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The life test of a complex electromechanical system (CEMS) is restricted by many factors,
such as test time, test cost, test environment, test site, and test conditions. It is difficult to
realize system reliability synthesis and prediction of a CEMS which consists of units with
different life distributions. Aiming at the problems, a numerical analysis method based on
the computer simulation and the Monte Carlo (MC) method is proposed. First, the unit’s life
simulation values are simulated using the MC method with the given each unit’s life
distribution and its distribution parameter point estimation. Next, using the unit’s life
simulation values, the CEMS life simulation value can be obtained based on the CEMS
reliability model. A simulation test is realized instead of the life test of the CEMS when there
are enough simulation values of the CEMS life. Then, simulation data are analyzed, and the
distribution of the CEMS life is deduced. The goodness-of-fit test, point estimation and
confidence interval of the parameters, and reliability measure are estimated. Finally, as a
test example of the wind turbine, the practicability and effectiveness of the method
proposed in this paper are verified.

Keywords: Monte Carlo simulation, computer simulation, system reliability prediction, system reliability synthesis,
complex electromechanical system

INTRODUCTION

Complex electromechanical systems (CEMSs) have been used in industry, civil machinery,
aerospace, and so on (Mi et al., 2016; Wang et al., 2022). Reliability synthesis and prediction of
CEMSs have long been critical issues within the field of reliability engineering. CEMSs are usually
composed of optics, machinery, and electricity (Tang et al., 2021). Some CEMSs have very complex
structures, some have huge volumes, some have long service life, and some are expensive (Han et al.,
2021). Thus, reliability synthesis and prediction of CEMSs only relying on life testing are limited by
multiple factors such as test scheme, test site, test time, test cost, and test conditions. However, at the
stage of the project demonstration and initial design of CEMSs, reliability synthesis and prediction of
CEMSs are necessary (Fuqiu et al., 2020). Therefore, it challenges the realization of reliability
synthesis and prediction of CEMSs.

Since Buehler proposed a reliability synthesis method for a series system with two binomial
components (Buehler, 1957), scholars from classical, Bayes, and fiducial schools have conducted a lot
of research on reliability synthesis and prediction of systems. The classical school put forward the
maximum likelihood estimation (MLE) method, modified maximum likelihood estimation (MML)
method, sequential reduction (SR) method, combined MML and SR method (CMSR), and so on (Yu
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et al., 2013). The MLE method is only applicable to large sample
tests, and the failure distribution is an unbounded symmetric
normal distribution. The MML method is only applicable to
binomial (pass–fail) component systems (Fo and Xiong, 2009).
The disadvantage of the SR method is that successive
compression of test data leads to information loss, resulting in
large estimation variance and a more conservative confidence
limit of system reliability (Zhu and J Sh, 1990). The algorithm of
the CMSRmethod is complex, and it is not suitable for the system
with zero failure number of unit test data. The Bayes method only
solves the reliability interval estimation of binomial or
exponential approximation for complex systems (Guo and
Wilson, 2013). The fiducial method has been proved
unsuitable for system reliability evaluation (Zhou and Weng,
1990). Therefore, it is difficult to use the abovementioned
methods to synthesize and predict the CEMSs’ reliability, and
reliability synthesis and prediction of CEMSs are still problems in
reliability engineering (Peng et al., 2013). Although the Monte
Carlo method can easily deal with the reliability synthesis
problem of systems with different unit distributions (Yeh
et al., 2010), the simple Monte Carlo method, bootstrap
method, double Monte Carlo method, and asymptotic method
introduced in many studies can only solve the lower confidence
limit of system reliability, and the interval estimation problem of
system life distribution types and parameters are unsolved (Meng
andWen-Tao, 2021). Despite decades of research, there is still no
general method to realize the reliability synthesis and prediction
of CEMSs (Kovacs et al., 2019).

