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As an important part of smart grid construction, the distribution network (DN) optimization
problem has always attracted great attention, especially under the background that large-
scale penetration of distributed generators (DGs) and electric vehicles (EVs) into building
cluster poses both opportunities and challenges to the energy management. This research
presents a hierarchical optimization strategy, for improving the safe and economical
operation of DN considering the DGs and EVs integration. In Stage 1, the MPPT
control model of DGs is designed to obtain the best energy conversion efficiency. In
Stage 2, load models of EVs and battery energy storage system (BESS) under coordinate
charging/discharging stimulated by a time-of-use incentive mechanism are established
respectively, to achieve a load curve with a minimized peak-to-valley difference (PVD). In
Stage 3, aiming for the best compromise between the active power loss and node voltage
excursion, daily optimal scheduling of the static Var compensator (SVC) capacitors is
dynamically worked out according to the varying power demand, as the solution for the
defined multi-objective optimization problem. For enhancing the convergence speed, an
advanced genetic algorithm with elite preservation strategy is employed. The proposed
hierarchical strategy is demonstrated on an IEEE 33-node DN test case, and the simulation
results show that first, the MPPT control ensures the maximum power outputs of DGs;
next, power supply pressure could be relieved by the load shifting effects of the
coordinated vehicle-to-grid (V2G) service and BESS configuration, reflected in the
decreased load peak from 4,370.1 to 3,424.99 kW, and the optimized PVD from
1763.8 to 703.8 kW; meanwhile, via applicable power planning of the SVC
components, optimized power loss and voltage quality can both be achieved, proving
the feasibility of the optimization strategy, which promotes the economic and reliable
operation of the DN system.
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1 INTRODUCTION

With the sustainable development of the energy industry, the
excessive exploitation of traditional fossil energy has brought
increasingly severe environmental pollution problems such as
energy resource shortage and climate change, making it extremely
urgent to utilize renewable energy as an alternative for fossil fuels
(Brockway et al., 2019; Xiong et al., 2020). In recent years, the
large-scale penetration of renewable resources and new energy
equipment alleviates the energy crisis, while also bringing
rigorous challenges to the power system optimizing
configuration and secondary energy rational utilization
(Peidong et al., 2009). For example, the randomness and
intermittency of power generated from wind turbines (WTs)
or photovoltaic cells (PVs) and the time-space dimensional
decentralization of electric vehicle (EV) charging, induce more
uncertainty for present distribution network (DN) operations
than ever before, as well as problems involving harmonic
pollution (Siahroodi et al., 2021), three-phase voltage
imbalance (Islam et al., 2020), and transformers aging
(Elbatawy and Morsi, 2022). Particularly, the enlarged peak-to-
valley difference (PVD) of the load curve puts forward higher
requirements for the power system. The safety and economy,
expressed as node voltage excursion and active power loss
respectively, are commonly regarded as crucial indices
reflecting the operation state of the DN (Dong et al., 2019).
The serious peak load arisen from the aggregated charging
behaviors of EV owners probably causes low-voltage even
blackout, concurrently increasing system loss. Hence, guiding
measures for coordinated regulation should be taken to minimize
the negative influences of integrated renewable energy and EVs
while satisfying the power and travel demands of customers.

Recently, the integrated energy system (IES) has been greatly
supported by the Chinese government and turned into a research
hotspot, since it benefits the integration of renewable energy and
the coordinated development of the multi-energy system. Under
the background of the IES, the management idea for the DN has
changed from supply-oriented to demand-oriented (Zhang et al.,
2018), which integrates the functions of distributed generation
control, real-time monitoring, information sharing, and market
transactions. This makes for better accommodation and
scheduling abilities to diversify distributed energy equipment.

To stabilize the output fluctuation of renewable power
generation, the battery energy storage system (BESS) has
become a key supporting unit to improve the compatibility
level for the WT and PV of the DN. By power transferring
through electrochemical charging/discharging, the BESS not only
enhances the utilization of clean energies, bringing higher
economic benefits to the regional grid but further improves
the reliability of the power supply. A hierarchical coordinated
control strategy with the fast-response BESS to suppress high
fluctuations associated with DGs outputs has been developed
based on the MPC framework (Zhang et al., 2021). Moreover, as
part of a vehicle-to-grid (V2G) system (Luo et al., 2020), EV can
also be regarded as a controllable power resource, to realize the
bidirectional power flow between the building cluster and DN.
According to previous studies (Zeng et al., 2020; Fang et al., 2021),

the time-of-use (TOU) price mechanism is an effective method
for integrated demand side management, which creates an
economic incentive for users to adjust their charging/
discharging time. For example, residential customers plug in
their vehicles during off-peak hours and discharge in peak
regions to produce V2G profits. This helps to reduce the risks
of distribution transformer overloading and power outage and
stabilizes the load fluctuation by valley filling and peak shaving,
thus balancing the demand and supply. These findings could
enlighten us about solving the optimizing configuration problem
of the EV-integrated DN.

