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The widespread use of renewable energy resources requiresmore immediate and effective
fire alarms as a preventive measure. The fire is usually weak in the initial stages, which is not
conducive to detection and identification. This paper validates a solution to resolve that
problem by a flame detection algorithm that is more sensitive to small flames. Based on
Yolov3, the parallel convolution structure of Inception is used to obtain multi-size image
information. In addition, the receptive field of the convolution kernel is increased with the
dilated convolution so that each convolution output contains a range of information to
avoid information omission of tiny flames. The model accuracy has improved by
introducing a Feature Pyramid Network in the feature extraction stage that has
enhanced the feature fusion capability of the model. At the same time, a flame
detection database for early fire has been established, which contains more than 30
fire scenarios and is suitable for flame detection under various challenging scenes.
Experiments validate the proposed method not only improves the performance of the
original algorithm but are also advantageous in comparison with other state-of-the-art
object detection networks, and its false positives rate reaches 1.2% in the test set.
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INTRODUCTION

Renewable energy sources is playing an increasingly important role in industry (Qazi et al., 2019).
Therefore, its security problem is attracting widespread attention. We can see numerous studies on
Hydrogen safety, lithium-ion battery safety, and Photovoltaic safety (Yang et al., 2018; Ould Ely et al.,
2019; Abohamzeh et al., 2021; Fang et al., 2021). However, few studies are reported in the literature
for efficient flame detection in the case of fire accidents for renewable energy sources. Because of the
unique characteristics of renewable energy resources, their fire situation is complicated, and the
immediacy in fire detection and accuracy of fire alarms is necessary for reducing fire hazards.
Traditional fire detection technologies detect fire according to the characteristic signals of fire, such
as temperature, combustion gas, aerosol, etc. (Xu, 2020). However, such characteristic signals are
weakened gradually in the process of propagation, therefore the traditional contact detector will be
restricted by the height and area of the detection space. With the development of digital image
processing, video fire detection technology has been proposed and researched. Video fire detection
technology that does not depend on contact characteristic parameters became more advantageous in
the fire detection domain due to its advantages like a fast response, visualization, and broader

Edited by:
Weiguang An,

China University of Mining and
Technology, China

Reviewed by:
Xueming Shu,

Tsinghua University, China
Chenqiang Gao,

Chongqing University of Posts and
Telecommunications, China

*Correspondence:
Qixing Zhang

qixing@ustc.edu.cn

Specialty section:
This article was submitted to

Sustainable Energy Systems and
Policies,

a section of the journal
Frontiers in Energy Research

Received: 05 January 2022
Accepted: 15 February 2022
Published: 08 March 2022

Citation:
Dai P, Zhang Q, Lin G, Shafique MM,
Huo Y, Tu R and Zhang Y (2022) Multi-
Scale Video Flame Detection for Early
Fire Warning Based on Deep Learning.

Front. Energy Res. 10:848754.
doi: 10.3389/fenrg.2022.848754

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8487541

ORIGINAL RESEARCH
published: 08 March 2022

doi: 10.3389/fenrg.2022.848754

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.848754&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848754/full
http://creativecommons.org/licenses/by/4.0/
mailto:qixing@ustc.edu.cn
https://doi.org/10.3389/fenrg.2022.848754
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.848754


detection space. So, vision-based fire detection systems can play a
decisive role in the flame detection of renewable energy sources.

