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False data injection attack in
smart grid: Attack model and
reinforcement learning-based
detection method

Xixiang Lin, Dou An*, Feifei Cui and Feiye Zhang

School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

The smart grid, as a cyber-physical system, is vulnerable to attacks due to

the diversified and open environment. The false data injection attack (FDIA)

can threaten the grid security by constructing and injecting the falsified attack

vector to bypass the system detection. Due to the diversity of attacks, it is

impractical to detect FDIAs by fixed methods. This paper proposed a false

data injection attack model and countering detection methods based on

deep reinforcement learning (DRL). First, we studied an attack model under

the assumption of unlimited attack resources and information of complete

topology. Different types of FDIAs are also enumerated. Then, we formulated

the attack detection problem as a Markov decision process (MDP). A deep

reinforcement learning-based method is proposed to detect FDIAs with

a combined dynamic-static detection mechanism. To address the sparse

reward problem, experiences with discrepant rewards are stored in different

replay buffers to achieve efficiency. Moreover, the state space is extended

by considering the most recent states to improve the perception capability.

Simulations were performed on IEEE 9,14,30, and 57-bus systems, proving the

validation of attack model and efficiency of detection method. Results proved

efficacy of the detection method in different scenarios.

KEYWORDS

state estimation, deep reinforcement learning, attack detection, smart grid, false data
injection attack

1 Introduction

Smart grid is a representative cyber-physical system (Pasqualetti et al., 2013),
permitting the bidirectional communication of both information and electric power
between the utility and users. In the energy management system (EMS), state estimation
plays a critical part of information-physical integration. Through state estimation, EMS
can recognize the actual state of electricity transmission by filtering out possible noise to
improve the reliability of the real-time data (Katiraei and Iravani, 2006).

Due to the decentralized andmulti-temporal coupled characteristics of measurement
devices (Annaswamy and Amin, 2013), the terminal equipment often lacks effective
physical protection, resulting in the susceptibility to attacks. Diversified cyber-physical
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system attacks have been proposed and among the attacks, FDIA
is a representative one. The FDIA attacker constructs attack
vectors through specific algorithms conditioned on the power
grid topology information, injects them through weak points
of the grid, and avoids being detected to damage data integrity
(An et al., 2019). FDIAs can directly affect the state estimation
and the subsequent control elements, causing the system to lose
stability and even break down. A large number of smart grid
security incidents have shown that, compared with traditional
attacks, it is more difficult to detect and defend cyber-physical
attacks (Liang et al., 2017).

Research efforts against FDIAs can be categorized into
two main types: defense and detection. First, to defend
against FDIAs before being attacked, researchers have studied
the deployment of grid at the cyber-physical level, such as
optimizing the distribution of key nodes and devices according
to their coupling characteristics (Lei et al., 2020;Wu et al., 2021).
Second, to detect FDIAs after attack, substantial efforts has been
made, such as dynamic state estimationmethod (An et al., 2022),
tracking the deviation of measurement (Alnowibet et al., 2021;
Mohamed et al., 2021; Sinha et al., 2022) and some stochastic
game methods (Wei et al., 2018; Oozeer and Haykin, 2019). In
summary, above researches had shown that both cyber and
physical methods are required in FDIA studies.

However, the grid operation is full of uncertainties, in which
the system states and attacks are diverse (An and Liu, 2019).
Due to the diversity, enumerating all attacks is not realistic
with limited resources. Moreover, empirical or off-line attack
detection strategies are not optimal solutions for online network
attack detection (Ashok et al., 2018; Tsobdjou et al., 2022).
Therefore, reinforcement learning (RL)-based methods are
introduced to avoid the complexity of empirical methods
and gain the ability of detecting attacks in multiple scenarios
(Wang et al., 2018; Kurt et al., 2019; Haque et al., 2021).

Deep reinforcement learning (DRL) learns the optimum
strategy of sequential decision problems by exploring and
interacting with the environment. The agent gets rewards for
guiding the behavior, with the goal of maximizing the long-
term return (Sutton and Barto, 1998). DRL combines the feature-
extraction capacity of neural networks with the decision-
making capability of reinforcement learning in unknown
environments to achieve direct control from state to action
(Arulkumaran et al., 2017). The Deep Q-Network (DQN), used
in conjunction with the replay buffer and a target network,
is a representative DRL algorithm that can be adapted to
environment with uncertainty (Mnih et al., 2015).

