.2 Under the scenario with PV power

In this section, we assume that the train runs between
11:30 and 12:30, and the corresponding PV power data between
this time interval shown in Figure 4B is selected as the input.
The data points with markers are the real PV power data
points. For the intervals in which the exact PV power is not

available, linear interpolation is used to approximate. Therefore,
the three lines inFigure 4B representing three generatedweather
types are regarded as PV power of three scenarios. It should
be emphasized that all the following comparisons of energy
consumption results for different models are based on the
same PV condition. For this reason, the difference in energy
consumption only comes from different models, rather than
different PV power inputs. On this basis, the smaller net energy
consumption means better model performance. Two subcases
are considered, where the first subcase assumes that the weather
forecast information cannot be obtained. In this case, we will
obtain only one set of energy-efficient operation and control
strategies through the two-step stochastic optimization. So
that when running according to this strategy, the expectation
of future energy consumption is minimal. But the actual
energy-saving effect of each day depends on the presence of
specific weather. The results of this situation are shown in the
first following Subsection 4.2.1. In the second subcase, it is
assumed that the weather type information can be obtained.
We can further classify the weather and conduct the two-step
approach under different weather types to obtain energy-efficient
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FIGURE 7
(A) PV power distribution strategy of the MILP model. (B) PV power distribution strategy of the two-step model. (C) SOE comparison between
the MILP model and the two-step model. (D) Speed trajectory comparison between the MILP model and the two-step model.

TABLE 3 The performance of each system for theMILPmodel and the two-stepmodel.

MILP model Two-step model Change

Net energy 794.87 MJ 774.47 MJ ↓2.57%
PV utilization rate 92.40% 92.90% ↑0.50%
Total ESS discharge energy 329.96 MJ 347.05 MJ ↑5.18%
Energy from grid 813.39 MJ 795.09 MJ ↓2.25%

operation and control strategies. In the following description,
the term “weather-type-based two-step model” refers to the two-
step approach according to the corresponding weather type. The
results are shown in the second Subsection 4.2.2.

Then, Monte Carlo simulations of different operation
strategies are carried out for sixty consecutive days. The results
obtained from three models, i.e. MILP model, two-step model,
and weather-type-based two-step model are compared to verify
the model’s effectiveness. The results are shown in 4.2.3.

4.2.1 Forecast information about weather
types is unavailable

In this section, we assume that any forecast information
about future weather conditions cannot be obtained and only

historical PV power data are available. We cluster the data
to generate three scenarios with different probabilities as the
input of two-step stochastic optimizationmodel.The comparison
between the timetable obtained by the two-step model and the
MILP model is presented in Figure 5B. The speed trajectory,
state of energy, and PV power distribution strategy under the
same PV power output condition for the MILP model and the
two-step model are shown in Figure 7. It is worth mentioning
that there is no energy exchange with the train traction power
supply system when the train stops at the station, but the energy
of the PV power generation system can be recovered by the
ESS. Therefore, there may still be changes in the state of energy,
which is reflected in Figure 7C. Table 3 lists the comparison
of indicators for each system. From the perspective of total
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FIGURE 8
The comparison between the optimal speed trajectory obtained from the weather-type-based two-step model under different weather types
and the MILP model.

TABLE 4 Energy-saving performancewhen various weather conditions occur for the two-stepmodel and theweather-type-based two-stepmodel.

Net energy Weather 1 (MJ) Weather 2 (MJ) Weather 3 (MJ)

Weather-type-based two-step model 802.32 741.36 732.26
Two-step model 806.10 759.65 746.55

FIGURE 9
Energy consumption comparison of Monte Carlo simulation for 60-days results of three operation strategies.

TABLE 5 Energy consumption comparison ofMonte Carlo simulationwith different optimization strategies for sixty consecutive days.

MILP model Two-step model Weather-type-based two-step model

Net Energy 47,425.40 MJ 46,501.47 MJ 45,627.47 MJ
Change - ↓1.95% ↓3.79%
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energy consumption, the two-step model reduces the net energy
consumption by 2.57% compared with the result of the MILP
model, which indicates the validity of the proposed two-step
model.