Tremendous efforts have been devoted to DN optimization
referring to multi-source cooperation. A voltage regulation model
was proposed in a study by Mahmoudi et al. (2021) to enhance
the voltage quality of the power system with EVs penetration;
nevertheless, the active loss is not included in the objective
function. Contrarily, Chen G. et al. (2013) analyzed the model
for DN reconfiguration, with the single optimization function of
power loss. Zarei M et al. designed a multi-objective optimization
model for DN reconfiguration, considering the uncertainties of
load variations and power production of DGs (Zarei and
Zangeneh, 2017). For simultaneous optimization of power loss
and voltage stability of the DN, reactive compensation measures,
carried out through static Var compensator (SVC) capacitor
generally in studies by (Xu et al., 2021) and
(GholamiFarkoush et al., 2019), are always taken. Studies by
(Wu et al., 2021) and (Tan and Chen, 2020) mainly focus on
power management under the predictive control strategy for
charging EVs, while they are only regarded as stochastic
charging loads rather than controllable units which could
participate in energy dispatch, and the V2G functions are not
included. In a study by Jiao et al. (2021), a multi-objective
optimization model emphasizing the EV integration to a smart
DN is described, with the EVs scheduled in response to TOU
price. Since the charging or discharging plan is generated with
fixed peak and valley periods, it may not be suitable for the time-
varying loads.

As analyzed above, earlier reports on the DN optimization
operation concentrated on single or combinative objective
functions of node voltage fluctuation and active power loss;
however, these works entailed some deficiencies including the
following aspects: (1) optimization scheduling did not involve
wide-range types of energy resources, such as EVs or DGs, which
were disregarded in some previous works; (2) utilization
efficiency perfection of DGs was ignored; (3) EVs were only
treated as stochastic charging loads; and (4) the dynamic dispatch
of EVs was not considered.

To overcome the shortcomings of previous works, a
hierarchical optimization strategy is proposed in this study,
which combines the maximum power point tracking (MPPT)
control of the DGs (Stage 1), coordinated V2G service, and BESS
dispatch for minimized PVD via the positive guidance of the
TOU mechanism (Stage 2), with dynamic reactive compensation
for maintaining the reliable and economic operation of the DN
(Stage 3). The tradeoff between node voltage excursion and active
power loss is selected as the objective function to be optimized,
and an improved genetic algorithm (GA) with elite preservation
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strategy (EPS) owning fast convergence is adopted to solve the
best daily scheduling plan for the SVC component while meeting
all constraints of the DN. An IEEE 33-bus system involving WT,
PV, BESS, and EVs accessed to the building cluster is taken as the
research object, to validate the effectiveness of the optimization
model. In Stage 1, MPPT control improves the energy conversion
efficiency of DGs and reduces the power supply pressure of the
DN. In Stage 2, EVs participate in energy management as flexible
loads, and functions including stabilization of the DGs’ output
fluctuation and power load shifting are realized through
coordinated dispatch of EVs and the BESS. In Stage 3, the
multi-objective economic-secure optimization problem is
dynamically worked out through SVC being put into
operation, and the significant advantage of load shifting is
highlighted by the statistical result comparison of relative
voltage fluctuation and power loss, further confirming the
effectiveness of the hierarchical scheduling approach.

2 A HIERARCHICAL OPTIMIZATION
FRAMEWORK

A smart DN is mostly configured as an energy cascade utilization
system, enabling free power flow among multiple energy sources,
and provides power to residents through building cluster.
Figure 1 briefly illustrates the structure of the DN containing
dispersed multi-source. Specifically, the demand side involves
basic power load, BESS to be charged, and scattered EVs
connected to the building cluster. The schedulable supply side
includes diversified distributed energy sources (such as WT, PV,
bidirectional EV chargers, and BESS), to satisfy the power
demand of residents. EVs are not regarded as traditional loads
since they can also act as power suppliers. For the V2G
application, EV devices not only provide customers with
charging services but also allow the owners to interact with
the power grid and make V2G profits by selling excessive
energy back to the grid at an appointed electricity price level.
Overall, the optimization strategy of the multi-source DN is
intended to maintain stability and improve the energy
efficiency of the whole system through power control over the
distributed energy resources based on their operation features.
On the premise of that daily power demand, information is

collected, and the impacts of EV traveling and distributed
energy equipment working are confirmed; the efficient
planning and operation of the supply side can be carried out
according to users’ willingness, under the guidance of distributed
cooperative control, to finally achieve the comprehensive
optimization dispatch from the demand side response, energy
interaction, and DN operation perspectives. In this study, a
hierarchical optimization strategy for the smart DN with
multi-source integration is proposed, and the framework is
presented in Figure 2.