As for detection process of FDIA, after the unknown start
of attack, state estimation results are falsified by the attack
vector with unknown attack model (Kurt et al., 2019). Moreover,
detection process of FDIA has the feature of sequential decision
and the transition of state can be described as model-free
(An et al., 2019, 2022).Thus, FIDA detection can be described as

aMDP and trained utilizingDQNalgorithm to achieve detection
by neural networks.

The rest part is: In Section 2, related studies are reviewed.
In Section 3, the smart grid state estimation is introduced,
including the static and dynamicmethod.The empirical bad data
detection is also introduced. In Section 4, an FDIA model is
introduced and three types of FDIAs are discussed based on the
attack model. In Section 5, a DRL-based, combined dynamic-
static FDIA detection method is proposed and optimized. In
Section 6, simulations of attacks and detections are performed
on IEEE grid systems in multiple scenarios. In Section 7, this
paper is concluded.

2 Related work

Weighted Least Squares (WLS) is the basic and widely-
used method for power grid state estimation (Schweppe
and Rom, 1970; Schweppe and Wildes, 1970). (Debs and
Larson, 1970) applied Kalman filter (KF) to the power grid. As
the study deepened, the extendedKalman filter (EKF) appliedKF
to non-linear systems. Moreover, unscented Kalman filter (UKF)
and particle filtering (PF) were applied on state estimation,
which improved the accuracy and stability of filtering (Wan
and Van Der Merwe, 2000; Julier and Uhlmann, 2004).

(Liu et al., 2009) proposed FDIA and proved that the attack
vector can bypass the detection element and cause damages on
the system (Pang et al., 2016). studied attack method with the
minimum cost to avoids anomaly detection (He et al., 2017).
constructed a parallel FDIAs detection scheme, utilizing static-
dynamic state estimation to detect attacks, which is robust (Li and
Wang, 2019). investigated the method to construct a less costly
and undetectable attack vector by partial topology information
(Li et al., 2019). studied the selection of optimal buses during the
attack and proposed a data-driven optimal bus attack method
(Jiang et al., 2020). studied two types of FDIAs and proposed a
detection-defense method (Chen and Wang, 2020). proposed a
new state estimation method that estimates the grid state by
sequential Monte Carlo filtering to detect multiple attacks.

Deep reinforcement learning matured later, but is widely
used in sequential decision-making problems in recent years
(Mnih et al., 2013). proposed DQN algorithm in 2013, and
published a paper in 2015, in which DQN reached a high level
over human players (Mnih et al., 2015). In the fields of smart grid
security, (Wang et al., 2018), proposed an autonomous FDIA
method adopting the nearest sequence memory Q-learning
(Liu et al., 2020). investigated the vulnerability of power grids
with new energy based on DRL (Wang et al., 2021). studied
a hybrid cyber-physical topological attack in power grids,
and proposed DRL-based method for detecting attacks with
minimum cost (Luo and Xiao, 2021). proposed a FDIA method
based on reinforcement learning (RL), utilizing measurements,
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grid states and other parameters to construct attacks, without
dependence on topology information.

As for RL-based FDIA detection, (Kurt et al., 2019),
formulated the detection process as a MDP, and proposed a
model-free RL-based detection scheme (Zhang and Wu, 2021).
proposed a RL-based detection method without the attack
model, utilizing a Q-table to detect attacks by Sarsa algorithm.
To address the complexity of storing Q-table, (An et al., 2019;
Sinha et al., 2022), applied DQN algorithm to detect FDIAs
by neural networks. Moreover, (Alnowibet et al., 2021;
Mohamed et al., 2021), studied FDIA detection on energy
trading and energy management systems by intelligent priority
selection-based RL method.

Researches have proved the efficacy of RL-based method in
FIDA detection. However, most studies focused on detection
against single attack model, and studies on different types
of FIDAs are not sufficient. Moreover, few studies combined
multiple state estimation methods in the detection scheme,
bringing out the focus of this paper.