It is well known that a CEMS is composed of several units
(subsystems), and the system reliability depends on the reliability
of its constituent units (subsystems) (Negi and Singh, 2015), (Liu
et al., 2015). When the constituent units’ life of CEMS follows
different distributions, it is difficult to synthesize and predict the
CEMS reliability from units’ reliability data information (Weiyan
et al., 2009). Hence, some scholars have conducted a lot of
correlational research. For example, Guo et al. (2014) analyzed
some theories and methods for system reliability synthesis, and
the new idea was proposed for the problem aiming at specific
engineering backgrounds. Considering that some CEMSs contain
outsourced components, Sun et al. (2018) computed system
reliability and component importance measures. According to
the equal-principle first and second moment of reliability, Yu
et al. (2013) investigated Bayes reliability confidence limit for a
series-parallel system consisting of different distribution units.
Graves and Hamada (2016) evaluated the likelihood for
simultaneous failure time data when monitoring was stopped.
In view of the lack of reliability data information of CEMSs,
Wilson et al. (2006) and Yuan et al. (2019) discussed how to make
full use of limited reliability data information of CMESs to
synthesize and predict system reliability. Although scholars
have discussed the reliability synthesis and prediction of
CEMS from many aspects, there are still challenges by many
factors such as difficulty in establishing a reliability model for
CMES, lack of reliability data information, high test cost, and so
on. It is necessary to be studied further.

In order to solve the above problems and realize the reliability
synthesis and prediction of CEMS, a numerical analysis method

based on the computer simulation and the Monte Carlo (MC)
method is proposed in this article. The remainder of this article is
organized as follows: In Section 2, we propose a method to obtain
the life simulation values for the constituent units of CEMS when
the life distribution types and distribution parameters of
constituent units are known. In Section 3, we take a method
to obtain the system life simulation value from the units’ life
simulation values. One system life simulation value represents a
reliability test of CEMS. Computer simulation can be realized
instead of life test when there are enough system life simulation
values. In Section 4, we carry out the initial selection of CMES
life distribution types and goodness-of-fit test. In Section 5, a
case study of a CMES is presented to demonstrate the
effectiveness of our proposed method. Finally, conclusions
are made in Section 6.

LIFE SIMULATION VALUES FOR THE
CONSTITUENT UNITS OF COMPLEX
ELECTROMECHANICAL SYSTEMS
It is assumed that a CEMS is composed of n different life
distribution units, and the life distribution and the appropriate
parameters of each constituent unit are known. The life
simulation values for n units are generated using the random
variable simulation conversion equation and through Monte
Carlo simulation (Yoshida and Akiyama, 2011; Wang et al.,
2012; Zhang et al., 2014). According to the common
distributions in engineering, such as the exponential
distribution, Weibull distribution, normal distribution,
logarithmic normal distribution, extreme value distribution,
Gamma distribution etc., the respective random variable
simulation conversion equations g(ϑi) are deduced and listed
in Table 1. If a unit is subject to any other distribution, its random
variable simulation conversion equation can be solved similarly
using the inverse function method.

In order to ensure that all units are independent of each other,
the pseudo-random number is computer-generated for each unit
and subject to 0-1uniform distribution.

ϑi � RND(1) i � 1, 2,/, n.

According to the life distribution and parameters of each
constituent unit, the life simulation value ti for the
corresponding unit can be obtained through logical operation.

ti � g(ϑi) i � 1, 2,/, n.

In this way, a set of life simulation values of n units can be
obtained, and the first simulation values are completed. The m
groups of life simulation values are obtained after m cycles.

LIFE SIMULATION VALUES FOR THE
COMPLEX ELECTROMECHANICAL
SYSTEMS
For the CEMS composed of n units, the life simulation value for
each unit can be obtained through each simulation, and they are
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denoted by tj1, tj2,/, tjn. According to the reliability logical
relationship between the CEMS and each component unit, the
life simulation values for the CMES are obtained on the minimal
path set method (Cancela et al., 2013; Schallert, 2014).

S � ∪
q

h�1
Sh � ∪

q

h�1
[ ∩

xi,xj,/∈Sh
(xi, xj,/)], (1)

where S denotes the CEMS, q denotes the number of the
minimum path sets in the CEMS, h � 1, 2,/, q, and
Sh � (xi, xj,/), xi, xj. . . is all the units in a minimum path set.

Therefore, the life simulation value tS for a CEMS can be
obtained through logical operation after each simulation.

tS � max
1<h<q

(tSh) � max
1<h<q

[ min
ti,tj...∈Sh

(ti, tj, . . .)], (2)

where tS is the life simulation value for the CEMS, ti, tj. . . is the
life simulation value for each unit in the minimum path set, and
tSh is the life simulation value for the hth minimum path set.

