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Wind is a pollution-free renewable energy source. It has attracted increasing attention
owing to the decarbonization of electricity generation. However, owing to the dynamic
nature of wind speed, ensuring a stable supply of wind energy to electric grid networks is
challenging. Therefore, accurate short-term forecasting of wind power prediction plays a
key role for wind farm engineers. With the boom in AI technologies, deep-learning-based
forecasting models have demonstrated superior performance in wind power forecasting.
This paper proposes a short-term deep-learning-based interval prediction algorithm for
forecasting short-term wind power generation in wind farms. The proposed approach
combines the lower upper bound estimation (LUBE) method and a deep residual network
(DRN). Wind farm data collected in northwestern China are selected for this empirical
study. The proposed approach is compared with three benchmark short-term forecasting
approaches. Extensive experiments conducted on the data collected from five wind
turbines in 2021 indicate that the proposed algorithm is efficient, stable, and reliable.
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1 INTRODUCTION

Wind power, a major source of renewable energy, has been widely developed worldwide to
supplement and replace traditional fossil fuels (He and Kusiak 2017; Javed et al., 2020). Owing to
the intermittent and stochastic nature of wind, wind power systems face challenges in terms of
reliability and stability. Thus, high-quality wind power predictions are expected in practice
(Long et al., 2020; Long et al., 2021).

According to a literature review, point estimation plays a dominant role in wind power
prediction. Haykin (1994) experimented with multiple architectures of neural networks to
explore the power of wind-turbine energy prediction. Kelouwani et al. (2004) first used a neural
network and wind speed to forecast wind power based on power curves. Tascikaraoglu and
Uzunoglu (2014) proposed the use of an autoregressive integrated moving average model to
forecast short-term wind power. Ren et al. (2014) applied adaboost-backpropagation to improve
the neural network algorithm and achieved an improved wind power prediction performance.
Wu and Peng, (2017) performed short-term wind power prediction using k-means clustering
with a bagging neural network. Zhang et al. (2016) adopted a probabilistic support vector
machine to predict short-term wind power. Deng et al. (2020) trained deep neural networks
(DNNs) to forecast short-term wind power. Li et al. (2021a) introduced a framework called
ICEEMDAN to decompose wind power time-series data and discovered that the prediction
performance was enhanced. Li et al. (2021b) trained a deep belief network to forecast short-term
wind power and used EWMA control charts to monitor abnormal wind power prediction errors.
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In summary, the point-based prediction of wind power has
already achieved promising performance in practice (Long
et al., 2022).

High-quality wind power forecasting is expected to reduce
uncertainty at various time scales (Ouyang et al., 2017; Huang
et al., 2018; Tang et al., 2020). However, point estimation,
which outputs a deterministic value, fails to provide sufficient
consideration of the prediction uncertainty (Shen and Shen
2018; Ouyang et al., 2020). In comparison, interval prediction
with a certain confidence level is gaining popularity among
scholars and engineers (Shen et al., 2020). Unlike the point
estimation approach, interval prediction quantifies the
uncertainty of wind power and provides probabilistic
estimation in the temporal domain.

Among various interval prediction methods, the interval
prediction model based on the lower and upper bound
estimation (LUBE) (Khosravi et al., 2010) approach has
become the most popular and has attracted considerable
attention. Following the LUBE architecture, a prediction
algorithm with two outputs instead of a single output was
utilized. The two outputs, which represent the upper and
lower bounds, share the same input data vector and hidden
layer. Both the loss function and training strategy are identical
for both outputs (Sun et al., 2020a).

In this paper, we propose a combination of the LUBE
approach with a deep residual network (DRN) for short-
term wind power prediction. The DRN is first modified
with two outputs that represent the upper and lower
bounds of the prediction interval. The LUBE approach was
then utilized to train the DRN algorithm. Here, the coverage
width-based criterion (CWC) was selected as the objective
function to optimize the DRN, and the Adam optimizer was
adopted to optimize the CWC. Field data collected from a wind
farm located in northwest China were used for the case study.

The main contributions of this paper can be concluded as
follows:

• A new approach combining a DRN and the LUBEmethod is
proposed for wind power interval prediction.

• Supervisory control and data acquisition (SCADA) data
considering wind speed, wind direction, ambient
temperature, air density, historic power output, gearbox
bearing temperature, rotor speed, and pitch angle are
utilized as inputs for power interval prediction.