In Stage 1, the optimal operation control of distributed
renewable energy generators is implemented. MPPT measures
are taken to maximize the working efficiency of WT and PV, to
make full use of clean energies to alleviate the power supply
pressure of the grid. In Stage 2, from the economic and security
views of the power system, minimizing the PVD concurrently
suppressing the power fluctuation created by DGs is selected to be
the optimization objective in this stage, and an incentive method
for EVs coordinated scheduling is introduced, wherein TOU
measure is utilized to provide an economic incentive to make
EV owners charge during less congested regions and discharge in
peak hours, combined with the variable power charge/discharge
control of the BESS. Resultantly, the charge/discharge guidance of
the connected EVs could be determined by figuring out the
optimal peak and valley periods, and the real-time output plan
of the BESS configuration associated with load shifting could also
be solved. In Stage 3, based on the power load after peak shaking
and valley filling function of EVs and BESS collaborative services,
SVC is put into operation for reactive power compensation. The
coordinated structure formulated as a comprehensive objective
function aiming to concurrently minimize the active power loss
and node voltage excursion of the DN is established, and the
optimal daily output schedule of SVC capacitors can be
dynamically obtained. The strategy not only maintains the

FIGURE 1 | Schematic of the multi-source DN.

FIGURE 2 | Block diagram of the hierarchical optimization procedure.
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balance of power supply and demand but favors the running costs
and voltage quality, merging the high energy efficiency, economy,
and security for system operation. Analysis of mathematical
modeling of the hierarchical optimization problem is given next.

3 STAGE 1: MPPT CONTROL OF DGS

Renewable energy power generation such as WT and PV has the
characteristics of non-pollution and sustainability but is intermittent
and time-varying. The MPPT control method is employed to
maximize the output efficiency and improve the response speed of
the renewable power generation system, which is directly related to
the effective utilization of wind and solar energy and the safe
operation performances of the generation system. Specifically for
the WT running characteristics, as provided in Figure 3, under a
constant blade pitch angle, the wind energy utilization coefficient
changes with the tip speed ratio (Luo and Niu, 2016), and each wind
velocity corresponds to an optimalmechanical speed ofWTωmax, for
example, S for wind velocity V1 and P for V2, which makes the WT
operate at MPP. By depicting all MPPs under different wind
velocities, it forms a maximum power curve. Hence, it can be
seen that satisfying the equation ωm = ωmax is the essential task
for theMPPT control ofWT. Similarly, for the PV generation system,
which usually covers the PV panel, Boost circuit, inverter, and load,
the duty cycle D of the switching device in the Boost circuit can be
taken as the control parameter for MPPT to well reduce the
complexity of the system. More precisely, the temperature changes
mainly affect the PV output voltage, while the irradiation changes
mainly affect the PV output current, and under a given temperature
and sunlight intensity, the intersection point of the load-line with the
PV characteristic determines the operating point (Koutroulis et al.,
2001). Consequently, the maximum power production is based on
the load-line regulation bymeans of adjustingD to realize impedance
matching, that is, the equivalent input resistance of the power
converter equals the internal resistance of the PV cell (Podder
et al., 2019), to impel the working point to move toward the MPP
correctly, and the process is declared in Figure 4.

Due to the connection through a gear box, the WT rotational
speed ωm is directly proportional to the wind generator speed ωr;
thus, the optimal ωmax of WT corresponds to a reference ωr* of

the generator. According to Figure 3, if the detected ωr is equal to
ωr*, which indicates that the generation system operates at the
MPP as expected, the excitation current value ic of the wind power
generator can be maintained. If the detected ωr<ωr*, manifesting
that the generation system works at Region I, and it is necessary
to increase ωr to approach the MPP; while ωr>ωr* represents the
operation state of the WT generation system at Region Ⅱ, and ωr

should be decreased to improve the conversion efficiency. Under
such a non-equilibrium condition, regulation principles are
established:

1) Region I: a positive speed variation Δωr illustrates that the
working point is close to the MPP along the path 1 direction,
and ωm increasing indicates that the output of theWT Pmmay
be greater than the generator Pg, and the excitation current ic
of the generator should be enhanced for power matching;
contrastively, a negative Δωr signifies that the working point
moves far away from the MPP along the path 3 direction, and
the excitation current ic needs to be rapidly reduced to satisfy
Pm > Pg, which drives the increase of ωm and ωr, and guarantee
the correct moving direction.

2) Region Ⅱ: the WT generation system works in the high-speed
area of the characteristic curves, and thus whether the working
point moves along path 2 or 4, the generator output power Pg
should be improved for optimal efficiency, that is, the
excitation current ic needs to be increased in this region.

Similar to WT analyzed above, the MPP tracking principle for
PV generation also can be summarized as follows: if the PV
generation system operates in Region I, the duty cycle D of Boost
circuit should be increased, while D must be reduced as a
response to the operating points in Region Ⅱ.

4 STAGE 2: COORDINATED SCHEDULING
OF INTEGRATED EVS AND BESS

The explosive growth of these DGs’ penetration brings power
rush and uncertainty problems to the DN. Since the connected
EVs and BESS can both function as power buffer for intermittent

FIGURE 3 | Characteristic curve of WT generation.

FIGURE 4 | Characteristic curve of PV generation.
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DGs and backup power supply, matching the bidirectional
EVs and BESS equipment for power smoothing is always
considered as a simple and effective measure to solve the
above problems.