The minimal path sets of the typical system are shown in
Figure 1, and the system has four minimum path sets:
(x1, x5, x4), (x2, x5, x3). The life simulation values for the
system are obtained by the following equation (Hong-Bo and
Guo, 2009):

tS � max[min(t1, t2), min(t3, t4),min(t1, t5, t4), min(t3, t5, t2)].
(3)

In general, the CEMS is usually considered to be composed of
several simple serial or parallel subsystems, and the following
equations are established:

tSk � min
ti,tj ...∈Sk

(ti, tj, . . .), (4)

tSl � max
ti ,tj ...∈Sl

(ti, tj, . . .), (5)

where tSk is the life simulation value for the serial subsystem and
tSl is the life simulation value for the parallel subsystem.

For any CEMS, the simulation value array T(r × n) for the
units can be obtained by carrying out r simulations over n
component units.

T(r × n) �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t11, t21,/, tn1
t12, t22,/, tn2
..
.

t1r, t2r,/, tnr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6)

Each simulation can yield a set of life simulation values for the
units, and one life simulation value for the system can be obtained
by Eq. 2. If r simulations are performed, r life simulation values

TABLE 1 | Conversion formulas of different distributions.

Probability density function Distribution function Conversion formula g(ϑi)

fe(t) � λe−λ(t−t0 ) λ
t0

t � − ln(ϑ)
λ + t0

fw(t) � m(t−t0 )m−1
ηm e−(

t−γ
η )m m

η
t0

t � η(−ln ϑ)1/m + t0

fN(t) � 1
σ

		
2π

√ e−
(t−μ)2
2σ2

μ

σ
t1 � 					−ln ϑ1

√
sin 2 πϑ2

t2 � 					−ln ϑ1
√

cos 2 πϑ2

fL(t) � 1		
2π

√
σLt
e
−(ln t−μL )2

2σ2
L

μL
σL

t1 � e
				
−ln ϑ1

√
sin 2 πϑ2

t2 � e
				
−ln ϑ1

√
cos 2 πϑ2

fm(t) � 1
σm
e

t−μm
σm e−e

t−μm
σm μm

σm

t � μm + σm ln(−ln ϑ)

fM(t) � 1
σM
e−

t−μM
σM e−e

t−μM
σM

μM
σM

t � μM − σM ln(−ln ϑ)

fΓ(t) � λαΓ t
α−1

Γ(α) e
λΓ t λΓ

α
t � − ln(ϑ1 ,...,ϑα )

λΓ Γ(α)

FIGURE 1 | Minimal path sets of typical system.
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can be obtained, namely, tS1, tS2, ..., tSr, and tSr is equivalent to the
full life test over r CEMSs. If r is large enough, the life distribution
types for CEMSs can be counted and deduced from tS1, tS2, ..., tSr.
Therefore, the probability estimation for the reliability measures
of the CEMS is taken.

INITIAL SELECTION OF LIFE
DISTRIBUTION TYPES FOR THE COMPLEX
ELECTROMECHANICAL SYSTEMS AND
GOODNESS-OF-FIT TEST

In order to determine the life distribution types for the system,
this thesis makes use of the probability graph estimation
method and goodness-of-fit test method. First, the
probability graph for common distributions is designed and
constructed on the computer, and tS1, tS2, ..., tSr is drawn and fit
on the probability graph. Then, the residual sum of squares
under each distribution is calculated, and the distribution
whose residual sum of squares is minimal is selected as the
initial distribution. Finally, the Pearson χ2 goodness-of-fit test is
performed (Praks and Gono, 2011; Aguwa and Sadiku, 2012),
and the life distribution type for the system is determined after
the hypothesis test is accepted.

Data Processing and Initial Selection of
Distribution Types
The basic principle for the probability idea design is to linearize
the distribution function, and Table 2 shows the linearized
conversion equations for seven common distributions.
The system life data are drawn in the new coordinate system,
respectively. According to the discretization of the fitting line, the
life distribution types for the system are initially decided.

To improve the accuracy of statistical inference, the value of r
is relatively larger. To reduce the amount of calculation, the life
simulation values for the system tSj, (j � 1, 2, ..., r) are arranged
in ascending order of time.

ts(1) ≤ ts(2) ≤ . . . ≤ ts(j) ≤ . . . ≤ ts(r).