The remainder of this paper is organized as follows. Section
2 introduces the DRN structure, the LUBE approach, other
popular interval prediction algorithms, and evaluation
metrics. Section 3 introduces the dataset and the variables
used for interval prediction. Section 4 presents the
computational results. Section 5 concludes the paper.

2 METHODOLOGY

2.1 Deep Residual Network
DNNs have achieved promising performances in both
classification and regression tasks (Li et al., 2020; Li et al.,
2022). However, in practice, gradient vanishing or explosion
during the training process presents a challenge. The DRN,
which incorporates the residual unit into the DNNs, is capable
of offering superior performance in supervised learning tasks,
such as image classification, target detection, and statistical
anomaly detection (Sun et al., 2020b; Shen et al., 2021; Shen
and Raksincharoensak, 2021).

According to a literature review (He et al., 2016), a single
residual unit can be expressed as follows:

Xl+1 � f(Xl + F(Xl)) (1)

FIGURE 1 | Deep residual network integrated with LUBE approach.
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where Xl and Xl+1 represent the input and output of the residual
unit, respectively; F() denotes the residual function that contains
a convolution operator, batch normalization, and rectified linear
unit (ReLU); and f() represents a ReLU activation function. The
output of the residual function is added to the input and passed
through the ReLU activation function. During the training
process, the gradient of the loss function with respect to any
hidden layer can be derived using the chain rule used in
backpropagation.

Compared with the conventional DNN architecture, the
DRN has two major advantages: first, it does not experience the
problem of gradient vanishing or explosion during the training
process; second, the backpropagation step enables gradient
progression from the deeper layer to the shallow layer. Thus,
the residual characteristics enable a smooth transfer of
information between the deeper and shallow layers. This
guarantees successful training of the DRN in practice.

2.2 Lower Upper Bound Estimation
Approach With Deep Residual Network
A common misconception in practice during interval prediction
is that data follow a certain distribution (Shen et al., 2019).
Although such an assumption can simplify the construction of
prediction intervals (PIs), it can cause other problems concerning
the possible deviation of the data from the pre-assumed
distribution (Ouyang et al., 2019b; Ouyang et al., 2019c).

Khosravi et al. (2010) first proposed the LUBE approach for
interval prediction in 2011. The proposed approach is based on
the PI of neural networks and aims to train neural networks by
minimizing the objective function of the PI. Instead of a single
output for point-based estimation, the LUBE approach involves
two outputs: the upper and lower boundaries of the PI. Here, the
PI includes the predicted values within a certain range, along with
a computed probability as the confidence level, which is based on
historical data. Generally, high-quality interval prediction refers

TABLE 1 | SCADA variables utilized in this study.

Environmental Unit Electrical Unit Mechanical Unit Control Unit

Wind speed m/s Historic wind power MW Gearbox bearing temperature °F Pitch angle °

Wind direction ° Rotor speed rpm
Ambient temperature °F
Air density kg/m3

FIGURE 2 | Changes of CWC at different training epochs.

FIGURE 3 | Changes of CWC at different prediction horizons.
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to the actual measured values that fall within the PI as much as
possible, whereas the PI is as narrow as possible.

In this study, the LUBE approach was incorporated with a
DRN to provide PIs for short-term wind energy. Figure 1 shows
the revised version of the DRN that was applied using the LUBE
approach. Figure 1A shows the general neural network
architecture using the LUBE approach for interval prediction.
It contains an input layer, hidden layer, and two output layers that
represent both the lower and upper boundaries of the PIs. The PI
denotes the interval between the two boundaries, and a correct
prediction implies that the actual value falls within the PI. The
hidden layers of the DRN differ from those in conventional
neural networks. Instead of a layer with hidden nodes (see
Figure 1B), the DRN contains residual blocks as hidden
layers. As shown in Figure 1C, each residual block inputs the
data into a residual function, and the output of the residual
function is concatenated with the original input. It then passes
through the ReLU activation function, as described in
Section 2.1.

According to Figure 1, the main advantage of the proposed
method that uses a DRN and the LUBE approach for short-term
wind power forecasting is evident: it simplifies the process of PI

construction. The LUBE approach uses a feed-forward strategy to
estimate the lower and upper boundaries of the PI. By outputting
two point forests that represent the two boundaries, the actual
short-term wind power is expected to fall within the PI.