4.1 Coordinated Scheduling of
Integrated EVs
In the presence of large-scale penetration of EVs into the building
cluster, the load pressure, operating costs, and reliance on DNwill
be increased. Dispatch facilitates are coordinated to boost the
utilization efficiency of EVs and improve the demand side
flexibility. Due to the intrinsic advantages such as operational
safety and energy density, the lithium-ion batteries of 25 kWh are
selected as the power battery for EVs (Barcellona et al., 2019), and
the charging power maintains at 2.5 kW for a single vehicle.
Concurrently, the safety threshold of the state of charge (SOC) is
defined to be (10%, 90%); hence, it can be inferred that the
charging/discharging could not last for more than 8 h. This is
supposing that the power consumption for an EV is 15 kWh per
100 km, and the theoretical endurance mileage can be calculated
as 133 km.

4.1.1 Aggregated Charging of EVs
Aggregated charging of EVs could be explained as charging
behavior only according to customers’ travel needs or living
habits, without any guiding principle. The EV travel follows a
probability density distribution represented in Eq. 1 (Qian et al.,
2010) and depicted in Figure 5 as well, as follows:

fd(x) � 1
xσd

��
2π

√ exp[ − (lnx − μd)2
2σ2d

] (1)

where μd = 3.20, σd = 0.88, and x denotes the daily mileage of EV
(mostly lies between 32 and 97 km), so a charged 25-kWh battery
can provide sufficient energy to meet daily driving requirements.
Monte Carlo random sampling can be used to predict the
charging power demand for a single EV during a day. In this
study, a day is divided into 24 periods, with sampling of the states
of EVs per hour. The charging expectation for a single vehicle is
shown in Figure 6.

4.1.2 Coordinated Dispatch of EVs
The three-stage TOU price is designated to establish a positive
guidance for the charging/discharging process of the EV owners.
Depending on the load change of the power grid, the
corresponding electricity price level of each period is
confirmed, to achieve peak shaving and valley filling. In the
modeling process for V2G service based on TOU, minimizing
the PVD of the power load in the DN is chosen as the
optimization objective, and some application background is
specified as follows:

1) The battery power meets the driving demand of the EV
owners, and there is no other power consumption behavior
besides the normal travel.

2) User charge or discharge without exceeding the safe range of
the SOC, and 80% of the total owners participate in the
coordinated dispatch (d = 0.8).

3) mv,mp, andmf are defined as the electricity price of the valley,
peak, and normal period, respectively, and then the price
model mt can be described as follows:

mt �
⎧⎪⎨⎪⎩

mv t1 ≤ t≤ t2
mp t3 ≤ t≤ t4
mf else

(2)

where t1–t4 represents the start and end moment of the valley
period and the peak period, respectively.

4) Before charging/discharging, the owners can query the
current battery status of the EVs and independently select
the charging/discharging time. The parameters tsc, tc, tsd, and
td are defined as follows:

tsc, tsd -the start moment for users to charge/discharge; tc, td
-duration of the charging/discharge process.

EV users participating in the V2G dispatch can severally
choose tsc or tsd according to Eqs 3, 4:

tsc � { t1 + rc × (t2 − tc) 0≤ tc ≤ t2 − t1
t1 else

(3)

FIGURE 5 | Daily probability of driving distance.

FIGURE 6 | Original charging requirements for a single EV.
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tsd � { t3 + rd × (t4 − td) 0≤ td ≤ t4 − t3
t3 else

(4)

where rc and rd are random numbers ⊂ [0, 1] interval. It can be
known that for the coordinated EVs dispatch model, t1–t4
determine the peak and valley areas, and hence are key factors
for optimal V2G service quality, which lays an important
foundation for the subsequent multi-objective DN
scheduling.

4.2 Optimal Planning of BESS
The BESS system is commonly connected to the power grid together
with the DGs, for smoothing the power fluctuation of renewable
power generation. Similar to EVs, BESS can also operate in both
charge and discharge states, and it can run through all parts of the
power system. Recent research on the application of BESS mainly
focuses on two issues: a dispatch from the perspective of BESS cost
and load shifting to directly achieve peak shaving and valley filling.
Through BESS modeling, the best charge/discharge plan can be
solved. BESS could work in both of fixed and variable power
mode, considering that although the control process of the fixed
power mode is relatively simple, the output of BESS may exceed the
power demand; hence, the variable power control mode is selected in
this study to guide the charging or discharging behaviors of the BESS
system and satisfy the real-time power demand of residents
dynamically and, finally, acquire a daily load curve with
minimized PVD. Suppose that the initial SOC of the BESS is
10%, pc_bess(t) and pd_bess(t) denote the charge and discharge
power demand of BESS at the tth moment, and ηc and ηd
demonstrate the charge and discharge efficiency factors,
respectively, Under the BESS power balance principle in Eq. 5,

the variable power charge/discharge control is designed as the
following steps and represented in Figure 7:

∑N
t�1
ηcpc bess(t) � ∑N

t�1

pd bess(t)
ηd

(5)

1) Collect temporary data of basic power demand, PV and WT
power generation with MPPT control, and coordinated
charging/discharging states of EVs in the regional DN.