Then [ts(1), ts(r)] is evenly divided into p intervals, and p can be
determined according to the number of simulations, r, generally
p � 20 ~ 100. The time interval is calculated as follows:

ΔtS,k � tS,k+1 − tS,k k � 1, 2/, p, (7)
where tS,k+1, tS,k is the boundary of the kth interval and ΔtS,k is the
kth interval space.

The median �tS,k of all intervals is denoted as follows:

�tS,k � tS,k + ΔtS,k
2

. (8)

The frequency number of the life simulation value for the
system in the kth interval [tS,k+1, tS,k] is denoted as rk. �tS,k, and the
corresponding cumulative failure probability constitutes p
scattered data pairs [F(�tS,k),�tS,k].

⎡⎢⎢⎣F(�tS,k) � 1
r
⎛⎝∑k

i�1
ri − rk

2
⎞⎠,�tS,k � tS,k + ΔtS,k

2
⎤⎥⎥⎦. (9)

Each scattered data pair [F(�tS,k),�tS,k] corresponds to 1 point
on the probability graph, and the least square method is used to fit
the straight line.

Yj � aj + bjXj j � 1, 2,/, q,

where aj and bj are the linear parameters of the fitting line, and q is
the number of the selected probability graphs.aj and bj and the
residual sum of squares Qj are calculated on the probability
graph, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bj �
p∑p
k�1

XjkYjk −∑p
k�1

Xjk∑p
k�1

Yjk

p∑p
k�1

X2
jk −⎛⎝∑p

k�1
Xjk

⎞⎠2

aj � 1
p
⎡⎣∑p
k�1

Yjk − bj∑p
k�1

Xjk
⎤⎦

, (10)

Qj � ∑p
k�1

(Yjk − aj − bjXjk)2, (11)

where Xjk and Yjk are the horizontal and vertical coordinate of
the kth data point.

The values of Qj on different distribution probability graphs
are compared, and the distribution corresponding to the
minimum value of Qj is selected as the initial life distribution
for the CEMS.

Pearson χ2 Goodness-of-Fit Test
The goodness-of-fit test should be performed after the initial
distribution is determined.

TABLE 2 | Design of different probability plots.

Distribution functions X–Y coordinate transformation

Fe(t) � 1 − exp[−λ(t − t0)] Y � ln
1

1 − Fe(t)
X � t − t0

Fw(t) � 1 − exp[−(t−t0η )m] Y � ln ln
1

1 − Fw(t)
X � ln(t − t0)

FN(t) � ∫t

0
e
−(x−μ)2

2σ2 dx

σ
		
2π

√ � Φ(u)
Y � uα → Φ(uα)
X � t

FL(t) � ∫t

0
e
−(ln x−μL )

2

2σ2
L dx

σL
		
2π

√ � Φ(uL)
Y � uLα → Φ(uLα)
X � ln t

Fm(t) � 1 − exp[−e(t−μmσm
)] Y � ln ln

1
1 − Fm(t)

X � t

FM(t) � exp[−e−(
t−μM
σM

)] Y � ln
1

ln[1/FM(t)]
X � t

FΓ(t) � 1
Γ(α) ∫λΓ t

0
xα−1e−xdx Y � FΓ(t)

X � λΓ t
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The initial distribution function as Fx(t) is set, and the sample
observation is the median value of p intervals, �tS,1,�tS,2, ..., �tS,p. The
Pearson χ2 goodness-of-fit test is performed as follows:

1) The hypotheses are established.

The original hypothesisH0: the sample is from Fx(t), and the
alternative hypothesis: the sample is not from Fx(t).

2) The point estimate value θ̂x (or θ̂x1, θ̂x2, . . . , θ̂xl) of Fx(t) is
estimated using the probability graph method.

The probability for p intervals is calculated as follows:

Pk � Fx(�tS,k+1, θ̂x) − Fx(�tS,k, θ̂x) k � 1, 2/, p. (12)

3) The Pearson χ2 test statistics is calculated by

χ2 � ∑p
k�1

(rk − rpk)2
rpk

. (13)

4) When the confidence probability γ is given, the following
formula holds:

P[χ2 ≤ χ2γ(v)] � γ, (14)

where v is the degree of freedom, v � p − 1 − l, and l is the
number of parameters of initial distribution.