The traditional video fire detection method is based on the
characteristics of the flame. The static characteristics of the flame
include color, shape, number of sharp angles, and circularity,
while the dynamic characteristics include flicker frequency and
flame area change rate. Yamagishi et al. (Yamagishi and
Yamaguchi, 1999) innovatively processed the HSV color space
and extracted the flame area by taking advantage of the changing
characteristics of the color and saturation in the flame area.
Izquierdo and Borges (Borges and Izquierdo, 2010) realized
fire detection by Bayes classifier using changes in the shape,
boundary, and area of the flame region and other additional
features. Dimitropoulos K and Barmpoutis (Dimitropoulos et al.,
2014) proposed a fire detection method based on multi-feature
extraction, which simultaneously established a fire model based
on flame scintilla feature, dynamic texture feature, color feature,
and spatiotemporal energy. However, the traditional video flame
detection method based on flame features has its limitations. The
algorithm mostly uses static images, lacks dynamic feature
extraction, and is susceptible to interference from the shadow,
brightness, energy, and other factors. The false positive rate is
high, and the detection sensitivity is overly dependent on the
algorithm parameters.

Since the rise of deep learning in 2012 (Ghali et al., 2020), it has
made outstanding achievements in image classification and object
detection, causing a new upsurge in the fields of artificial
intelligence and computer vision. Among them, the
convolutional neural network is the most outstanding one in
image data processing. Convolutional neural network (CNN) is a
kind of feedforward neural network with a deep structure (Lecun
et al., 1998), which includes convolution computation. And it is a
research hotspot in the field of semantic analysis and image
recognition. CNN has a weight sharing network structure similar
to a biological neural network, which reduces the complexity of
the network model by reducing the number of weights, which not
only reduces the training parameters but also greatly improves
the training speed.

As a branch of computer vision, video fire detection also
begins to introduce deep learning. Frizzi (Frizzi et al., 2016) uses a
9-layer convolutional neural network to extract features from
images and realizes the classification of smoke and flame through
sliding window search, which is very fast. Compared with
traditional video fire detection methods, this method has
better classification performance, indicating that it is
promising to use CNN to detect fire in video. Yong-Jin Kim
(Young-Jin and Eun-Gyung, 2017)tries to apply Faster RCNN to
flame detection, and Shen (Shen et al., 2018)simplifies the Yolo
(You Only Look Once) network to carry out flame detection, both
of which achieve good results, indicating that the flame detection
method based on deep learning is superior to the traditional video
fire detection method in performance.

The early stage of fire is the best stage to extinguish the fire, so
the fire detection and alarm at this stage are particularly
important. However, the early flame of fire is weak, so it is
easy to be ignored by the detection model. To solve this problem,
this paper proposes a fire detection and identification method

based on improved Yolov3. Yolov3 (You only look once v3) is an
excellent object detector with good performance in both aspects
of accuracy and speed. Based on this, we hope to improve its
ability to identify small objects and introduce multi-scale
convolution and dilated convolution into the backbone
network to improve its ability to identify flames at different
scales. At the same time, the idea of FPN (Feature Pyramid
Networks) is used to improve the feature extraction network of
Yolov3. The proposed method strengthens the feature fusion and
reuses high-level features to achieve the purpose of improving
accuracy. In addition, this paper has established a flame database
for early fires, which involves a variety of fire scenarios to
establish a foundation for future flame detection research.

RELATED WORK

There are many applications of deep learning methods in flame
detection. Some studies try to combine the traditional video flame
detection method with deep learning, and first carry out feature
extraction and then use convolutional neural network for
recognition. Chen et al. (Zhong et al., 2020) designed a flame
detection method based on multi-channel convolutional neural
network, the OTSU algorithm was used to extract the flame color
contour and dynamic features, and then the three features were
input into the three-channel convolutional neural network for
detection and recognition. Compared with traditional methods,
the accuracy is improved, but the method of training specific
features has some problems of over-fitting. Otabek
Khudayberdiev et al. (Khudayberdiev and Butt, 2020).
combined PCA(Principal component analysis) and CNN,
extracted data features using PCA, and CNN conducted
inspection and classification. MobileNet was selected as the
backbone to simplify the size of the model but there is a lack
of accuracy.