3 Preliminaries

In this section, static and dynamic state estimation
algorithms are introduced, laying the foundation of combined
dynamic-static FIDA detection mechanism. Bad data detection
method is shown to verify the efficacy of FDIA. Basic information
about DQN algorithm is also introduced.

3.1 Measurement equations

Relation between the measured power flows and state of the
grid is (Schweppe and Wildes, 1970):

z = h (x) + υ

x = [φi,Vi]
T

z = [Vi,Pi,Qi,Pij,Qij]
T

(1)

where, z denotes the system measurement, h denotes the
measurement equation, x denotes the state of the grid, υ denote
the measurement noise, φi and Vi denote the voltage phase angle
and magnitude of node i, Pi and Qi denote the power of node
i, Pij and Qij denote the tributary power flow, from i to j, whose
detailed equations are:

Pi =∑j∈Ni
ViVj (Gij cos (φi −φj) +Bij sin (φi −φj))

Qi =∑j∈Ni
ViVj (Gij sin (φi −φj) −Bij cos (φi −φj))

Pij = V2
i (gsi + gij) −ViVjcos (φi −φj) −ViVjbij sin (φi −φj)

Qij = −V2
i (bsi + bij) −ViVjsin (φi −φj)

−ViVjbij cos (φi −φj)

(2)

where, Gij, Bij are the real and imaginary part of the i, j term
in the node conduction matrix, gij, bij denote the conductance
and susceptance between i, j, gsi + jbsi denotes the conductance
of the parallel branch of i, gsj + jbsj denotes the conductance of
the parallel branch of j.

3.2 Static state estimation

Due to the pervasive noise, measurements can be unreliable
and inconsistent with the actual state. Static state estimation
filters the noise based on the current-measured data (Schweppe
and Wildes, 1970). Due to this factor, when attacked by FDIAs,
results of static state estimation will deviate significantly from
the true state. That deviation is utilized in attack detection
mechanism of this paper. WLS method is adopted in this paper,
whose iterative form is:

{{{{{{{
{{{{{{{
{

Δz(k) = z − h(x̂(k))

Δx̂(k) = [HTR−1H]−1HTR−1Δz(k)

x̂(k+1) = x̂(k) +Δx̂(k)

(3)

where, k denotes the step of iteration, x̂ denotes the estimated
state, H (x) denotes the Jacobian matrix of the measurement
equation, with the dimension of m× n. The iteration ends when
Δx̂ is sufficiently small.

3.3 Dynamic state estimation

Dynamic state estimation bases on KF to estimate the state
and eliminate noise. While static method focuses primarily on
real-time states, dynamic method tries to predict the state of the
next step and the estimation result is closer to true state under
attacks. Due to the non-linearity of power system, EKF and UKF
are applied in our works.

3.3.1 Extended kalman filter

EKF is effective for non-linear models, and performs
better in systems with weak non-linearities and perturbations
(Li et al., 2015).

A second order expansion of h (x̂) around x̃ is:

h (x̂) = h (x̃) +H (x̃)Δx + S (4)

where, Δx = x̂ − x̃, x̃ is the prior estimation of state, x̂ is the
posterior estimation of state, H denotes the Jacobian matrix of
the measurement function, and S is the remainder term of the
second and higher order. Omitting S, a linearized model of grid
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TABLE 1 Equations of EKF.

Step Formula

Prior estimation x̃k+1 = Fkx̂k

Mk+1 = FkΣkF
T
k +Qk

  Kalman gain Kk+1 =Mk+1H
T
k+1(Hk+1Mk+1H

T
k+1 +Rk+1)

−1

  Post estimation x̂k+1 = x̃k+1 +Kk+1 (z − h(x̃k+1))

Σk+1 = (I −Kk+1Hk+1)Mk+1

state is obtained.

xk+1 = Fkxk +Qk

zk+1 =Hxk+1 +Rk
(5)

where,Fk denotes the state-transition function,Qk andRk denote
the system and measurement noise.

Equations of EKF are shown in Table 1, and the explanation
is:

1. Prior estimation: Calculate x̃k+1 and covariancematrix of prior
estimationMk+1 by the post estimation results of step k.