If χ2 ≤ χ2γ(v), the original hypothesis is accepted at a high
probability, and then, the sample can be identified from Fx(t).
Otherwise, the original hypothesis shall be rejected.

To facilitate the computer analysis, the Fisher approximation
of χ2γ(v) is given

χ2γ(v) ≈
1
2
[ 					

2v − 1
√ + uγ]2, (15)

where uγ is the γ quantile of the standard normal distribution,
which can be approximated as follows:

uγ ≈
a0 + a1z

1 + b1 + b2z2
, (16)

where a0 = 2.3075; a1 = 0.2706; b1 = 0.9922; b2 = 0.0448; and

z �
									
ln(1 − γ)−2

√
.

ENGINEERING APPLICATION–SYSTEM
RELIABILITY PREDICTION ON WIND
TURBINE
An MW wind turbine unit is mainly composed of impeller,
gearbox, generator, yaw system, pitch system, brake system,
lubrication system, electrical system, and frequency converter
in serial connection, and its reliability block diagram (RBD) is
shown in Figure 2.

The given life distributions and parameters for all components
in the wind power generator unit are listed in Table 3 (Tavner
et al., 2007; Spinato et al., 2009; Guo et al., 2012).

According to the relevant parameters of each unit listed in
Table 3, the life simulation value for each unit is generated using
the simulation conversion equation in Table 1. We set r � 500,
and the 500 life simulation values for units are obtained as listed
in Table 4 (excerpt). 500 life simulation values for the system are
obtained through logical operation.

1) Initial selection of the life distribution types for the wind
turbine.

The characteristic data in Table 5 are processed using
probability graph estimation to get the residual sum of squares
under different distributions, Qj, as listed in Table 6.

It is shown in Table 6 that the residual sum of squares for the
two-parameter Weibull distribution was the least, and it can be
used as the initial distribution.

2) Goodness-of-fit test for the initial distribution.

According to the probability graph estimation, m � 1.1925,
η � 13207h, the Pearson χ2 test statistics is obtained from Eqs 12
and 13:

χ2 � 58.7058.

Given the confidence probability γ � 0.9, χ20.9(47) is obtained
from Eq. 15.

χ20.9(47) � 60.0312.

We can obtain χ2 less than χ20.9(47).
χ2 < χ20.9(47).

The hypothesis test is passed at a high probability, and then the
life data of this wind turbine follows the two-parameter Weibull
distribution, the distribution parameters, the point estimation
and the interval estimation of reliability measures can be further
solved.

We set �tS,1,�tS,2, ..., �tS,p as a complete sample, the likelihood
function for the two-factor Weibull distribution can be
expressed as

L(m, η) � ∏p
k�1

m

η
(�tS,k

η
)m−1

exp[ − (�tS,k
η

)m]. (17)

The logarithm is taken from

ln L(m, η) � p ln
m

η
+ (m − 1)∑p

k�1
ln
�tS,k
η

−∑p
k�1

(�tS,k
η

)m

. (18)

The constraint conditions are set as

z ln L
zm

� 0,
z ln L
zη

� 0.
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TABLE 3 | Distribution parameters of the units.

Component Distribution Mean value
μ

Standard deviation
σ

Scale parameter
η

Shape parameter
m

Blade Normal distribution 42000 663 — —

Gearbox Logarithmic normal distribution 11 1.2 — —

Generator Weibull distribution — — 76000 1.2
Yaw system Extreme maximum value distribution 65000① 370② — —

Pitch control system Normal distribution 84534 506 — —

Brake system Exponential distribution 120000 — — —

Lubrication system Weibull distribution — — 66000 1.3
Electrical system Weibull distribution — — 35000 1.5
Frequency converter Exponential distribution 45000 — — —

① denotes the location parameter of the maximum value distribution, and ② denotes the scale parameter of the maximum value distribution.

TABLE 4 | Units’ life simulation data (h).