Some researchers choose to carry out transfer learning, which
is to apply the pre-trained deep CNN architecture for the
development of fire detection systems. Mohit et al. (Dua et al.,
2020) believed that the traditional use of the CNN method to
carry out flame detection using balanced data sets was not in line
with the actual situation, so they proposed to use unbalanced data
sets with more non-fire pictures. They used two models, VGG
(Visual Geometry Group) and MobileNet, for flame detection,
and the experimental results were superior to the traditional CNN
method. Jivitesh (Sharma et al., 2017) also used unbalanced data
sets for training detection, and in his experiment, Resnet50
outperformed VGG16.

Some researchers believe that the detection of static frames has
its limitations, so the deep learning method is considered to
identify the dynamic characteristics of flames in the video. Lin
et al. (Lin et al., 2019) proposed a joint detection framework based
on Faster RCNN (Faster Regions with CNN features) (Ren et al.,
2016) and 3D CNN (Tran et al., 2015), where RCNN is mainly
used to select the suspected fire area for preliminary
identification, while 3D CNN is used to extract temporal
information and combine the static features and temporal
features of smoke. Kim et al. (Kim and Lee, 2019)first used
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Faster RCNN to detect the suspected fire area, and then used
LSTM (Long Short-Term Memory) to judge whether there was a
flame from the space-time characteristics. Although this kind of
method improves the accuracy of fire detection compared with
the image-based method, the huge structure of the model is
limited in practical application.

Fire detection based on deep learning mainly revolves around
detection accuracy and model size. At present, most of the data
sets in the literature are flame images with clear texture and large
size, but there is a small proportion of research being carried out
for early flame detection that is mandatory to meet the real world
applications. Therefore, based on the characteristics of early
flames, this paper proposes a detection method for small
flames, and at the same time strikes a balance between
accuracy and model size. Pu Li (Li and Zhao, 2020) et al.
summarized the current advanced object detection algorithm
and selected four representative models, such as Faster-RCNN,
R-FCN (Dai et al., 2016), SSD, and Yolov3, to test the fire data set.
The results showed that Yolov3 had the best performance in
flame detection. Therefore, this paper considers Yolov3 aiming to
research small flame detections.

THE PROPOSED METHOD

Object detection is a common method used in fire detection by
computer vision technology. Yolov3 (Redmon and Farhadi, 2018)
is an excellent object detection network with a balance between
speed and accuracy. It has three times the detection speed while
achieving the same accuracy as SSD (Liu et al., 2016). Many

experiments have shown that Yolov3 (You only look once v3) is
the state-of-the-art object detector with good performance in
both aspects of accuracy and speed (Zhang et al., 2020). Based on
the results of Puli’s study (Li and Zhao, 2020), we chose Yolov3 to
improve on early flame detection.

The overall structure of the Yolov3 algorithm is shown in
Figure 1, which can be divided into three parts, including
backbone, multi-scale feature extraction structure, and the
output. Our model uses parallel convolution structure to get
semantic information of different sizes and uses dilated
convolution to increase the reception field. Feature Pyramid
Networks is used in feature extraction structure to strengthen
the utilization of information of different feature layers. Our
model has a total of 45,774,941 parameters and a size of 174 MB,
and the overall structure of the network is shown in Figure 2.

Backbone
In Figure 1 we can see that there are many residual modules in
the backbone network Darknet53 of Yolov3. The structure of
the residual module is shown in Figure 3. In the residual
module, a convolution calculation with the size of 3 × 3 and an
activation function processing is first carried out, and then the
layer is temporarily saved. Then, this layer is convoluted twice
with sizes of 1 × 1, 3 × 3 respectively. Finally, this
convolutional layer is merged with the previously saved
convolutional layer by jumping connection and output. It
can be found that the convolution scale and convolution
method in the backbone network of Yolov3 are relatively
single. As a result, Yolov3 is slightly weak in multi-scale
recognition. Therefore, the residual module should be

FIGURE 1 | Structure of Yolov3 which includes backbone and feature extraction structure.
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improved from these two directions, and the grouping
convolution idea of Inception and dilated convolution
method are introduced here.

