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The variability of power production from renewable energy sources (RESs)

presents serious challenges in energy management (EM) and power system

stability. Power forecasting plays a crucial role in optimal EM and grid security.

Then, accurate power forecasting ensures optimum scheduling and EM.

Therefore, this study proposes an artificial neural network- (ANN-) based

paradigm to predict wind power (WP) generation and load demand, where

the meteorological parameters, including wind speed, temperature, and

atmospheric pressure, are fed to the model as inputs. The normalized root

mean square error (NRMSE) and normalized mean absolute error (NMAE)

criteria are used to evaluate the forecasting technique. The performance of

ANN was compared to four machine learning methods: LASSO, decision tree

(DT), regression vector machines (RVM), and kernel ridge regression (KRR). The

obtained results show that ANN provides high effectiveness and accuracy for

WP forecasting. Furthermore, ANN has proven to be an interesting tool in

ensuring optimum scheduling and EM.
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1 Introduction

In power systems, the energy balance represents a serious challenge for grid operators

to ensure grid stability. Usually, this balance is ensured by continuously adjusting the load

demand and controlling the power generation through an energy management system

(EMS) (Aoife et al., 2011).

OPEN ACCESS

EDITED BY

Francesco Castellani,
University of Perugia, Italy

REVIEWED BY

Khamphe Phoungthong,
Prince of Songkla University, Thailand
Stefano Cacciola,
Politecnico di Milano, Italy

*CORRESPONDENCE

Majdi Mansouri,
majdi.mansouri@qatar.tamu.edu

SPECIALTY SECTION

This article was submitted to Wind
Energy,
a section of the journal
Frontiers in Energy Research

RECEIVED 17 March 2022
ACCEPTED 23 September 2022
PUBLISHED 31 October 2022

CITATION

Jamii J, Mansouri M, Trabelsi M,
Mimouni MF and Shatanawi W (2022),
Effective artificial neural network-based
wind power generation and load
demand forecasting for optimum
energy management.
Front. Energy Res. 10:898413.
doi: 10.3389/fenrg.2022.898413

COPYRIGHT

© 2022 Jamii, Mansouri, Trabelsi,
Mimouni and Shatanawi. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 31 October 2022
DOI 10.3389/fenrg.2022.898413

https://www.frontiersin.org/articles/10.3389/fenrg.2022.898413/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.898413/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.898413/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.898413/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.898413/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.898413&domain=pdf&date_stamp=2022-10-31
mailto:majdi.mansouri@qatar.tamu.edu
https://doi.org/10.3389/fenrg.2022.898413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.898413


EMSs are automation systems that gather energy data and

make it available to users through monitoring tools and energy

quality analyzers (Cristian et al., 2014). In addition, supervisory

control and data acquisition (SCADA) systems, considered the

heart of EMSs, carry out the data acquisition, update the data

system through alarm processing, update the user interface, and

execute control actions (Gregor et al., 2011). In renewable energy

systems, the SCADA system allows access to the online data from

sensors installed at the distributed generators and failure

detection to improve the overall system reliability (Wenxian

et al., 2013). In addition, the introduction of energy storage

and EMS, together with the active involvement of users (Zafar

et al., 2018) and the “spread” of electricity to cover other energy

vectors (the transportation sector), are all considered to be

complementary solutions for energy satisfaction. Apparently,

the coordination of such smart grids implies high levels of

complexity and requires advanced, intelligent EMS that can

cope with the intermittency of RES while supporting cost-

efficient sizing and operation of all assets and agents while

succeeding in satisfying load demand at all times. In this

context, a critical attribute for the optimized management of

such integrated energy solutions is forecasting extended to

capture different variables and microgrid aspects such as RES

power generation (mainly wind and solar power), load demand,

and electricity prices. Predictions with regard to this information

are considered critical for providing meaningful EM services for

all agents (operators, producers, and end users) (Tao et al., 2020).

Such forecasting models enable uncertainty minimization for

both the demand and production sides, along with an optimized

operation of the different system components on a day-ahead

basis. In other words, renewable energy production can be

increased, storage devices can be optimally operated, and EMS

strategies become more flexible, ensuring lower power system

operation costs.

In this respect, this study focuses on forecasting wind energy

production and demand power for optimal EM. Forecasting

power models are generally divided into two main groups:

physical and statistical models. The statistical approach (Ke

et al., 2014; Morgan, 2015) is based on historical data and

their statistical relationship with meteorological predictions

and measurements from SCADA. In addition, the statistical

forecasting approach can be used in numerical weather

prediction (NWP) data. NWP models introduce weather

forecasts, such as speed, temperature, precipitation, humidity,

pressure, and solar irradiation. However, the physical approach

presented by Landberg (1999) focuses on integrating physical

aspects into the model, such as information about terrain and

properties of energy source. Besides, there are different time

horizon methods of power forecasting, which are generally

classified into three main scales. The very short-term forecasts

(up to 9 h) are intended to operate in real time. Statistical

methods, such as Kalman filters, autoregressive with

exogenous input (ARX), and autoregressive moving average

(ARMA), have been used in short-term forecasting (Lei et al.,

2009). As these methods are merely based on past production,

they are generally not useful for longer horizons. Short-term

forecasts (72 h) (Aoife et al., 2011) are useful in power systems for

unit commitment and scheduling and for electricity markets

where renewable sources and storage systems can be traded and

hedged.