Times Impeller Gearbox Generator Pitch
control
system

Yaw
system

Brake
system

Lubrication
system

Electrical
system

Frequency
converter

1 43311 40009 74395 65193 84351 20324 50765 48938 55911
2 42201 16828 185946 65318 84236 4826 39547 19360 23634
3 41248 48744 86633 64261 84653 123818 63409 6771 14843
4 41940 58750 1673 65331 84583 45553 116354 24337 59810
5 42013 14828 35490 65000 85129 99210 106863 57828 5754
6 42133 125633 75981 64158 85021 101249 9013 36303 13516
7 43656 175291 41034 64586 84203 37468 14264 6903 9821
8 42372 28295 175973 64914 84273 21075 91015 11582 162175
9 41716 363928 38274 65426 85453 125173 44053 59533 47344
10 42558 47368 6393 65447 83788 20456 81417 57654 94197
11 42667 70521 22551 64348 85127 57006 41832 68821 9781
12 41678 24014 37799 65466 84852 8933 65919 49767 286468
13 41753 19934 28705 65425 84414 297109 49832 27628 33671
14 43029 21064 40274 64849 84405 51099 65566 24296 10853
15 42602 57290 33770 65176 85297 172179 89127 21851 18474
16 41605 56145 139157 64305 84050 38637 98599 31637 16932
17 42969 17676 56570 64777 84433 57656 51311 3445 66923
18 41590 372267 207061 65335 84546 34188 11249 16269 104821
19 41921 30931 21816 65167 85164 65177 3692 50081 26140
20 42121 137379 28842 65431 86255 85724 30947 19872 7451
21 43323 34659 104992 65024 85339 50258 104110 5776 29574
22 41598 1375050 40966 63774 84082 4140 16036 2046 29741
23 42661 36847 14916 65236 83399 20625 37707 9471 8159
24 41058 179747 8944 65370 84464 61753 104395 19642 70728
25 41747 18501 76860 65047 84158 120728 7691 37303 1066

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

500 42109 283068 46822 64981 84803 93965 1632 39312 7857

Setting p = 50, we can get 50 characteristic data as listed in Table 5.

FIGURE 2 | Reliability block diagram of the wind turbine.
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The likelihood equations are established and arranged as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑p
k�1

(�tS,k)m ln�tS,k

∑p
k�1

(�tS,k)m − 1
m

� 1
p
∑p
k�1

ln�tS,k

ηm � 1
p
∑p
k�1

(�tS,k)m
, (19)

�tS,1,�tS,2,/,�tS,50 are substituted into Eq. 19 to solve the maximum
likelihood estimation for the parameter m, η.

{ m̂ � 1.2427
η̂ � 13114

.

Therefore,

�TS � η̂Γ(1 + 1
m̂
), (20)

where �TS is the maximum likelihood estimation for the average
life of the wind turbine.

As m̂> 1, gamma function can be approximated as

Γ(1 + 1
m̂
) ≈ 1 − 0.5748646

1
m̂

+ 0.9512363( 1
m̂
)2

−0.6998588( 1
m̂
)3

−

0.6998588( 1
m̂
)3

+ 0.4245549( 1
m̂
)4

− 0.1010678( 1
m̂
)5

.

(21)

If m̂≤ 1, the calculation can be simplified using the recursive
equation and �TS can be calculated as follows:

�TS � 12287.02h.

With the given t value, the maximum likelihood estimation for
the reliability function R(t) is

R̂S(t) � exp⎡⎣ − (t

η̂
)m̂⎤⎦. (22)

Therefore, the maximum likelihood estimation for the failure
rate function λ(t) is

λ̂S(t) � m̂

η̂
(t

η̂
)m̂−1

. (23)

If the confidence probability is set as 1 − α, the confidence
interval for the distribution parameter m, η is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
mL � m̂ exp( − u1−α

2

1.0490					
p − 1

√ )
mU � m̂ exp(u1−α

2

1.0490					
p − 1

√ )
, (24)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ηL � η̂ exp( − u1−α

2

1.0810
m̂

					
p − 1

√ )
ηU � η̂ exp(u1−α

2

1.0810
m̂

					
p − 1

√ )
, (25)

TABLE 5 | The system simulation life data.