Since there is no initial energy in the ESS and the
energy is recovered and released repeatedly by the ESS during
the entire process. Therefore, the total discharge energy of
the ESS represents the potential of the buffer capacity. The
larger this value represents that the ESS plays a greater role
in the supply of insufficient energy and the absorption of
additional energy. It is noted that this indicator is increased
by 5.18% by the two-step model, which implies that the
proposed two-step stochastic optimization adjusts timetables
and train control strategies to make it more conducive to
the greater role of the ESS, thereby reducing net energy
consumption.

4.2.2 Forecast information about weather
types is available

In this section, we assume that the weather type information
can be predicted. A comparison between the results obtained
by two-step approach and those obtained by weather-type-based
two-step model is conducted. Specifically, the historical PV
power data are clustered to obtain three scenarios, as mentioned
above. The weather-type-based two-step model is executed to
obtain corresponding optimal strategies. In order to evaluate the
performance of two-step model under various weather types, we
operate the strategy obtained by the two-step model in a specific
weather type to simulate the train operates according to the
two-step stochastic optimization result when this weather occurs
in the future. The energy consumption comparison between
results obtained by two-stepmodel andweather-type-based two-
step model is tabulated in Table 4. The corresponding speed
trajectories are shown in Figure 8.

The results show that when the three scenarios appear, the
net energy consumption of the results obtained by the two-step
model is 0.47%, 2.4%, and 2.0% higher than that obtained by
the weather-type-based two step model, respectively. The results
indicate that optimization according toweather classification and
prediction has the potential to further reduce the net energy
consumption.On the other hand, it alsomeans thatmore forecast
information is needed, and the train operation strategy needs to
be more frequently adjusted, bringing more costs and challenges
to practical applications.

4.2.3 Long-term operation monte carlo
simulation

For trains operating from 11: 30 to 12: 30, the Monte
Carlo simulation for sixty consecutive days is conducted to
verify the effectiveness and robustness of the proposed two-
step stochastic optimization model. The following three control
strategies are used for comparison, which are the MILP model,

the two-step model, and the weather-type-based two step
model assuming that the weather type can be predicted. The
net energy consumption of the three operation strategies for
sixty consecutive days is shown in Figure 9. The total energy
consumption is listed in Table 5.

It can be seen from Figure 9 that the net energy consumption
of each day’s optimization results based on weather classification
is always the lowest.This means a better energy-saving effect can
be achieved by considering the weather type, which indicates
the importance of incorporating PV power information into
the optimization model. The results of two-step model are
better than the MILP model most of the time. However, it may
also be worse depending on the specific condition due to the
stochastic characteristic. On the whole, the proposed two-step
stochastic optimization can achieve 1.95% energy consumption
reduction.

The results show that the two-step optimization approach
proposed in this study considering the stochastic PV
power optimizes the timetable, speed trajectory, and energy
management strategy collaboratively. It can achieve energy-
saving in long-term operation compared with the control
strategy obtained by only speed trajectory optimization. The
energy consumption can be further reduced if the weather types
are further considered in the optimization.

5 Conclusion

In this study, a two-step stochastic optimization is proposed
to solve the long-term energy-efficient operation and energy
management problem of the train traction power supply system
integrated with the PV power system and the ESS. The proposed
curve fitting method can estimate the inter-station energy
consumption as an explicit function of operating time and
PV power accurately. Then, the problem of minimizing the
net energy consumption of the whole line is converted to
minimizing the sum of all the inter-station energy consumption,
which reduces the computational complexity.The proposed two-
step stochastic optimization can realize the coordination of the
timetable, train operation control, and energy management,
bringing a better energy-saving effect. The results show the
effectiveness of the model under both with and without PV
power conditions. The Monte Carlo simulation is conducted
for sixty consecutive days to compare the energy consumption
for three operation strategies, which are the proposed two-step
stochastic optimization, MILP using the original timetable,
and two-step optimization considering the weather type
classification. The results demonstrate the potential of the
proposed two-step stochastic optimization in reducing the net
energy consumption of the integrated system for a long-term
operation. Additionally, a better energy-saving effect can be
achieved if combined with the weather information. Selecting a
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reasonable number of scenarios to characterize the stochastic
power of the PV system can achieve the balance of model
complexity, energy-saving effect, PV power prediction cost, and
industrial practicability.

For future work, weather types will be more rigorously
classified, and a larger amount of PV power data under specific
weather types will be extracted to obtain scenarios that can more
accurately characterize the actual situation. The relationship
between scenario number and model complexity and net energy
consumption will be explored to suggest a more reasonable
scenario number.
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