2) According to the gathered information in (1), determine the peak
shaving line of the BESS, and calculate the capacity required for
daily load peak shaving, which concurrently equals to the capacity
to be absorbed for the BESS during off-peak hours.

3) Set a horizontal line at the minimum load as the valley filling
line and gradually move it upward with a certain step size until
the output power balance is satisfied.

4) Confirm the optimal peak shaving and valley filling line, thus
obtaining the solution of the daily output plan of the BESS and
completing the BESS scheduling process.

5 STAGE 3: MULTI-OBJECTIVE REACTIVE
COMPENSATION OF DN

The guiding ideology for the whole DN optimization can be
concluded as follows: on the premise that the parameters
including branches and loads are known and various
constraints are satisfied, dynamically adjust the output of the
SVC capacitor banks to optimize the comprehensive indices of
active power loss and voltage excursion. Finally, the economic
and safe operation of the multi-source DN can be achieved.

5.1 Objective Function
The optimization objective function comprises two important
issues: active power loss and node voltage excursion of the DN.

1) Active power loss

The first objective is the minimization of the total active power
loss of the DN, which can bemathematically modeled using Eq. 6:

minf1 �
∑n
i�1
∑n
j�1
PLij

∑n
i�1
∑n
j�1
PLij
′

(6)

where P′Lij and PLij, denote the active power loss of the branch (i,
j) before and after optimization, respectively.

2) Voltage excursion

Node voltage is an important indicator reflecting the security
and service quality. To avoid all the voltages moving toward their
maximum limits after optimization, the deviation of voltage from
the rated value is chosen as an objective function as shown below:

minf2 �
∑n
j�1
(Uj − UjN)

∑n
j�1
(U′

j − UjN) (7)

FIGURE 7 | Variable power charge/discharge control flow of the BESS.
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where U’
j, Uj, and UjN, respectively, represent the actual voltage of

the node j before and after optimization, and the rated voltage of
the node j.

Combining the above two indicators, the objective function
can be expressed as follows:

minF � ω1

∑n
i�1
∑n
j�1
PLij

∑n
i�1
∑n
j�1
PLij
′
+ ω2

∑n
j�1
(Uj − UjN)

∑n
j�1
(U′

j − UjN) + μ∑n
j�1
( ΔUj

Ujmax − Ujmin
)2

(8)
where ω1 and ω2 are the weight coefficients for the two
optimization objectives (ω1 = ω2 = 0.5). The penalty function
is used to deal with the node voltage out-of-limit problem and
Ujmin and Ujmax are the minimum and maximum voltage values
of the node j, while μ indicates the penalty factor (μ = 1000), and
ΔUj is defined as follows:

ΔUj �
⎧⎪⎨⎪⎩

Uj − Ujmax Uj >Ujmax

0 Ujmin ≤Uj ≤Ujmax

Ujmin − Uj Uj <Ujmin

(9)

5.2 Constraints
The basic constraints of DN optimization mainly include equality
constraints (power flow) and inequality constraints as follows:

1) Equality constraints:

pWT
t + pPV

t + pEV
t + pBESS

t + pGrid
t � pBL

t (10)
where pWT

t and pPV
t , respectively, represent the output power

of WT and PV at the tth moment; besides, pEV
t and pBESS

t
denote the real-time discharge demands of dispersed EVs and
BESS devices, which is positive in the discharging state and
negative in the charging state. pGrid

t expresses the actual
purchased power from the grid if the power supply
depending on the distributed energy equipment is less
than user demand, and pBL

t is the basic load of the DN at
the tth moment.

2) Inequality constraints:
1) SOC constraint of EVs and BESS:

10%≤ SOC≤ 90% (11)
0≤pWT

t ≤pWT
max (12)

0≤pPV
t ≤pPV

max (13)
0≤Ct � kCNT ≤Cmax (14)

where pWT
max and p

PV
max illustrate the maximum output capacities of

the WT and PV generation units; Ct and Cmax denote the output
compensation capacity of the installed SVC capacitor bank at the
tth moment, and its maximum capacity, respectively; CNt is the
capacity of a single capacitor included in the capacitor bank at the
tth moment; k is the number of single capacitors on each
compensation node.

5.3 Algorithm
The purpose of multi-objective optimization is to determine a set
of Pareto solutions, which take each optimization objective
into account. GA is a global probability searching tool,
including selection, crossover, and mutation operators to
retain the high-quality individuals in the population.
Herein, in order to improve the convergence speed of the
traditional GA, EPS policy is introduced, which is featured
with that the excellent individuals owing the best fitness are
gathered to form a sub population and directly copied to the
next generation without participating in the crossover and
mutation steps. It could protect the elite individuals from the
disturbance of crossover and mutation operations in the
traditional GA, thus improving the stability and
convergence of the algorithm. Moreover, the crossover
probability Pc and mutation probability Pm are adaptively
adjusted following the fitness values, which are perfected as
Eqs 15, 16 (Huang et al., 2020):