Inception (Szegedy et al., 2015; Szegedy et al., 2017) is a module
in Googlenet, as shown in Figure 4, which is a locally topologically
structured network. Inception performs multiple parallel
convolution or pooling operations on the input image and
concatenates all the results into a very deep feature map. It uses

convolution kernels of different sizes in parallel convolution to
obtain different information of the input image, which not only
increases the width of the network but also increases the
adaptability of the network to scale. The structure of Inception
extracts the information of different scales from the input image,
enriches the feature information of the image and improves the
accuracy of recognition. The structure of Inception has the high-
performance characteristics of dense matrix, while maintaining the
sparse structure of the network, in order to reduce the
computational cost of convolution operation. Therefore, without
increasing the complexity of the network, the network can capture
more information, retain the original details of more objects,
perceive more small-scale feature maps through the perception
sparse structure, and improve the recognition accuracy of small
object parts while optimizing the neural network.

Dilated Convolution (Yu and Koltun, 2016) increases the
reception field by injecting voids into the Convolution map of
standard Convolution. Therefore, based on Standard Convolution,
Dilated Convolution adds a hyper-parameter called dilation rate,
which refers to the number of kernel intervals. The dilated
convolution increases the receptive field of the convolution
kernel while keeping the number of parameters unchanged so
that each convolution output contains a large range of information.
At the same time, it can ensure that the size of the output feature
map remains unchanged. As shown in the Figure 5, the size of the
convolution kernel with a dilated rate of 1 remains unchanged, and
the receptive field of the 3 × 3 convolution kernel with a dilated rate
of 2 is the same as that of the 5 × 5 standard convolution kernel, but
the number of parameters is only 9, which is 36% of the number of
parameters of the 5 × 5 standard convolution kernel. Compared

FIGURE 2 | Structure of the proposed method which includes backbone and feature extraction structure.

FIGURE 3 | Cyclic structure of residual module.
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with traditional convolution, dilated convolution can not only
preserve the internal structure of data, but also obtain context
information, but also will not reduce the spatial resolution (Wang
and Ji, 2018). Dilated convolution is also used inWaveNet (van den
Oord et al., 2016), bytenet (Kalchbrenner et al., 2016) and other
networks to improve network performance.

Using the idea of Inception and dilated convolution, we propose
amulti-scale convolutionmodule based on the residual module. As
shown in Figure 6, the convolution in the module is divided into
four groups, and convolution cores of different scales are added.
After the image enters the backbone network, features of different
scales and depths will be extracted. Compared with the original
single convolution method, the possibility of flame features being
ignored by the convolution layer is greatly reduced. At the same
time, the dilated convolution calculation is added to the standard
convolution calculation in the multi-scale convolution module,
which can not only simplify the number of weight parameters but
also improve the feature extraction ability of the network by
improving the receptive field. Dilated convolution will not
reduce the spatial resolution. When using multi-size
convolution structure, it may affect the resolution and is not
conducive to the recognition of small objects. However, if
dilated convolution is used, it can effectively avoid the
reduction of resolution and strengthen the recognition of small

objects. We convert the residual module in the backbone into a
multi-scale convolution module, and the rewritten multi-scale
convolution module retains the DarknetConv2D and
LeakyReLU in the original residual module.

Feature Extraction Structure
Yolov3 extracted three feature layers for object detection, and the
output scales of the three feature layers were 52 × 52, 26 × 26, and
13 × 13, respectively. The depth of the corresponding feature
layers in the backbone network was located in the middle layer,
the middle and lower layer, and the bottom layer. The feature
fusion of Yolov3 is a bottom-up one-way path, in this process, the
semantic information in the 13 × 13 feature graph is fully utilized
after two times of up-sampling and feature fusion. However, for
the feature layer with a scale of 52 × 52, it only plays a role in the
feature output of its own scale. Therefore, information extraction
is missing to some extent. In order to reduce the information
missing and ensure the effective extraction of small-scale flame
features, the idea of FPN was introduced to improve the feature
extraction structure.