2. Kalman gain: Calculate gain Kk+1 byMk+1 andH .
3. Post estimation: Calculate x̂k+1 and covariance matrix of post

estimation Σk+1 for the next step.

3.3.2 Unscented kalman filter

UKF applies KF to non-linear systems utilizing the
Unscented Transformation (UT). UKF performs better under
systems with strong non-linearity compared with EKF (Julier
and Uhlmann, 2004). The non-linear form of grid state is:

{
xk+1 = f (xk) +ωk

zk = h(xk) + υk
(6)

where, f (xk) is n× 1 dimensional non-linear state-transition
function, ωk and υk are n× 1 and m× 1-dimensional Gaussian
white noise with the zero mean.

Equations of UKF are shown in Table 2, and the explanation
is:

1. Generate sigma-points: Generate 2n+ 1 sigma-points (Julier
and Uhlmann, 2004).

2. Prior estimation: Utilizing sigma points to calculate the prior
estimation x̃k+1, and the prior estimation error covariance
Mk+1.

3. Measurement correction: Calculate the prior estimated
measurement ̃zk+1. Difference between ̃zk+1 and zk+1 is used
to calculate covariance matrices Σzz

k+1 and Σxz
k+1.

4. Kalman gain: Gain Kk+1 and post estimated state x̂k+1 are
calculated by Σzz

k+1 and Σxz
k+1.

TABLE 2 Equations of UKF.

Step Formula

Generate sigma
points

x0 ,xi,ω
(m)
i ,ω
(c)
i

Prior estimation xi,k+1 = f (x
a
i,k,k)

x̃k+1 = ∑Li=0ω
(m)
i xi,k+1

Mk+1 = ∑Li=0ω
(c)
i (xi,k+1 − x̃k+1)(xi,k+1 − x̃k+1)

T

  Measurement
correction

z i,k+1 = h(xi,k+1), ̃zk+1 = ∑Li=0ω
(m)
i z i,k+1

Σzz
k+1 = ∑

L
i=0ω
(c)
i (z i,k+1 − ̃zk+1)(z i,k+1 − ̃zk+1)

T +Rk+1

Σxz
k+1 = ∑

L
i=0ω
(c)
i (xi,k+1 − x̃k+1)(z i,k+1 − ̃zk+1)

T

  Kalman gain Kk+1 = Σ
xz
k+1(Σ

zz
k+1)
−1

x̂k+1 = x̃k+1 +Kk+1 (zk+1 − ̃zk+1)

Σk+1 =Mk+1 −Kk+1Σ
zz
k+1K

T
k+1

3.4 Bad data detection

Errors in the initial measurement data can be the source
of distortion of estimated states, leading to wrong decisions
of EMS. Therefore, detection of bad data in measurements is
applied to detect possible errors. The most common method is
constructing an empirical threshold and detect by the residual
function (Merrill and Schweppe, 1971):

τ < ‖z − h (x̂)‖2 (7)

where, x̂ denotes the state estimation results, ‖z − h (x̂)‖2 denotes
the l2-norm of residuals and τ denotes the empirical threshold
generated form historical data.

Holding of Eq. 7 denotes that residuals of the estimated states
exceed the threshold. Then a bad data alarm will be triggered,
indicating the existence of bad data.

3.5 DQN algorithm

The DQN algorithm, used with replay buffer and target
network, is a representative DRL algorithm. Applying DQN
algorithm can overcome the complexity of storing Q-table in
Q-learning. Other improvements of DQN over Q-learning are
(Mnih et al., 2015):

1. Construct replay buffer: At each step, store the experiences in
buffer𝔻. When updating the neural network, a mini batch is
extracted to update weights θ. Format of experience et is:

et = (st,at, rt, st+1) (8)

where, st ,at , and rt denote the state, action and reward of step
t during the interacting between the agent and environment.
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2. Use target Q network: DQN is a dual-network model. A target
network is defined and periodically updated, generating target
Q. Thus, the equation of gradient descent is:

∇θiL(θi) = 𝔼s,a,r,s′
[(r+ γmaxQ(st+1,at+1,θ−i )

−Q(st,at,θi))] (9)

where, Q(st+1,at+1,θ−i ), Q(st,at,θi) are generated by the weights
of target and current Q network, respectively.