Sequence number Data Sequence number Data Sequence number Data

rk �tS,k rk �tS,k rk �tS,k

1 11 250 18 10 8750 35 9 20000
2 13 750 19 10 9250 36 8 21000
3 16 1250 20 16 9750 37 10 22000
4 5 1750 21 9 10250 38 5 23000
5 14 2250 22 8 10750 39 12 24000
6 15 2750 23 13 11250 40 5 25000
7 13 3250 24 18 11750 41 6 26250
8 14 3750 25 14 12250 42 7 27750
9 13 4250 26 4 12750 43 6 29250
10 9 4750 27 7 13250 44 4 30750
11 15 5250 28 8 13750 45 2 32000
12 18 5750 29 7 14250 46 3 34000
13 12 6250 30 6 15000 47 5 36000
14 18 6750 31 13 16000 48 4 38000
15 10 7250 32 15 17000 49 5 40000
16 15 7750 33 16 18000 50 9 42000
17 7 8250 34 8 19000

TABLE 6 | The life distribution deduction result.

Distribution Normal distribution Exponential
distribution

Weibull distribution Logarithmic normal
distribution

Extreme minimum
value distribution

Extreme maximum
value distribution

Qj 14.3679 0.9514 0.1737 19.2132 9.6881 1.3746
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where u1−α
2
is the quantile of standard normal distribution, and it

can be calculated by Eq. 16.
To simplify the calculation, the shape parameter m can be

taken as its maximum likelihood estimation, and it is taken
as m̂ � 1.2427.

When the given confidence probabilities 1 − α are 0.9, 0.8, and
0.7, respectively, the confidence interval for the distribution
parameter m, η, and lower confidence limit for the average life
of the wind turbine are shown in Table 7.

(RS(t))L � exp⎡⎣ − ( t

ηL
)m̂⎤⎦. (26)

The upper confidence limit (1 − α) for its failure rate is
approximated as

(λS(t))U � m̂

ηL
( t

ηL
)m̂−1/h, (27)

when t is 1000, 1500, 2000, 2500, and 3000h, and the confidence
probabilities 1 − α are 0.9, 0.8, and 0.7, respectively, the reliability
lower confidence limit (1 − α) and failure rate upper confidence

limit (1 − α) of wind turbine are shown in Figure 3 and Figure 4,
respectively.

It can be seen from Figure 3 and Figure 4 that all lower limits
of reliability (RS(t))L show a downward trend, while all failure
rates show an upward trend under different confidence
probabilities.

CONCLUSION

For the CEMS with many limiting factors, this article presented a
method of replacing life test with computer analog simulation for
CEMS. The life simulation values of system constituent units of
CEMS could be obtained by their life distribution types and
relevant distribution parameters. The life simulation values of
CEMSwere obtained according to the reliability logic relationship
and reliability logic block diagram of the CEMS, and the
simulation was instead of the life test of CEMS when the
simulation times were enough. The method proposed in this
thesis was of great significance to save test time and test cost,
especially for the CEMSs that could not carry out reliability
life test.

The method proposed in this thesis could solve the problems
of system reliability synthesis and prediction of CEMS with
different distributions of units. When the “pyramid model” was
used for system reliability level by level synthesis and
prediction. Compared with the traditional life test method of
CMES, it could save a lot of test cost, test time, test site, and so
on. This approach could be applied to the early program design,
prototype development, trial production, and other stages of
production. In engineering applications, the CMES reliability
logic block diagram could be drawn by computer, and all the
smallest path sets could be obtained by the node traversal

TABLE 7 | The confidence interval for the distribution parameter and lower
confidence limit for the average life of the wind turbine under different
confidence probabilities.

1 − α mL mU ηL ηU (�TS)L
0.9 0.9712 1.4374 10689.6575 16088.1672 10015.5596
0.8 1.0256 1.4491 11183.3236 15377.9862 10478.0948
0.7 1.0639 1.4575 11529.2156 14916.6259 10802.1745

Given the t value, the lower confidence limit (1 − α) for the reliability of the wind turbine is
approximated.

FIGURE 3 | Reliability lower confidence limit (1 − α) of the wind turbine
under different confidence probabilities and life.

FIGURE 4 | Failure rate upper confidence limit (1 − α) of the wind turbine
under different confidence probabilities and life.
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optimization algorithm. Therefore, it has obvious application
value in engineering.

Finally, the proposed method was applied to the wind turbine,
and the reliability lower confidence limit (1 − α) and failure rate
upper confidence limit (1 − α) of wind turbine were calculated
with given the life time t. The method is also applicable to other
CEMSs and can be utilized to provide guidance for system design,
maintenance planning, and so on. This paper provides an
effective and flexible method for reliability synthesis and
prediction of CEMS, which can be easily implemented in
engineering practices.
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