FPN(Feature Pyramid Networks) (Lin et al., 2017a) is a
Feature extraction structure. As shown in Figure 7, FPN
carries out multiple feature fusion at different scales. First,
feature extraction is carried out from bottom to top, and the

FIGURE 4 | Structure of the Inception module.

FIGURE 5 | Schematic diagram of dilated convolution with different dilation rates. (A) Dilation rate =1 (B) dilation rate =2 (C) dilation rate =4.
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scale of the feature map is gradually reduced. After reaching
the top level, the feature fusion path is carried out from top to
bottom, and the top-level features are up-sampled and
gradually merged with the lower level features. It helps to
reinforce the low-resolution features of the underlying layer.
The idea of feature fusion of FPN has been embodied in many
networks.

Inspired by FPN, we expand the one-way feature fusion
path in Yolov3 into a two-way feature fusion path. The top-
down path is added based on the bottom-up path, which

enriches the high-level semantic information and helps
detect small flames.

Figure 2 is the structure diagram of the proposed method, in
which some residual modules in the backbone network are
replaced with multi-scale convolution modules. In terms of
feature extraction structure, a bottom-up feature fusion
process was carried out first, and a feature map with a scale of
52 × 52 was output. Then, the feature layer was sampled twice and
fused with the fusion layer of the 13 × 13 feature layer and the
26 × 26 feature layer, and the result was used as the feature output

FIGURE 6 | Cyclic structure of multi-scale convolution module.

FIGURE 7 | Structure of feature pyramid networks.
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at the 26 × 26 scale. Finally, the output layer is fused with the
underlying feature layer as the feature output at the 13 × 13 scale.
In this way, the semantic information of the middle layer feature
map is enhanced and the model performance is optimized for the
detection of small a flame.

EXPERIMENT

Data Set Production
Getting real data sets is not easy for researchers. Currently, the data
sets studied are all from several open data sets on the internet.
However, there is no standard flame data set for comparison in the
field of flame detection (Ghali et al., 2020). Many existing flame
data sets on the internet have some problems such as image
distortion and excessive flame, which are not conducive to the
training of the model and detection of early flame. To better realize
the detection of flame by the model and highlight the pertinence of
renewable energy fires, we have built a flame data set by ourselves,
which includes a variety of combustion conditions under different
disturbances in different scenarios.

Flame data sets are mainly divided into two types, indoor and
outdoor. In the indoor scene, the standard combustion chamber
was selected as the environment for the shooting of the flame
video. A standard combustion chamber has a large facility

commonly used in the field of fire detection. It is generally
used for the research of fuel combustion, fuel products,
detectors, and so on. The current utilization forms of
renewable energy are mainly renewable energy batteries and
new energy vehicles. The battery has a certain fire risk in the
process of production, storage and transportation. The
warehouse is an important scene in this process. Therefore, for
the indoor scene, we make the warehouse scene in the standard
combustion room to obtain a similar background. Renewable
energy vehicle fire is in a high incidence trend in recent years, so
the outdoor scene selects the common parking spots in the
campus. Trees, buildings, cars, and other objects are used as
the background to obtain the flame data set. Considering the
richness of the data set and the robustness of the model, a variety
of combustibles and oil plates of different sizes were used to
photograph the flames. Sunlight, light, personnel, and other
interference items were added into the shooting background,
and a variety of combustibles were used to enrich the types of
flames. Table 1 shows the working conditions involved in this
data set.

A total of 7,254 images were selected from the filmed videos
and used as the training dataset. Some of the images are shown in
Figure 8. A public LabelImg labeling system was used to label the
flame part of the image and store it in the format of Pascal Voc
2007 (Everingham et al., 2006) sample set.