3. Normalize reward: Restrain the reward r in (−1,1), which can
reduce the gradient during updating.

4. Adopt ɛ-greedy strategy: Adopt a random strategy at each step
with a chance of 1− ɛ, and ɛ increases with training.

4 Smart grid FDIA

4.1 FDIA model based on complete
topology information

In this section, we construct FDIAs under the assumption
of complete topology information and unlimited cost. Thus
the attacker can extract whole measurement function h(x) and
construct attack without considering the cost, resulting in the
inefficacy of empirical bad data detection mechanism.

Equations for constructing attacks are (Liu et al., 2009):

za = z + a

x̂a =H−1za = x̂ + c
(10)

where, za denotes the attacked measurement values that the
system obtains, z denotes the real measurement values of the
grid, a denotes the attack vector, x̂a denotes the estimated states
under attacks, x̂ denotes the estimated states without attacks, c
denotes the change of state values.

As for a non-linear power system, FIDA can also satisfy the
measurement equation za = h(xa) by:

a = za − z = h (x + c) − h (x) = h(xa) − h (x) (11)

‖za − h(x̂a)‖2 = ‖(z − h (x̂)) + (a+ h (x̂) − h(x̂a))‖2
= ‖z − h (x̂)‖2

(12)

If the static state estimation is operated as always, there is x̂a ≈
xa and h(x̂a) ≈ h(xa). Comparing Eq. 12 with Eq. 7, ignoring
the inherent Gaussian noise in Eq. 6, the residuals under valid
FDIAs are the same as the residuals without an attack, namely
‖za − h(x̂a)‖2 = ‖z − h (x̂)‖2.

In other words, a FIDA constructed this way doesn’t
change the residuals in Eq. 7. Therefore, a valid FIDAdoesn’t

TABLE 3 Classification of FDIAs.

Duration Attack intensity Types of FDIAs

 continuous constant continuous-constant-intensity attack

 continuous variable continuous-variable-intensity attack

  transient constant transient-constant-intensity Attack

  transient variable transient-variable-intensity attack

Algorithm 1. Strategies of three attacks.

trigger the bad data detection alarm mentioned in
Section 3.4.

4.2 Types of attacks

Considering the diversity of attacks and attackers’ intentions,
types of FDIAs are also diverse. In this paper, we classified FDIAs
by duration and variation of intensity.

According to the duration, attacks can be divided into
transient attack and continuous attack (Jiang et al., 2020). The
transient attack tends to have stronger perturbation in a short
period, while the continuous attack can remain undetected for a
longer period by applying weak perturbation.

According to the intensity, the attack can be divided into
constant-intensity and variable-intensity attack. The constant-
intensity attack vectors are similar in magnitude, while the
variable-intensity attack vectors can be stochastic or asymptotic.

Detailed classification of FDIA is shown in Table 3. Three
types of attacks are selected and studied in this paper, the
strategies are shown in Algorithm 1 and the detailed equations
are:

1. Attack1. Continuous-constant-intensity attack:

Define the start and end of the attack as tstart and tend. While
tstart < t < tend, construct and inject the attack by Eq. 13.

{
xa = x + c ⋅ω
za = h(xa)

(13)
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where, c = [cφ1,cφ2,⋯cφn,cV1,cV2,⋯cVn] denotes the intended
deviation of phase angle cφi and magnitude cVi on the node
voltage, ω is a standardized normal variable.

Attack-1 is a typical form of FDIA. When cφi = cVi = 0, no
attack will be injected on bus i, and c depends on the intention
of attackers. Since we focus on detection, the programming
problem of determining c is replaced by a Gaussian variable ω.
Multiplying by ω, the attack vector varies in a reasonable range
(0,c). Thus, diversified attack intention can be included, and
value of c can be fixed. For example, if we define cV1 = 0.1p.u.,
all attacks with the intensity between 0 and 0.1p.u. on bus one
are considered as long as there are enough episodes. Moreover,ω
can also make FDIAs hard to be detected by empirical method.

2. Attack2. Transient-constant-intensity attack:

While tstart < t < tend, at each step, with a probability of ɛattack
to construct and inject the attack by Eq. 13. In other cases, no
attack is conducted. Attack-2 aims to test the response speed of
the detection method.