2.3 Other Interval Prediction Algorithms
Besides the DRN, there are other popular benchmark interval
prediction algorithms, such as artificial neural networks
(ANN), extreme learning machines (ELM), and kernel
extreme learning machines (KELM). They achieved
promising results in other time-series interval prediction
tasks and were also selected and trained in this study for
comparative analysis against the proposed DRN using the
same LUBE approach.

The ANN is a nonparametric supervised learning analytic
algorithm, that is, widely used for classification and regression
tasks (Li et al., 2018). It is capable of performing high-quality
predictions, as it is modeled after the processes of learning in a
cognitive system. The ANN can accurately and effectively extract
patterns from the dataset and construct mapping relationships
between inputs and outputs. A typical ANN architecture contains
an input layer, one or more hidden layers, and an output layer.
The output of each neuron inside the layers is based on the
neuron of the previous layer and its associated weights, which can
be expressed by Eq. 2:

αij � fj
⎛⎝∑n(j−1)

k�1 (αk(j−1) p ωki(j−1)) + bij⎞⎠ (2)

where αij and bij are the output and bias of the ith neuron in the
jth hidden layer, respectively; αk(j−1) and ωki(j−1) represent the
output and weight of the neuron from the previous layer,

FIGURE 4 | Constructed PIs and actual target wind power of the test dataset.

TABLE 2 | Summary of the interval prediction performance.

Algorithm Evaluation metrics

PICP(%) Std (%) PINAW (%) Std (%) CWC Std

ANN 91.37 5.82 16.83 3.71 0.24 0.03
ELM 89.76 4.97 23.97 5.82 0.27 0.06
KELM 92.01 4.64 15.88 3.13 0.19 0.04
DRN 92.45 5.24 13.23 4.29 0.18 0.03
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respectively; n(j−1) is the total number of neurons in layer (j − 1)
and fj() is the activation function of the jth layer.

An ELM is a novel single-hidden-layer feedforward neural
network (SLFN) proposed by Huang et al. (2018). It randomly
initializes the linking weights and biases, and contains a limited
number of hidden neurons defined by the users. With only one
hidden layer, the ELM is capable of obtaining unique optimal
output weights using only a one-step calculation, and thus obtains
a high training speed. For a given dataset with input xj and target
output tj, the ELM in a regression task can be expressed by Eq. 3
and the optimization task can be expressed by Eq. 4:

oj � ∑n

i�1βiG(xj,ωi, bi) (3)
min
β

����oj − tj
���� (4)

where ωi and bi are the weights and bias for the connection
between the ith node in the hidden layer and the input vector xj,
respectively; βi is the weight vector between the ith node in the
hidden layer and the output; and oj is the prediction output from
the ELM. Here, Eq. 3 can be written as Hβ � T, where H is the
hidden layer output matrix and T is the target output matrix. The
solution is expressed in Eq. 5 as follows:

β̂ � H†T (5)
where H† is the Moore–Penrose pseudoinverse of the hidden
layer output matrix of H.

KELM is an improved version of the ELM and has a higher
generalization capacity and less chance of overfitting (Iosifidis
et al., 2015). Compared with the vanilla ELM, it introduces a
kernel function k(xi, xj) when the feature mapping H is
unknown. Here, the kernel function k(xi, xj) is a substitution
of the ELM’s arbitrary feature mapping, and the output weight
becomes robust. The kernel serves as a function to describe the
relationship between data points which enhances the
performance of feature mapping for ELM. The generalization
capacity on both regression and classification problem is
improved by introducing the kernel function in ELM. Various
kernel functions can be utilized for KELM, such as polynomial,
linear, and radial basis function (RBF) kernels. In practice, the
RBF kernel demonstrates considerable learning capacity in
interval prediction tasks with fewer hyperparameters. Thus,
the RBF kernel was considered in this task, and it can be
expressed by Eq. 6:

k(xi, xj) � exp( − g
����xi − xj

����2) (6)
where g is the kernel parameter.

2.4 Objective Function and Evaluation
Metrics
Once the PIs are constructed, it is essential to evaluate the
quality of their output from interval prediction algorithms. In
general, interval prediction algorithms aim to predict an
interval that encompasses predicted points under a certain
confidence level (Ouyang et al., 2019a). Thus, the prevailing

two dimensions, i.e., the coverage rate and interval width, are
key quantitative metrics for the quality evaluation of the
constructed PIs.

First, the PI coverage probability (PICP) (Khosravi et al., 2011)
was utilized to measure the coverage rate. The PICP can be
computed using Eq. 7:

PICP � 1
N

∑N

i�1ci (7)

where N is the total number of samples measured and ci is the
number of samples that fall into the PI. The value of ci is binary
and is either 0 or 1.