Pc �
⎧⎪⎪⎨⎪⎪⎩

k1(Fmax − F′)
Fmax − Favg

F′≥Favg

k2 F′<Favg

(15)

Pm �
⎧⎪⎪⎨⎪⎪⎩

k3(Fmax − F′′)
Fmax − Favg

F′′≥Favg

k4 F′′<Favg

(16)

FIGURE 8 | Flowchart of the optimizing process via the developed GA
with EPS.
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where Favg, Fmax, F′, and F″, demonstrate the average and
maximum fitness value of individuals, the better fitness of the
two crossover individuals, and the mutation individuals,
respectively. k1–k4 are set to be 0.5, 0.9, 0.02, and 0.05. By
improving Pc and Pm, individuals with higher fitness value than
the average correspond to lower crossover and mutation
probability, while individuals below the average correspond
to higher Pc and Pm, which helps to duplicate the good
individuals and eliminate the bad solutions. Figure 8 shows
the flowchart of the algorithm. After the load flow calculation
of the initialized population, 20% of the individuals with the
best compromise effects between the two objective functions
are reproduced directly to the next generation, while the rest
are selected using the roulette wheel method and generated
according to the crossover and mutation operations. The
global optimal solution is acquired through an iterative
calculation, with the group size 30 and iteration 500.

6 RESULTS AND DISCUSSION

The standard IEEE 33-node power DN system shown in
Figure 9 is taken for verification, and its load information
is detailed in Reference (Huang et al., 2020). The basic
parameters of the network for the per-unit system are 10
MVA and 12.66 kV. The proposed hierarchical optimization
strategy is implemented on the MATLAB platform, and the
research cycle is 24 h. The IEEE 33-node DN mainly contains:
(1) residential building load (original power load without DGs
and EVs integration), which is assumed to evenly distribute on
four nodes: 3, 10, 18, and 32. Considering the time-varying
characteristics of the daily load, a series of residential building
load data for a certain day are collected from the study by
Huang et al. (2020), with the PVD of 1763.8 kW, as shown in
Figure 10. (2) Renewable energy power generation. DG1 (WT)
and DG2 (PV) are installed on nodes 2 and 5, respectively, with
the optimal output power under MPPT control. For the day
studied, meteorological data involving wind velocity,
temperature, and sunlight intensity (Hosseinalizadeh et al.,
2016) associated with renewable energy power generation are
depicted in Figures 11, 12, with sampling per hour in view of
the randomness and uncertainty of climate. (3) BESS,

positioned at nodes 3 and 10, with individually rated power
of 100 kW and capacity of 500 kWh. According to (Yao et al.,
2017), the charge/discharge efficiencies are selected as ηc =
0.95, ηd = 0.9, respectively. (4) SVC, placed on the weakest two
nodes for compensation, and each capacitor bank is supposed
to provide the maximum capacity Cjmax = 1 Mvar. (5) EV
charging loads, which can also be deemed as power suppliers
under the V2G mode. It is assumed that 500 EVs are accessed
to the building cluster, with the charge/discharge power of
2.5 kW. Furthermore, the convergence accuracy of power flow
calculation is 10–4.

FIGURE 9 | IEEE 33-node system.

FIGURE 10 | Daily original power load.

FIGURE 11 | Daily wind velocity data.
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6.1 Discussion of Simulation Results in
Stage 1
Based on the collected daily wind velocity, temperature, and
irradiation intensity distribution data in Figures 11, 12, the
output of WT and PV under MPPT control can be obtained,
as shown in Figure 13. Despite the randomness of the climate, the
DGs achieve the maximum output power within a short self-
regulation time, concurrently with small oscillation and thus
desired power equality. Concretely, from the original building
load curve, it is obvious that the power system is most prone to
blackout at about 19:00, with the peak load of 4,370.1 kW. The
MPPT control impels the WT and PV system efficiently operates

with 631.82 and 23.28 kW, making the power demand optimized
to 3,715 kW under Scenario 1 (decreased by 14.99%), which is
conducive to alleviating the power supply burden of the DN
(Figure 14). Besides, among all the MPPs, the PV system has the
maximum daily output power of 610.35 kW at 13:00, due to the
high temperature and sunlight at noon, while the maximum
power of WT (747.80 kW) occurs at 2:00. These moments are not
identified as peak power demand hours, and hence the high-
efficiency operation of DGs may not be beneficial for valley filling
of the load curve and affect the load rate as well as peak regulation
management of the power system.

6.2 Discussion of Simulation Results in
Stage 2
According to the operation modes of EVs analyzed in Section 4,
the simulation research is carried out for three scenarios: Scenario
1 represents the power load with DGs compensation, whereas
without integrated EVs or BESS; Scenario 2 is the aggregated
charging mode of the 500 EVs, which are connected to charge
station without guiding measures; while 80% of the EVs are
turned on to be coordinated V2G operation mode in Scenario 3.
Based on Stage 1, fully considering the travel demands of the EV
owners, the load curves with integrated EVs under Scenario 2 and
3 are obtained, respectively, as exhibited in Figure 15.