In addition, the study presented by Hua and Zhenging (2020)

was based on a hybrid short-term wind power (WP) forecasting

model that combines data processing, multiple parameters

optimization, and multi-intelligent techniques for power

forecasting.

Medium-term forecasts and predictions (3–7 days)

(Alexandre et al., 2008) are applied to schedule distributed

generator maintenance, unit commitment, and maintenance of

thermal generators and plan energy storage operations.

Cincotti et al. (2014) proposed different techniques for wind

speed forecasting, such as the discrete-time univariate

econometric model, support vector machine (SVM), random

forest (RF), decision tree (DT), multilayer perceptron (MLP),

convolutional neural network (CNN), and long short-term

memory (LSTM). The results presented in that paper showed

that the SVM methodology gives better forecasting accuracy for

price time series. However, the performance of the Wind Net

model was higher (lower MAE and RMSE values) compared to

that of SVM, RF, DT, MLP, CNN, and LSTM architectures. In

addition, Machine learning (ML) methods, including ANN,

SVM, nearest neighbor search, and RF, were applied in earlier

studies (Chiou and Ping, 2018; Radhia et al., 2019) for fault

diagnosis. Jiang et al., 2013 combined SVM and cuckoo search

FIGURE 1
Structure of an energy management system (EMS).
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(CS) for short-term wind speed forecasting. In the latter work, CS

was used to adjust the parameters of SVM, and the experimental

results proved that the performance of CS is higher compared to

that of particle swarm optimization. Zhang et al. (2017)

integrated three different methods to predict wind speed: the

ensemble empirical mode decomposition, adaptive neural

network-based fuzzy inference system, and seasonal

autoregression integrated moving average (SARIMA). The

authors showed that the hybrid wind speed prediction models

present an adequate prediction performance.

Moreover, Daniel et al. (2019) developed an advanced

forecasting system in the framework of the TILOS project in

horizon 2020, where a system that contains a solar source, wind

generator, and load has been studied. They proposed a reliable

prediction of the power of distributed generators (solar power

and WP) and load demand. The ANN and Support Vector

Regression (SVR) techniques have been used to predict load

demand. The statistical evaluation indices, such as the symmetric

mean absolute percentage error and the coefficient of

determination (R2), are applied to evaluate the prediction

model. The results show that prediction models present

remarkable forecasting accuracy with very high scores.

In addition, Amirhossein et al. (2020) addressed the problem

of large-scale WP forecasting using ML techniques (DT,

boosting, and bagging), where the simulation results showed

that the developed learning methods could forecast the WP at

different heights of the wind turbine. The simulation results

revealed that using longer time intervals and height extrapolation

leads to long-term Wind Power Forecasting (WPF) using tree-

based learning algorithms considerable accuracy degradation in

the forecasted models. Moreover, Zhi et al. (2016) applied an

ANN inference system for electricity consumption forecasting to

ensure an optimal EM. Dangho (2020) applied an ANN for

short-term WP prediction. This study aims to improve the

forecasting accuracy of such simple and cost-efficient methods

by combining the measurements of a sample building and the

approximate energy consumption of a target building. Banafshel

(2016) proposed using the ANN-based model in WP forecasting

with numerical prediction to exploit the ability of ANNmodels to

find the most effective parameters to forecast generated WP in

mountainous regions in Canada. In Banafshel (2016), a

comparative study of three forecasting techniques based on

NN models was presented, showing that the intelligent

mechanism based on NN performs well for WP forecasting.

This study presents short-term and medium-term

forecasts of WP generation and power demand (load

demand) in grid-connected wind energy systems using an

artificial neural network (ANN). A comparison study is

developed between ANN and different machine learning

techniques. The study is organized as follows: Section 2

presents a brief overview of EMSs; Section 3 presents WP

and power demand forecasting techniques based on ANN;

Section 4 discusses the obtained results; and Section 5

concludes the paper and presents some future directions.

2 Energy management system

The EMS is performed at the control system level,

typically called system control centers, which aims to

ensure the security and stability of electric systems.

Usually, a SCADA system is installed as an interface

between the EMS and the power system, which enables the

acquisition and collection of data from each production unit.