Training
This experiment is carried out under Win10 system, GPU is
GeForce GTX 1080, CPU is Intel(R) Core(TM) I7-3960X, 32G
memory. Keras, a deep learning framework is used for the model,
and Mosaic enhancement is adopted for training. We divided
7,254 data set images into training set and test set, of which 5,558
pictures were used for training and 1,696 pictures were used for
testing and verification. The initial learning rate of the training
model was set at 0.001.

Evaluation Index
To test the detection performance of the model, we introduced
the following indicators: Precision Rate (PR), Recall Rate (RR),
Accuracy Rate (AR), and False Alarm Rate (FAR).

The calculation formula of Precision Rate is shown below. In
the formula, TP (true positive) refers to the correct response, that
is, the number of correctly identified flame pictures in the test set,
FP (false positive) refers to the false response, that is, the number
of negative samples in the test set that are wrongly identified as
flame. In the test, we determine the results of the test set according
to the actual situation. We hope that the proposed algorithm can
quickly identify all flame objects in the monitoring picture.
Therefore, if the intersection of the detection box and the
ground truth of the flame object is greater than 0.5 of the
union set, it is deemed that the object is correctly detected;
otherwise, it misses detection. For a positive sample, we can
classify it as TP only when all objects in the image are detected.
Even if multiple objects are successfully detected, we strictly
classify them as FN as long as there is one missing object
detected because this result does not meet our requirements.
For a negative sample, if there is no detection box, it can be

TABLE 1 | Flame dataset conditions.

Combustible Fuel plate size Interference items Indoor/outdoor

Polyurethane — — Indoor
Polyurethane — Sunlight Indoor
Polyurethane — People Indoor
Polyurethane — Lamplight Indoor
Polyurethane — — Outdoor
Cardboard — — Indoor
Cardboard — Sunlight Indoor
Cardboard — People Indoor
Cardboard — Lamplight Indoor
Cardboard — — Outdoor
Straw — — Indoor
Straw — Sunlight Indoor
Igniter — — Indoor
Ethanol 7 cm × 7 cm — Indoor
Ethanol 7 cm × 7 cm Sunlight Indoor
Ethanol 7 cm × 7 cm People Indoor
Ethanol 7 cm × 7 cm Lamplight Indoor
Ethanol 7 cm × 7 cm — Outdoor
Ethanol 15 cm × 15 cm — Indoor
Ethanol 15 cm × 15 cm — Outdoor
n-heptane 7 cm × 7 cm — Indoor
n-heptane 7 cm × 7 cm Sunlight Indoor
n-heptane 7 cm × 7 cm People Indoor
n-heptane 7 cm × 7 cm Lamplight Indoor
n-heptane 7 cm × 7 cm — Outdoor
n-heptane 15 cm × 15 cm — Indoor
n-heptane 15 cm × 15 cm — Outdoor
Toluene 7 cm × 7 cm — Indoor
Toluene 7 cm × 7 cm Sunlight Indoor
Toluene 7 cm × 7 cm People Indoor
Toluene 7 cm × 7 cm Lamplight Indoor
toluene 15 cm × 15 cm — Indoor
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classified as TN, and if there is a detection box, it can be classified
as FP. Precision Rate represents the proportion of correctly
detected flame in all detection results, reflecting the credibility
of flame detection.

PR � TP/(TP + FP) × 100%

The formula for Recall Rate is defined as follows. In the
formula, FN (false negative) refers to the wrong negative
sample, that is, the number of flame images that are not
recognized in the test set. Recall Rate represents the

proportion of correctly detected flames in all fires that should
have been detected, reflecting the model’s ability to detect flames.

RR � TP/(TP + FN) × 100%

The calculation formula for Accuracy Rate is shown below, in
which TN (true negative) refers to the correct negative sample,
that is, the number of negative samples without false positives.
Accuracy Rate refers to the ratio of correctly predicted samples to
the total predicted samples, which reflects the comprehensive
ability of model detection.

FIGURE 8 | Some images of the flame dataset.