It can be observed that the original power load between 17:00
and 20:00 is intensified by aggregated EVs charging behavior,
which puts forward higher requirements for the power supply of
the DN. Concretely, for the load curve under Scenario 1, the peak
load of 3,715 kW occurs at about 19:00, which would be further
increased to 4,166.9 kW under Scenario 2, meaning that the
overloading even power outage is most likely to take place at
19:00. Contrastively, under Scenario 3, the introduction of TOU
price fully makes use of the energy reserve capacity and
bidirectional power flow of EVs and realizes the power load
shifting by encouraging owners to charge in valley hours and
discharge in peak hours. The optimal peak and valley periods are,
solved as (15:00–23:00) and (23:00–7:00), respectively, and the
peak load at 19:00 is optimized to 3,608.3 kW (decreased by
13.41% compared to that of Scenario 2); concurrently, the PVD is
evaluated to be 1,087.1 kW, decreased by 41.75% in contrast to
the PVD of 1866.3 kW under Scenario 2. From the above analysis,

FIGURE 12 | Daily temperature and irradiation intensity.

FIGURE 13 | Output of DGs under MPPT control.

FIGURE 14 | Load curve after MPPT control of DGs.

FIGURE 15 | Load curves under different scenarios.
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it can be noted that residential power demands during peak hours
can be effectively reduced, and the load curve is remarkably
smoothed after peak shaving and valley filling, conducive to the
subsequent active power loss and node voltage excursion
optimization.

Through the power flow analysis, voltages for all of the nodes
at 19:00 are also calculated (exhibited in Figure 16). Supposing
that a voltage dip lower than 0.95 p.u. or a voltage higher than
1.05 p.u. is deemed as voltage out-of-limit, then it is discovered
that the integration of the building load increases the power
supply burden of the DN system, since the voltage drop problems
are more serious. Only 11 node voltages are better than the lower
bound, and the worst two occur on nodes 17 and 32 of 0.8378 and
0.8294 p.u.. DG1 and DG2 separately connected to nodes 2 and 5
can further support the system voltage. After the MPPT control
for DG input (Scenario 1), the lowest value is still on the nodes of
17 and 32, which are raised to 0.8535 and 0.8472 p.u., and the
relative voltage excursion of each node adds up to 2.9347 p.u.,
decreased by 10.54% compared to 3.2806 p.u. of the original
building load. Next, with the integration of the EVs, it is
discovered that the system voltage quality problem is
intensified under the EV aggregated charging (Scenario 2),
which causes the voltages of the two weakest nodes to
seriously drop to 0.8451 p.u. and 0.8373 p.u. Contrastively, the
system voltage is overall heightened on the coordinated
regulation mode (Scenario 3), and the voltages of nodes 17
and 32 are raised up to 0.8555 p.u. and 0.8495 p.u., slightly
better than the DN system operates in Scenario 1. Moreover,
Table 1 illustrates the statistical results of the key indices
involving the relative voltage excursion and power loss for the
DN system under different scenarios. It is obvious that first, based

on the flexible power supply of the DGs, MPPT control improves
the utilization efficiency of clean energy and power capacity.
Furthermore, due to the introduction of the TOUmechanism, the
coordinatedmanagement of flexible loads inside the buildings not
only boosts the utilization of EV but is conducive to the high
efficiency and reliability of the DN operation. These follow the
concept of energy conservation and emission reduction of the
modern power system.

Furthermore, to elaborate the regulation results for the next
control stage, the other two scenarios are defined.

Scenario 4: variable power dispatch of BESS, based on
Scenario 3.

Scenario 5: SVC, capacitor banks put into operation based on
Scenario 4.

Considering the impact of the intermittent generation from
the integrated DGs on the power grid, the BESS system is
commonly necessary for power load smoothing. Since the
BESS has the attributes of source and load, it could further
flatten the load curve by reasonably transferring power
demand from peak to valley. Based on the variable power
charge/discharge dispatch control of the BESS in Figure 7, it
could be calculated that the peak shaving line (boundary 1) of
3,424.99 kW and valley filling line (boundary 2) of 2,793.49 kW
make the PVD of the load curve reduce from 1,087.1 kW
(Scenario 3) to 703.80 kW (Scenario 4, decreased about
35.26%). The peak shaving and valley filling effects and the

FIGURE 16 | Voltage curves under different scenarios at 19:00.

TABLE 1 | Indices under different scenarios for the load peak at 19:00.

Regulation mode Relative voltage excursion
(p.u.)

Power loss (kW)

Without building load 1.7007 202.65
Basic load 3.2806 797.63
Scenario 1 2.9347 627.38
Scenario 2 3.1124 712.45
Scenario 3 2.8934 608.45

FIGURE 17 | Load curves under different scenarios of EVs.

FIGURE 18 | Daily dispatch plan of the BESS.
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real-time output of the BESS are shown in Figures 17, 18,
respectively. The optimal scheduling of the BESS further
consolidates the load shifting function, making the load curve
more flat and centralized and conducive to power saving, to
ensure more economic and safe operation of the power grid on
the basis of the MPPT control of DGs and coordinated dispatch
of EVs.