The EMS is divided into several levels depending on the

considered time scale. The first level ensures the sizing of the

installation, where the life of the installation is considered as

FIGURE 2
Structure of ANN

FIGURE 3
ANN architecture for WP generation forecasting.
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the time scale (Benoit et al., 2013). The second level is devoted

to performing the annual planning according to the periods

of the year. Thus, the annual production schedule depends on

the demand and the maintenance forecast. The third level

performs the production planning during a time scale

ranging from 1 day to 1 week. This step consists of

determining the plant’s production plan based on the data

from the forecast and the constraints inherent to the

technologies used. Thus, real-time supervision is the last

level ensuring the storage power requirement to guarantee

the system services (frequency and voltage). Figure 1

illustrates the general structure of an EMS. This study

focuses on the third-level operation by presenting the

modeling and forecasting of WP generation.

3 Modeling of the wind turbine

The wind energy conversion system has gained wide

attention from the scientific and industrial research

community (Abdelmelek et al., 2020). The WP production

variability is mainly caused by the meteorological conditions’

changes, such as wind speed, pressure, and temperature. The

variation of these parameters presents a significant uncertainty

that can provide a rapid fluctuation in WP generation.

The per unit surface power output is modeled as follows

(Jannet et al., 2021):

Peol � 0.5ρCpSv
3. (1)

Cp is the ratio of the power extracted by a wind turbine

relative to the energy available in the wind speed (Andreea et al.,

2010). Cp is a nonlinear function expressed as follows:

Cp � 0.5(151
λi

− 0.58β − 0.002β2.14 − 10)e−18.4
λi

λi � 1
1

λ − 0.02β
− 0.003

β3 + 1

, (2)

where ρ is the air density, Peol is the power extracted from the

wind turbine, v is the wind speed in m/s, S is the area swept by

the rotor of the wind turbine in m2, λ is the speed of the wind

turbine, and β is the pitch angle (inclination of the reference

axis with respect to the plane of rotation).

FIGURE 4
Architecture of ANN for forecasting demand power.

FIGURE 5
Wind speed profile (1 day).
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The density of dry wind is sensitive to pressure and

temperature (Ofualagba and Ubeku, 2008; Marcel et al., 2017;

Valdmer et al., 2021):

ρ(P, T) � P

287.06T
, (3)

T � 273.15 + θ. (4)

Wind density is expressed as a function of atmospheric

pressure, temperature, and relative humidity as follows

(Marcel et al., 2017; Oludare et al., 2019):

ρ(P, T,Hr) � 1
287.06

(P − 230.617Hr*

exp ( 17.5043θ
θ + 241.2

))
, (5)

Hr � P

Psat
.100, (6)

Psat � 6110.213 exp(17.5043θ
θ + 241.2

), (7)

whereHr is the relative humidity, P is the pressure, and Psat is the

saturation pressure. Finally, the WP is given by

Peol � 0.5
1

278.06T
(P − 230.617Hr*

exp(17.5043θ
θ + 241.2

)Cpv
3

. (8)

4 Power forecasting

As already mentioned, one of the essential features for

optimized EM of the power system with high shares of RES is

the incorporation of advanced forecasting models. Such models

enable uncertaintyminimization for both the load demand and the

production sides. Furthermore, they can optimize the power

scheduling in short-term, intra-day, and day-ahead dispatch

scheduling. In this context, production from renewable energy

sources (RESs) can be increased, and storage devices can be

FIGURE 6
Temperature profile (1 day).

FIGURE 7
Pressure profile (1 day).
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FIGURE 8
Wind power generation prediction (1 day).

FIGURE 9
Load demand prediction (1 day).

FIGURE 10
RMSE for wind power forecasting using 10 hidden neurons (1 day).
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optimally operated. Power production forecasting is also needed to

predict the amount of power to be fed to the grid over the following

hours and days.

4.1 Artificial neural network-based
forecasting

ANNs are a technology based on studies of the brain andnervous

system (Stevan et al., 2003; Khaled et al., 2022). Then, ANN emulates

a biological neural network but uses a reduced set of concepts from

biological neural systems. Specifically, the ANN models simulate the

electrical activity of the brain and nervous system. Typically, the node

is arranged in a layer or vector, with the output of one layer serving as

the input to the next layer and possibly other layers (Oludare et al.,

2019). A node may be connected to all or a subset of the nodes in the

subsequent layer. During the learning process, the input values to a

node are multiplied by a connection weight wi,j that simulates the

strengthening of neural pathways in the brain. After learning, the

ANN performs the validation phase to select the ANN results.

Then, it proceeds to the test phase to confirm the performance of

the results.

4.2 ANN structure

The ANN structure consists of three layers (input, hidden,

and output layers), where each layer consists of sets of nodes.

The input layer receives network inputs, the hidden layer

processes the information, and the output layer provides the

network response. The number of neurons in the input layer

equals the number of inputs. Similarly, the number of output

layer neurons corresponds to the number of outputs of the

ANN. However, the number of neurons in the hidden layer is

determined experimentally. It consists of several experiments

by varying the number of neurons in the hidden layer.