Second, the PI normalized average width (PINAW) (Kavousi-
Fard et al., 2015) was introduced in this study to evaluate the PI
width. The PINAW can be computed as follows:

PINAW � 1
RN

∑N

i�1(ui − li) (8)

whereN is the total number of samples measured, ui and li are the
upper and lower bounds of the ith sample, respectively, and R is
the total range of the prediction target.

In addition, the coverage width-based criterion (CWC)
(Taormina and Chau, 2015), which considers both the PI
width and coverage, was computed in this study. The
computation of the CWC can be achieved using Eq. 9.

CWC � PINAW(1 + γ(PICP)e−η(PICP−μ)) (9)
where the parameters η and μ are used to define the penalty term
e−η(PICP−μ) to maintain the balance between PINAW and PICP;
and γ() is used to reduce the risk of the PI constraint violation
during the training process. The CWC is utilized as the objective
function in this study.

3 DATASET SUMMARY

Field data were collected from a wind farm located in
northwestern China in 2021. The wind farm contains more
than 200 wind turbines, all of which have a rated power of
16 MW. To manage the wind turbines, the wind farm installed
a standard SCADA system, which is principally used for
performance monitoring. The SCADA system provides a
considerable amount of data collected at a 10-min
resolution. In total, more than 100 variables were collected
by the SCADA system in real time, and they varied widely in
terms of scale and type. The top eight SCADA variables related
to wind power were selected in this study and are summarized
in Table 1.

According to Table 1, eight prevailing SCADA variables
were utilized as inputs for the interval prediction task in this
study. Half of the selected variables were environmental
factors and the others were either the electrical or
mechanical characteristics of the wind turbine measured.
The selected variables overlap with those used by the
majority of related studies, confirming the validity of the
selection.
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4 EXPERIMENTAL RESULTS

To perform short-term wind power forecasting, experiments were
conducted to train the DRN following the LUBE approach. In this
study, the entire day dataset was utilized as the training dataset and
the 10-min following wind power as the target output. The CWC
was selected as the objective function, and theAdamoptimizer tuned
the hyperparameters of the DRN.

Figure 2 displays the training process of the DRN together with
those of three other benchmark interval forecasting algorithms:
ANN, ELM, and KELM. All the tested interval forecasting
algorithms were trained using the LUBE approach, as described
in Section 2.2. In total, 100 training epochs were set for all the
interval forecasting algorithms. It can be observed that using DRN,
the CWC converges around the first 20 epochs, which is significantly
higher than the CWC from other interval prediction algorithms.
This demonstrates the superiority of the proposed interval
prediction approach using the DRN.

In addition, this study also explored the relationship between the
prediction horizon and CWC.Here, as see Figure 3, instead of single
10-min ahead power forecasting, we also tested the interval
prediction performance of multiple horizons from 20-min ahead
to 200-min ahead. Intuitively, the CWC for all the algorithms
escalates as the prediction horizon increases. Comparatively, the
CWC values of DRN escalate slower than those of the other
algorithms, which confirms its outperformance in interval
prediction tasks in longer prediction horizons.

Finally, 10-min ahead short-term wind power forecasting was
performed on the test dataset, as presented in Figure 4, which
includes the interval forecasting outcome from a whole day in four
different seasons. The PIs denote the 95% confidence interval within
which the actual power falls, and the target represents the measured
wind power according to the SCADA system. A summary of interval
forecasting on the test data is provided in Table 2.

As summarized in Table 2, all the tested algorithms in this study
were trained using the LUBE approach and examined using the same
test dataset. The proposed DRN produced the highest PICP and the
lowest PINAW and CWC values. All evaluation metrics were
computed as mean and standard deviation. The computational
results confirmed the superiority of the proposed approach.

5 CONCLUSION

In this paper, we propose an interval prediction approach that
provides probabilistic short-term wind turbine power
generation. SCADA data at 10-min resolution were
collected from a wind farm in northwestern China for the
case studies. A DRN integrated with the LUBE approach was
proposed in a short-term interval forecasting framework. A
comparative analysis was performed with three other popular
interval prediction algorithms. The computational results
confirmed that the interval prediction error of the short-
term wind power increased as the prediction horizon
became more distant. The proposed approach using a DRN
produced the best results for power interval prediction. The
application of this model requires the development of new
wind turbine control approaches.
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