6.3 Discussion of Simulation Results in
Stage 3
Ultimately, by using the improved GA with the EPS method
analyzed in 5.3, the optimal compensation capacities of the SVC
capacitor banks on nodes 17 and 32 are solved as 0.8513 and
0.9130 MVar, respectively. The risk of voltage out-of-limit is
effectively reduced after reactive compensation, which can be
testified by the final node voltage of 17 and 32 (0.9224 and 0.8961
p.u.), a significant improvement compared to values of Scenario 4
(0.8603 and 0.8520 p.u.). Based on the coordinated dispatch of
EVs and BESS devices, Figure 19 declares the node voltages of the
DN system at 19:00 before and after SVC capacitor
compensation, emphasizing its excellent effect on voltage
fluctuation suppression. After the proposed hierarchical
optimization, the total voltage excursion is optimized to
2.0605 p.u. (decreased by 37.19% compared to that of the
basic building load). More concretely, the daily output

dispatch plan of the SVC can be dynamically solved out, as
described in Figure 20. It can be observed that with the daily
power load changing, the output capacity of the SVC is adjusted
dynamically, to concurrently reduce the node voltage fluctuation
and active power loss.

In addition, as shown inTable 2, when the SVC devices are not
installed (Scenario 4), the active power loss of the system is
decreased to 575.99 kW; which will be further reduced to
514.90 kW when the reactive compensation is available
(Scenario 5). Compared with the power consumption of
797.63 kW for the original building load, the reduction under
Scenario 1–5 achieves 21.34, 10.68, 23.72, 27.79, and 35.45%,
respectively. Therefore, the MPPT control of the penetrated DGs,
combined with the reasonable dispatch of EVs and BESS, could
weaken the burden of the DN for power supply. Concurrently, the
multi-objective reactive optimization approach also ensures the
significant improvements of system power loss and node voltage
quality, proving that the proposed hierarchical optimization
strategy in this study could obtain outstanding performances.
It is noteworthy that the response degree of total EV owners d has
a crucial impact on the optimal effects. A higher d means more
owners participating in the V2G management and the more
obvious effect of minimizing the PVD resultantly, which makes
for enhancing the initiative of users by economic interests and,
concurrently, the economy and security operation of the DN
system.

7 CONCLUSION

As a demand-oriented energy supply system, a smart DN with
multi-source coupling is a major strategic measure for domestic
energy development and the trend of the global power system.
However, owing to the hybrid access of user resources, natural
resources, and time-space dispersed resources making the power
supply diversified and unstable, the DN system faces great
changes in architecture, which brings great challenges to the
upper collaborative dispatch and optimization. Consequently,
establishing on the fundamental principle of multi-source
integration and DN optimization control, the hierarchical
multi-source coordinated regulation strategy considering the
penetration of DGs, EVs, and BESS is proposed in this study.
Combining the efficient utilization of DGs, load shifting function
of EVs and BESS, and the dynamic reactive compensation of SVC
capacitor banks, the optimization strategy could effectively
balance the tradeoff between active power loss and node
voltage fluctuation, and its feasibility and effectiveness are
illustrated through MATLAB simulation results. First, based
on MPPT control, the self-optimizing processes of WT and

FIGURE 19 | Voltage curves under different scenarios at 19:00.

FIGURE 20 | Daily dispatch plan of the SVC.

TABLE 2 | Indices before and after compensation at 19:00.

Compensation Relative voltage excursion
(p.u.)

Power loss (kW)

Scenario 4 2.8133 575.99
Scenario 5 2.0605 514.90
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PV output power are implemented for improving the power
production efficiency of the DGs. Next, according to the dynamic
load change, the TOU price mechanism is introduced to improve
the initiative and utilization of bidirectional EVs and BESS by
guiding the charging/discharging plans of the owners and
achieving the peak shaving and valley filling function, which is
significant for alleviating the power supply pressure of the DN.
Finally, both total active power loss and node voltage fluctuation
are selected as the optimization objectives, under the basic
constraints, and the improved GA with EPS method is
employed to determine the daily optimal SVC capacitor bank
compensation plan for the multi-objective economic-secure
scheduling problem. After the above hierarchical dispatch
steps, the entire power loss and node voltage out-of-limit risk
in the DN can be improved simultaneously, which promotes the
economic and reliable operation of the regional DN. The research
results in this study have good extensibility and may provide
certain reference significance for exploring effective flexible load
modeling and synergetic management technology of “source-
grid-storage-load” system in the subsequent construction of
smart DNs. Nevertheless, the application would be subject to
some limitations. First, if other objective functions are also paid
attention to, it is better to adopt efficient multi-objective solvers
instead of a single-objective optimizer by regulating the weight
coefficients ω1 and ω2. Moreover, influences of parameter
uncertainties, such as DGs and power load are not taken into
account in this study. Finally, if different types of distributed
energy equipment are to be surveyed, mathematical models
should be modified according to the actual running
characteristics.
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