3. Attack3. Continuous-variable-intensity (incremental) attack:

While tstart < t < tend, construct the attack by:

{
{
{

xa = xa +
c

tend − tstart
za = h(xa)

(14)

Attack3 is valid during steady-state grid operationwhen state
x undergoes little change. One obvious feature of Attack3 is
that xa is cumulative. Since the cumulation of deviation is slow,
Attack3 is hard to be detected at an early stage.

5 DQN-based FDIA detection

In this section, we first introduce a combined dynamic-static
detectionmechanism.Then, to avoid the complexity and achieve
more effectiveness, we proposed a DQN-based FDIA detection
method.

5.1 Combined dynamic-static empirical
FDIA detection

According toSection 4.1, it is hard to detectwell-constructed
FDIAs by bad data detection. However, when attacked by FDIAs,
results of different state estimationmethods produce a significant
difference: Result of static state estimation will deviate from the
true state, since it only depends on the real-time measurements.
Result of dynamic method is closer to the true state due to the
prediction steps.

So in our works, we combine results of static method (WLS)
with dynamic method (EKF and UKF) and detect attack based

FIGURE 1
FDIA detection mechanism.

on their inconsistency:

τ1 = |xKF − xWLS ∥2 > τattack (15)

where, xKF and xWLS denote the result of KF and WLS, τattack is
the threshold for determining an attack. When Eq. 15 holds, the
system is determined to be attacked.

However, grid states change abruptly sometimes due to other
factors, which can also leads to the deviation of state estimation.
Thus Eq. 15 can be false-positive, so we combine it with bad data
detection:

τ2 = ‖z − h(xWLS)‖2 > τbaddata (16)

The mechanism is summarized as Figure 1, when Eq. 16
holds, the system is determined to have bad data, When Eq. 16
does’t hold but Eq. 15 holds, the system is determined to be
attacked by FDIAs.

However, since the gird is vulnerable to disturbances,
evaluating the performance of the method only by accuracy
is incomplete. Considering the time sensitivity, an effective
detection of FDIA in this paper is defined in Eq. 17. Utilizing
Eq. 17, performance of detection is evaluated by detection rate.

tstart ⩽ talarm ⩽ tstart + 2 (17)

where, tstart denotes the start of attack, and talarm denotes the time
that the attack is detected.

If Eq. 17 holds, it shows that the attack is detected within a
short period of time.Thus the detection is effective and the safety
of grid can be protected.
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5.2 DQN-based FDIA detection scheme

Due to the changing load of grid and randomness of
attacks, the threshold of Eq. 15 varies greatly in different
scenarios. Therefore, it is impractical and costly to apply
a certain empirical threshold τattack in a wide range of
grids.

To address the shortcomings of empirical detection,
FIDA detection is formulated as a MDP and trained utilizing
DQN algorithm. Detection is achieved through neural
network, equivalent to a dynamic threshold instead of the
empirical threshold τattack in Eq. 15. The neural network
is trained by interacting with the environment during the
MDP of FDIA detection (An et al., 2019; Kurt et al., 2019).
After an action of detection, agent receives a feedback
(reward) from the environment for guiding the actions
by updating the neural network (Sutton and Barto, 
1998).

5.2.1 MDP-based attack detection model
MDP is the model for sequential decision making

(Baxter, 1995). When the state of environment is Markovian,
MDP can simulate the strategies and rewards that an agent can
achieve. We formulate FIDA detection process as a MDP due
to the feature of sequential decision and uncertainty of attack
model.

Main components of MDP are state space S, action space
A, state transition P and reward R, denoted by {S,A,P,R}
(Luong et al., 2019). For the FDIA detection, we defined S and
A as:

S = [sn, sa]

A = [ac,as]
(18)

where, sn represents that no attack exists in the grid, sa represents
that the gird is under an attack, ac denotes that no attack is
detected and the system continues to operate, as denotes that the
attack is detected, and the MDP ends when an attack is detected
or time ends.

P represents the state transition function. To address
the random and unpredictable characteristics of cyber
attacks, a model-free approach is taken to define state
transition, i.e., the state transition probability p(s′|s,a)
is unknown (An et al., 2019). When the system chooses
to continue the operation, the state of the next step
is calculated by state estimation and perceived by the
agent.