According to Hassoum (1995), a simple ANN architecture

gives a good prediction compared to a complex ANN

structure. Moreover, every two neurons of successive layers

are interconnected through a signal of weight wij. Each neuron

processes the information through an activation function f and

sends it to the neurons of the next layer. The sigmoid activation

function is the most frequently used, as it is a nonlinear

function that can be differentiated (Henrique et al., 2001).

This function is a logistic function, it varies from 0 to 1, and

its expression is given by

f � 1
1 + exp(x). (9)

The weight equation is expressed as

w � wij + Δwij. (10)

The signal weight adjustment equation is written as follows:

Δwij � α ei xj. (11)

FIGURE 11
RMSE for load demand forecasting using 10 hidden neurons (1 day).

TABLE 1 Evaluation of wind power prediction for 1 day.

MAE (%) RMSE (%)

3 hidden nodes 11.63 8.58

5 hidden nodes 7 5.3

10 hidden nodes 5 3.6

TABLE 2 Evaluation of power demand prediction for 1 day.

MAE (%) RMSE (%)

3 hidden nodes 10.63 12.58

5 hidden nodes 7.7 9.3

10 hidden nodes 6.7 4.96
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FIGURE 13
Pressure profile (7 days).

FIGURE 14
Temperature (7 days).

FIGURE 12
Wind speed (7 days).
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The prediction error is expressed as

ei � y
∧(t + k) − y(t + k). (12)

The linear activation function used for the output layer

allows a simple summation of the signals received by the

output layer to respond to the ANN. The output of the neural

network is computed by

ŷ(t + k) � fs(∑wxj). (13)

Figure 2 represents the general structure of an ANN.

4.2.1 Wind energy forecasting with ANN
WP forecasting is required to estimate the amount of

wind energy that can be extracted from wind farms. It is

essential to choose parameters such as network inputs and

outputs, the number of hidden layer neurons, activation

functions, and learning techniques to implement an ANN.

In this study, three layers are used for WP forecasting. The

input layer consists of three neurons representing wind

speed, temperature, and atmospheric pressure. The

output layer comprises a single neuron, represented by

the predicted WP. Figure 3 presents the proposed ANN

architecture with a three-layered backpropagation model

for WP forecasting.

4.2.2 Artificial neural network-based power load
demand forecasting

The power demand is also characterized by its high

uncertainty. It depends on different factors, such as time,

weather, and other random effects. However, for power

system planning purposes, the analysis and prediction of

power demand variation. For wind production, power

demand variations exist in all time scales (short-,

medium-, and long-term), and system actions are needed

to maintain the generation-demand balance. For power

FIGURE 15
Wind power forecasting (7 days).

FIGURE 16
Load demand prediction (7 days).
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demand forecasts, numerous variables directly or indirectly

affect the system’s accuracy. Engene and Dora (2005)

introduced several long-term (month or year) load

forecasting methods, which are very important for

planning and developing future generation, transmission,

and distribution systems. Maria et al. (2014) proposed a

long-term probabilistic load forecasting method with three

modernized elements: predictive modeling, scenario

analysis, and weather normalization. Long-term and

short-term load forecasts play important roles in

formulating secure and reliable operating strategies for

the electrical power system. In this study, we develop an

ANN model for load power forecasting. The ANN model is

composed of one input layer represented by

temperature values (obtained from weather forecast), one

hidden layer (the number of neurons is determined by a

FIGURE 17
RMSE for wind power forecasting using 10 hidden neurons (7 days).

FIGURE 18
RMSE for load demand forecasting using 10 hidden neurons (7 days).

TABLE 3 Evaluation of wind power prediction for 7 days.

NMAE (%) NRMSE (%)

3 hidden nodes 11.5 10.58

5 hidden nodes 7 5.3

10 hidden nodes 5 2.05

TABLE 4 Evaluation of power demand prediction for 7 days.

NMAE (%) NRMSE (%)

3 hidden nodes 13.63 12.58

5 hidden nodes 9.65 8

10 hidden nodes 6.63 4.06
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trial-and-error method to minimize the forecast

errors from the training set), also the output layer is

defined by the load demand prediction. Figure 4

represents the architecture of ANN for forecasting load

demand.

4.2.3 Evaluation of the proposed ANN
Two main criteria are frequently used to evaluate the

performance of the proposed ANN algorithm: mean absolute

error (MAE) and root mean square error (RMSE) (Demuth et al.,

2000). The expression of the error quadratic normalized is defined by

RMSE �
������������
1
n
∑n
i�1
(y∧ k − yk)2√

. (14)

The expression of the mean quadratic error normalized is

obtained by

MAE � 1
n

�������∣∣∣∣y∧ k − yk

∣∣∣∣√
, (15)

where ŷk and yk represent the predicted and the

measured outputs, respectively, and n defines the number of

iterations.