FIGURE 9 | Partial results identified by the proposed model.
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AR � (TP + TN)/(TP + TN + FP + FN) × 100%

The formula for False Alarm Rate is defined as follows. False
Alarm Rate is an evaluation index in the field of fire detection. For
the application scenarios of fire detection, most of the time is in
the non-flame negative sample state, so it is very important to
control false positives for fire detection.

FAR � FP/(FP + TN) × 100%

Test With Test Set
The trained model was used to test the test set, and part of the test
results were shown in Figure 9. The proposed method works well
in different scenarios, it can be seen that the model has high
accuracy in the identification and location of small flames, which
is helpful to detect and alarm in the early stage of fire.

To better evaluate the performance of the proposed model, in
addition to Yolov3, other common one-stage target detection
models are introduced for comparative testing. The same training
set was used to train these models in the same environment, and
the same test set was used for testing. The results show that the
proposed method is more sensitive to small flames. As shown in
Figure 10, other models cannot successfully identify such image
frames with a small fire, but in our proposed model, they can be
successfully identified as fire. More specific results are shown in
Table 2. Both the training set and the test set are small flame
images. It can be seen that compared with Yolov3, the proposed
method has improved in all four indicators, including a

significant increase in Precision Rate and a significant decrease
in False Alarm Rate, reflecting that the improved model has
indeed improved the performance of detecting small flames.
Compared with other models, the proposed method also
shows some advantages, with all four indexes ranking first,
reflecting the absolute superiority of our method in early
flame detection. Precision Rate and False Alarm Rate were
superior, with the false alarm rate as low as 1.2%, indicating
the stability of the method. Besides, we add two advanced two-
stage models as a comparison. The two-stage model first
generates a series of candidate boxes as samples by the
algorithm, and then classifies samples by convolution neural
network. Therefore, it has higher accuracy and slower speed. It
can be seen that the proposed method has higher accuracy while
having smaller size and faster calculation speed.

Real-Time Test of Fire Scenarios
In order to test the effect of the model we proposed in practical
application, we used the monitoring cameras installed in the
laboratory building to carry out real-time flame detection, which
were similarly divided into an indoor scene and an outdoor scene.

As shown in the Figure 11, the outdoor scenes include the
rooftop and the outdoor scene of the first floor. The rooftop is
equipped with three surveillance cameras at different angles,
while the outdoor scene of the first floor is equipped with one
surveillance camera. The interior scene is a standard combustion
chamber with a surveillance camera installed inside. Since the test
object is small flame, we choose an oil pan with the size of 7 cm ×
7 cm to ignite n-heptane for the test.

We tested the non-fire scenario in each environment before
ignition, and no false positives were generated. So, PR and FAR
were not included in the analysis of the results, only the recall rate
(RR) was analyzed. The total number of frames in the real-time
detection process and the number of fire frames detected were
calculated by the script, and the recall rate was calculated
accordingly. In real-time detection, we introduce the concept
of FPS, FPS is the number of image frames detected per second,
reflecting the speed of model detection. The test results are shown
in Table 3. The model performs well in real-time detection. As
shown in Figure 12, the majority of small flames can be
successfully identified in real-time detection, and the FPS

FIGURE 10 |Recognition results of small flame image frames in different models. (A) The image frame identified as a negative sample in other models (B) the image
frame identified as a positive sample in the proposed model.

TABLE 2 | Test results.

Model PR (%) RR (%) FAR(%) AR (%)

Proposed method 98.7 93.7 1.2 96.3
Yolov3 (Redmon and Farhadi, 2018) 93.4 92.5 6.2 93.2
SSD (Liu et al., 2016) 94.5 51.9 2.8 74.9
RFBnet (Liu et al., 2018) 90.4 86.1 8.8 88.7
Efficientdet (Tan et al., 2019) 95.9 93.3 3.8 94.8
Yolov4 (Bochkovskiy et al., 2004) 93.1 92.7 6.6 87.1
Retinanet (Lin et al., 2017b) 96.5 88.7 3.1 92.9
Faster R-CNN (Ren et al., 2016) 97.3 93.1 2.3 95.2
Fast R-CNN (Girshick, 2015) 94.3 85.2 3.5 90.1
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value is stable at around 11, which reflects the sensitivity of the
proposed model to small flames. However, there is still a gap
between the recall rate in real-time detection and the recall rate in
the test set.