5 Results and discussions

During this study, perceptrons (Abdelhameed et al., 2021)

with a single hidden layer of sigmoid units and linear outputs

are used. The influence of the number of inputs and the

number of hidden nodes in the ANN response is studied to

implement the network architecture (Aoife et al., 2011). A set

of data inputs (wind speed, temperature, and pressure),

randomly chosen, were used during this process. Each

data sample of this ensemble was divided into two subsets:

one to train the networks and the other to test the

generalization ability of the trained networks. Then, 70%

of the dataset was employed for training, and the

remaining 30% served for validation purposes. The

sequence of RMSE minimization tends towards to

consistent solution after running it for some iteration; in

this paper iterations are performed to get consistent solution

to get an optimum output (power forecasting). The

forecasting results are obtained through the Neural

Network Toolbox of MATLAB.

5.1 Short-term forecasting

Short-term forecasting was implemented to predict WP

generation and power demand (load demand). Forecasting is

obtained every 30 min a day ahead (24 h). The plots in Figures

5–7 show the selected inputs (wind speed, temperature, and

pressure), whereas the predicted WP generation and load

demand are represented in Figures 8, 9.

The day-ahead (24 h) RMSE for WP generation and load

demand forecasting (10 numbers of hidden nodes) are shown in

Figures 10, 11.

Tables 1, 2 present the evaluation of the performance of WP

generation and power demand predictions based on the RMSE

and MAE criteria during 24 h.

These results show that the short-term forecasting accuracy

for WP is better when the number of nodes is higher (10 nodes

compared to 3 nodes), the same as obtained for load demand

TABLE 5 Performance comparison of short-term wind power production and load demand prediction using different ML techniques.

Short-term
forecasting

LASSO DT RVM (%) KRR (%) ANN (%)

Wind power forecasting RMSE 5.89% 4.895% 3.22 5.2 3.6

NMAE 7.89% 5.93% 5.8 6 5

Load power RMSE 6.93% 4.84% 4.78 5 4.90

Forecasting NMAE 7.33% 6.88% 5.66 7 6.7

TABLE 6 Performance comparison of medium-term wind power production and load demand prediction using different ML techniques.

Medium-term
forecasting

LASSO DT RVM (%) KRR (%) ANN (%)

Wind power forecasting RMSE (%) 4.34% 3.9% 3.09 4.9 2.05

NMAE (%) 6.94% 5.80% 5.36 7.1 4

Load power RMSE (%) 5.58% 3.08% 3.2 5.04 4.06

Forecasting NMAE (%) 9.581% 6.67% 6.05 7.44 6.63
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prediction. Notably, the number of hidden units was limited to

10 as no improvements were absorbed with many hidden units.

Moreover, the results from the ANN model for WP prediction,

which uses three inputs (wind speed, temperature, and pressure),

ensure 18% more accurately than the ANN model for demand

power predictor with only input (temperature).

5.2 Medium-term forecasting

As seen earlier, medium-term forecasting is used for 1 week up

to 1 year and is applied formaintenance scheduling andplanning. In

this study, the medium-term power prediction scheme was

implemented to predict the generated power every 30 min. The

plots in Figures 12–14 represent the wind speed variation,

temperature, and pressure profiles for a week (inputs), whereas the

WP and load demand predictions are represented in Figures 15, 16.

The 7-day RMSE for WP generation and load demand

forecasting (with 10 hidden nodes) are shown in Figures 17, 18.

The RMSE of WP and load demand predictions are

significantly reduced compared to the short-term forecasting

case due to the effect of the sudden change in wind speed,

temperature, or pressure on the ANN accuracy.

Tables 3, 4 present the evaluation of the performance of WP

generation and power demand predictions based on the RMSE

and MAE criteria for 7 days.

The number of nodes on the hidden layer of the ANN

increasedsequentiallytoreachtheoptimumnumberof10(Figures17,18),

resultingina53%improvementintheforecastaccuracycomparedtothebasicANN

withthreehiddennodes.Moreover,addingmorehiddennodesbeyond10didnot

improvetheresultssignificantlyandcausedtheriskoffittingthenoisemorethanthe

desiredsignal.Theoptimalvaluesareselectedasthelast24 hofmeasuredload

demandwithonlyinput,andRMSEandNMAEareobtainedas4.96%and6.63%,

respectively.Furthermore,theRMSEandMAEin24 hofWPpredictionare3.06%

and5%,respectively.Besides,theoptimalvaluesofRMSEandMAEat1week(7days)

are4.06%and6.63%fordemandpowerforecastingwithtemperatureastheonly

input;then,theyareequalto3.55%and5%forWPprediction.Theseresultsshowthat

addingmoreinputsandutilizingmorecomplexarchitecturecanpossibly

enhancetheperformanceofANN.

In addition, the performance of ANN was compared with

four machine learning methods: LASSO (Volker, 2004), DT

(Kavitha et al., 2016), regression vector machines (RVM)

(Achmad and Bo-Suk, 2007), and kernel ridge regression

(KRR) (Welling 2013). The performance of these techniques is

compared by computing the RMSE and NMAE values. The

results are presented in Tables 5, 6.

The obtained results show that ANN provides high

effectiveness and accuracy for WP forecasting based on the

RMSE and NMAE performance criteria. However, ANN is

significantly better than LASSO and KRR. In contrast, the

differences between ANN and other tested techniques are

not statistically significant. The effectiveness of the ANN

model could be justified by its robustness and ability to

minimize the error in the iterative procedure of parameters

optimization, such as learning rate and weight wi,j, whereas the

other techniques have predefined values of some input

parameters. However, the main disadvantage of the ANN

model over the other four learning methods is its slower

learning due to a larger number of iterations needed to

reduce the error of forecasting with different activation

functions. As a result, the good performance of the ANN

model can reduce the fluctuation of wind energy production

and load demand. Consequently, the grid operator can ensure

better scheduling and optimum EM.

6 Conclusion

This study presented ANN-based forecasting techniques for WP

generation and load demand predictions for optimum EM in grid-

connectedwind energy systems. Firstly, theWP generationmodel has

been described in detail. In addition, for theWP prediction, the effect

of wind speed, temperature, and pressure on the generated WP has

been discussed. In addition, the performance of the proposed ANN

model was compared to fourmachine learning-based techniques. The

results show that all techniques (ANN, LASSO, DT, RVM, and KRR)

can generally learn fast and ensure accurate power forecasting.

However, the ANN provides the best forecasting accuracy and

outperforms the other methods. Moreover, the ANN model for

WP (three inputs) performs better than the ANN model for load

power forecasting (only input). These results also showed that adding

more samples (medium-term forecasting) can enhance the

performance of the ANN model compared to the short-term

forecasting case. Finally, better forecasting for WP and load

demand ensures an optimum EM.

Data availability statement

The raw data supporting the conclusions of this article

will be made available by the authors without undue

reservation.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers in Energy Research frontiersin.org12

Jamii et al. 10.3389/fenrg.2022.898413

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.0.13.61/fenrg.2022.898413


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdelhameed, I., Syedali, M., Sherif, S. M., Ghoneim, S. S. M., Al-Harthi, M. M.,
Ibrahim, T. F., et al. (2021). Wind speed ensemble forecasting based on deep
learning using adaptive dynamic optimization algorithm. IEEE Access 10,
125787–125804./ACCESS.3111408. doi:10.1109/access.2021.3111408

Abdelmelek, K., Mansour, H., Mohamed, F. H., Majdi, M., Hazem, N., and
Mohamed, N. (2020).Hidden Markov model based principal component analysis for
intelligent fault diagnosis of wind energy converter systems. Renewable energy,
Elsevier. doi:10.1016/j.renene.2020.01.010

Achmad, W., and Bo-Suk, Y. (2007). Support vector machine in machine
condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 21,
2560–2574. doi:10.1016/j.ymssp.2006.12.007

Alexandre, C., Antonio, C., Jorge, N., Gil, L., Henrik, M., and Everlado, F. (2008). A
review on the young history of the wind power short-term prediction. Renew. Sustain.
Energy Rev. 12 (6), 1725–1744. ISSN 13640321. doi:10.1016/j.rser.2007.01.015

Amirhossein, A., Mojtaba, N., Beham, M., Amani, A. M., and Piran, M. J. (2020).
Long term wind power forecasting using tree based learning algorithms. IEEE
Access 8, 151511–151522. ACCESS.2020.3017442. doi:10.1109/access.2020.3017442

Andreea, P., Dumitru, P., and Pierre, B. (2010). Modeling and control of wind
turbines. LSS2010 (12th LSS symposium, Large Scale systems: Theory and Applications).

Aoife, M. F., Paul, G. L., Antonino, M., and Eamon, J. M. (2011). Current methods
and advances in forecasting of wind power generation. Elsevier Renewable Energy.
doi:10.1016/j.renene.2011.05.033

Banafsheh, B. A. (2016). Wind power forecasting using artificial neural networks
with numerical prediction – a case study for mountainous Canada. Master of science.
doi:10.14288/1.0308789

Benoit, R., Arnaud, D., and Christophe, S. (2013). Methodologies for supervision
of hybrid energy sources based on storage systems – a survey.Math. Comput. Simul.
91, 52–71. doi:10.1016/j.matcom.2012.06.014

Chiou, J. H., and Ping, H. K. (2018). A short-term wind speed forecasting model
by using artificial neural networks with stochastic optimization for renewable
energy systems. energies 11, 2777. doi:10.3390/en11102777