Therefore, we analyzed the flame frames that were not
detected. As shown in Figure 13, undetected flame frames fall
into two categories. One is that it is difficult to identify the flame

due to the complex background. This situation mainly occurs in
two of the monitoring pictures on the rooftop. The monitoring
perspective of these two cameras leads to a chaotic picture, which
also explains why the real-time detection performance is better in
the standard room with a relatively empty environment. In this
case, we can consider labeling the undetected flame frames and
iterating training. One is due to the influence of light, the flame is
blurred or even the flame becomes invisible, so they cannot be
detected. For flame frames whose flame profile is still recognizable
under the influence of light, we can label them and then carry out
iterative training of the model. As for the flame frame that is not
visible under the influence of light, this problem is difficult to be
solved in a single visible light channel. In the future, we will seek a
solution by combining infrared channels and visible light
channels.

In the training process of neural network, iteration refers to
the process of updating the parameters of the model with a batch

FIGURE 11 | Views of monitoring cameras. (A) View of rooftop camera1 (B) view of rooftop camera2 (C) View of rooftop camera3 (D) view of indoor camera (E)
view of first floor camera.

TABLE 3 | Real-time detection results.

Camera Fuel RR (%)

Indoor camera n-heptane 78.4
Rooftop camera1 n-heptane 70.2
Rooftop camera2 n-heptane 65.6
Rooftop camera3 n-heptane 66.3
First floor camera n-heptane 76.3
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of data. In practical engineering applications, because the
detection environment is in a stable state for a long time, we
collect the missing flame frames in the detection and update the
existing data set. On this basis, the training is continued with the
new data set to update the model parameters, so that the model
can recognize the unrecognized flame frames and achieve better
actual detection effect in this environment. We call this training
method iterative training. After the iterative training, the

FIGURE 12 | Part of the flame frames that were detected.

FIGURE 13 | Part of the flame frames that were not detected. (A) Part of the flame frames that were not detected due to complex background (B) part of the flame
frames that were not detected due to the influence of light.

TABLE 4 | Real-time detection results (after iterative training).

Camera Fuel RR (%)

Indoor camera n-heptane 91.3
Rooftop camera1 n-heptane 89.1
Rooftop camera2 n-heptane 88.7
Rooftop camera3 n-heptane 88.3
First floor camera n-heptane 90.5
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detection rate of the flame frame has been significantly improved
when the same scene is detected in real-time. The results are
shown inTable 4. The recall rate has now approached the value in
the test set. This shows that in practical applications, model
iteration with pictures of actual scenes can achieve the best
detection performance of the model.

CONCLUSION

In order to solve the problem that small flames in early fires are
prone to omission and false positives, this paper proposes an
improved model based on Yolov3 for this problem. Multi-scale
convolution and increasing receptive field were used to improve
the sensitivity of the model to a small flame, and FPN structure
was used to enhance the ability of feature extraction. The
experimental results show that both compared with the
original Yolov3 model and other commonly used object
detection models, the proposed model performs better in
flame recognition and accomplishes its original design
intention for small flame recognition. In this paper, the
proposed model is applied to the actual scene to obtain good
performance, found iterative training for practical application has
a key role in testing. At the same time, this paper also establishes a
flame data set for early fires, including indoor and outdoor
conditions, which provides a certain basis for future flame
detection research.

In the process of establishing the data set, we also found the
deficiency of the current model. In the case of direct interference
from some strong light sources, the flame and light are fused and

cannot be distinguished from the naked eye, which cannot be
started from the annotation of the data set. How to solve such
problems will be the research target of the next stage.
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