Cincotti, S., Gallo, G., Ponta, L., and Raberto, M. (2014). Modeling and
forecasting of electricity spot-prices: Computational intelligence vs classical
econometrics. AI Commun. 27, 301–314. doi:10.3233/aic-140599

Cristian-Dragoş, D., and Gligor, A. (2012). SCADA based software for renewable
energy management system.Procedia Economics and Finance. Elsevier 3, 262–267.
doi:10.1016/S2212-5671(12)00150-5

Daniel, H. A., Rafael, N. M., Santiago, D. R., Garcia, S. S., Moustris, K. P.,
Kavadias, K. K., et al. (2019). An advanced forecasting system for the optimum
energy management of island microgrids. Energy Procedia 159, 111–116. doi:10.
1016/j.egypro.2018.12.027

Dongho, L . (2020). Low-cost and simple short-term load forecasting for energy
management systems in small and middle-sized office buildings. Energy Explor.
Exploitation 0 (0), 1–20. doi:10.1177/0144598719900964

Demuth, H., Beale, M., and Hagan, M. (2000). Neural network toolbox TM 6
user’s guide. MathWorks 9 (4).

Eugene, A. F., and Dora, G. (2005). “Load forecasting,” in Applied mathematics for
restructured electric power systems (Springer), 269–285. doi:10.1007/0-387-23471-3_12

Gregor, G., Richard, B., George, K., Michael, D., and Caroline, D. (2011). The
state-of-the-art in short-term prediction of wind power: A literature overview.
Technical report, ANEMOS.

Hassoum, M. H. (1995). Fundamentals of artificial networks. MITbook.
9780262082396.

Henrique, S. H., Carlos, E. P., and Reinaldo, C. S. (2001). Neural networks for
short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 16,
44–55. doi:10.1109/59.910780

Hua, Y., and Zhenging, P. (2020). A hybrid short-term wind power prediction
model combining data processing, multiple parameters optimization and multi-
intelligent models apportion strategy. IEEE Access 8, 227126–227140. doi:10.1109/
ACCESS.2020.3046001

Jannet, J., Dhaker, A., and Mohamed, F. M. (2021). Joint operation between wind
power generation and pumped hydro energy storage in the electricity market.Wind
Eng. 45 (1), 50–62.

Jiang, Y., Song, Z., and Kusiak, A. (2013). Very short-term wind speed forecasting
with Bayesian structural break model. Renew. Energy 50, 637–647. doi:10.1016/j.
renene.2012.07.041

Kavitha, S., Varuna, S., and Ramya, R. (2016). “A comparative analysis on
linear regression and support vector regression,” in 2016 online international
conference on green engineering and technologies (IC-get), 1–5. doi:10.1109/
GET.2016.7916627

Ke, S. W., Vishal, S. S., and Zhen, Y. Z. (2014). Scada data based condition monitoring
of wind turbines. Adv. Manuf. 2 (1), 61–69. doi:10.1007/s40436-014-0067-0

Khaled, D., Majdi, M., Kais, B., Hazem, N., and Mohamed, N. (2022). Reduced
neural network based ensemble approach for fault detectionand diagnosis of wind
energy converter systems. Renewable Energy,Elsevier. doi:10.2139/ssrn.4055327

Landberg, L. (1999)., 80. Roskilde, Denmark, 207–220. doi:10.1016/S0167-
6105(98)00192-5Short-term prediction of the power production from wind
farmsJ. Wind Eng. Industrial Aerodynamics

Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., and Yan, Z. (2009)., 13. Shanghai,
China, 915–920. doi:10.1016/j.rser.2008.02.002A review on the forecasting of wind
speed and generated powerRenew. Sustain. Energy Rev.

Marcel, H. S., Sunday, O. O., Sergo, Y. D., and Kofane, T. C. (2017). Assessment of
wind energy potential in the Sudanese zone in Chad. Energy Power Eng. 09,
386–402. doi:10.4236/epe.2017.97026

Maria, G. G., Congedo, P. M., and Malvoni, M. (2014). Photovoltaic power
forecasting using statistical methods: Impact of weather data. IET Sci. Meas. &amp;
Technol. 8, 90–97. doi:10.1049/iet-smt.2013.0135smt.2013.0135

Maxwell (2013). Kernel Ridge regression. Department of Computer Science
University of Toronto.

Morgan, S. (2015). “Short-term wind power forecasting using artificial neural
networks.Degree project,” in Computer science. second level (Stockholm,Sweden.

Ofualagba, G., and Ubeku, E. U. (2008). “Wind energy conversion System-Wind
turbine modeling,” in 2008 IEEE power and energy society general meeting - conversion
and delivery of electrical energy in the 21st century, 1–8. doi:10.1109/PES.2008.4596699

Oludare, I. A., Aman, J., and Abiodun, E. O. (2019). Comprenhensive Review of
artificial neural network applications to pattern recognization. IEEE access 2019, 2945545.

Radhia, F., Majdi, M., Kamal, A., Mohamed, T., Hazem, N., and Mohamed, N.
(2019). “Machine Learning_Based statistical hypothesis testing for fault detection,”
in 4th conference on control and fault tolerant systems (Casablanca,Morocco. doi:10.
1109/SYSTOL.2019.8864776

Tao, H., Y, H., Hamidreza, Z., Weron, R., Yang, D., and Zareipour, H. (2020).
Energy forecasting:A review and outlook. IEEE Open J. Power Energy 7, 376–388.
doi:10.1109/OAJPE.2020.3029979

Valdmer, K., Katrzyna, W., and Henryk, C. (2021). Analysis of the wind turbine
selection for the given wind conditions. Energies 2021, 7740. doi:10.3390/
en14227740

Volker, R. (2004). The generalized lasso. IEEE Trans. Neural Netw. 15, 16–28.
doi:10.1109/tnn.2003.809398

Wenxian, Y., Richard, C., and Jiesheng, K. (2013). Wind turbine condition
monitoring by the approach of scada data analysis. Renew. Energy 53, 365–376.
doi:10.1016/j.renene.2012.11.030

Zafar, R., Anzar, MSohail, RWamiq, AUsman, Nand Khurram, S (2018).
Prosumer based energy management and sharing in smart grid. Renew. Sustain.
Energy Rev. 82, 1675–1684. doi:10.1016/j.rser.2017.07.018

Zhang, J., Wei, Y., Tan, Z., Ke, W., and Tian, W. (2017). A hybrid method for
short-term wind speed forecasting. Sustainability 9, 596. doi:10.3390/su9040596

Zhi, L., Lin, Y., Yongning, Z., Xuri, S., Jingzhu, T., and Jingxin, J. (2016). “Short-term
wind power prediction based on extreme learning machine with error correction,” in
Protection and control of modern power systems. doi:10.1186/s41601-016-0016-y

Frontiers in Energy Research frontiersin.org13

Jamii et al. 10.3389/fenrg.2022.898413

https://doi.org/10.1109/access.2021.3111408
https://doi.org/10.1016/j.renene.2020.01.010
https://doi.org/10.1016/j.ymssp.2006.12.007
https://doi.org/10.1016/j.rser.2007.01.015
https://doi.org/10.1109/access.2020.3017442
https://doi.org/10.1016/j.renene.2011.05.033
https://doi.org/10.14288/1.0308789
https://doi.org/10.1016/j.matcom.2012.06.014
https://doi.org/10.3390/en11102777
https://doi.org/10.3233/aic-140599
https://doi.org/10.1016/S2212-5671(12)00150-5
https://doi.org/10.1016/j.egypro.2018.12.027
https://doi.org/10.1016/j.egypro.2018.12.027
https://doi.org/10.1177/0144598719900964
https://doi.org/10.1007/0-387-23471-3_12
https://doi.org/10.1109/59.910780
https://doi.org/10.1109/ACCESS.2020.3046001
https://doi.org/10.1109/ACCESS.2020.3046001
https://doi.org/10.1016/j.renene.2012.07.041
https://doi.org/10.1016/j.renene.2012.07.041
https://doi.org/10.1109/GET.2016.7916627
https://doi.org/10.1109/GET.2016.7916627
https://doi.org/10.1007/s40436-014-0067-0
https://doi.org/10.2139/ssrn.4055327
https://doi.org/10.1016/S0167-6105(98)00192-5
https://doi.org/10.1016/S0167-6105(98)00192-5
https://doi.org/10.1016/j.rser.2008.02.002
https://doi.org/10.4236/epe.2017.97026
https://doi.org/10.1049/iet-smt.2013.0135smt.2013.0135
https://doi.org/10.1109/PES.2008.4596699
https://doi.org/10.1109/SYSTOL.2019.8864776
https://doi.org/10.1109/SYSTOL.2019.8864776
https://doi.org/10.1109/OAJPE.2020.3029979
https://doi.org/10.3390/en14227740
https://doi.org/10.3390/en14227740
https://doi.org/10.1109/tnn.2003.809398
https://doi.org/10.1016/j.renene.2012.11.030
https://doi.org/10.1016/j.rser.2017.07.018
https://doi.org/10.3390/su9040596
https://doi.org/10.1186/s41601-016-0016-y
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.0.13.61/fenrg.2022.898413

	Effective artificial neural network-based wind power generation and load demand forecasting for optimum energy management
	1 Introduction
	2 Energy management system
	3 Modeling of the wind turbine
	4 Power forecasting
	4.1 Artificial neural network-based forecasting
	4.2 ANN structure
	4.2.1 Wind energy forecasting with ANN
	4.2.2 Artificial neural network-based power load demand forecasting
	4.2.3 Evaluation of the proposed ANN


	5 Results and discussions
	5.1 Short-term forecasting
	5.2 Medium-term forecasting

	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