R represents the reward function. For the sparse
characteristics of the power grid under attack, we define R by
efficacy of detection. When agent detects attacks during normal

FIGURE 2
Framework of optimized DQN-based detection schem.
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Algorithm 2. Training of the a optimized DQN-based FDIA detection

algorithm.

Algorithm 3. Testing of the FIDA detection algorithm.

operation, the reward is negative. When the agent detects attacks
under attacks, the reward is positive, and the more timely the
detection, the more the rewards. Rewards of the other cases are
0. The detailed function is:

rt (st,at) =

{{{{{{{{{{{
{{{{{{{{{{{
{

0 st = sn at = ac

0 st = sa at = ac

−β− st = sn at = as

β+ t− tstart
tend − tstart

st = sa at = as

(19)

where, tstart , tend denote the start and end of the attack,
respectively, β−, β+ denote the reward coefficient.

5.2.2 Optimized DQN-based detection scheme
Framework of the detection scheme is shown in Figure 2.

The detailed training and testing algorithms are given in
Algorithm 2 and Algorithm 3.

TABLE 4 Simulation settings.

Environment Settings

Number of buses on IEEE systems 9, 14, 30, 57

Time steps of each episode T 100

Duration of attack Ta 50

Probability of ɛattack in Attack2 0.2

Intended deviation of voltage angle cφi 0°

Intended deviation of voltage magnitude cVi 0.1p.u

Parameters of UKF α = 10–3,β = 2,κ = 0

Learning rate αl 0.001

Discount factor γ 0.9

Dimension of extended State space N 4

Reward coefficient β−,β+ 1:1

ϵ-greddy strategy initial ϵ 0.9

ϵ-greddy strategy increment of ϵ 0.0005

Replay buffer size 1,000

Mini-batch size 32

Sampled mini-batch size𝔻−,𝔻+, and𝔻0 4, 4, 24

Time interval of updating target network 10

Episodes of random exploring N0 100

Epoches of training N1 10, 20

Episodes of training N2 500

Episodes of testing N3 100

Random seeds 101,102,103,104,105

6 Simulations

6.1 Simulations setup

Extensive simulations performed to simulate the actual
scenarios of FIDA attack-detection process. First, to ensure the
practicability, simulations are based on IEEE 9, 14, 30 and 57-bus
networks by MATPOWER (Zimmerman et al., 2011). Second,
due to the diversity of attacks and attack intentions (An and
Liu, 2019), three types of FDIAs are adopted, namely Attack-
1, 2, and 3. Cases with single attack and multiple attacks are
both considered during simulations. Then, the attacks aim at the
magnitude of node voltages, with the intensity to cause voltage
violation (Zhu and Liu, 2016; Zheng et al., 2020). Third, WLS is
adopted in static estimation while EKF and UKF are adopted for
dynamic state estimation in different cases. In addition, random
seeds were used to reduce the random error. Details of settings
are shown in Table 4.
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FIGURE 3
Effects of three typical attacks. (A) Effect of Attack-1, (B) Effect of Attack-1, and (C) Effect of Attack-1.

FIGURE 4
Bad data detection results (A) Bad data detection results under valid attack and (B) Bad data detection results under invalid attack.

6.2 Simulations and effects of attacks

Considering the change in voltage magnitude of static
state estimation result, effects of three typical attacks is in
Figure 3. The dashed lines indicate the start and end of
attacks.

Figure 3A shows effect of Attack-1, namely continuous-
constant-intensity attack. Attack-1 injects attack continuously
and magnitude of the attack vector follows the same Gaussian
distribution. Thus, deviation in voltage magnitude is obvious
under Attack-1.

Figure 3B shows effect of Attack-2, namely transient-
constant-intensity attack. Attack-2 injects the attack
vector intermittently and magnitude of the vector follows
the same Gaussian distribution. Deviation generated by
Attack-2 is also considerable, but the attack duration is
compressed. Thus, for the detector, higher response speed is
required.

Figure 3C shows effect of Attack-3, namely continuous-
variable-intensity (incremental) attack. Attack-3 injects the

attack vector continuously and magnitude of the vector is
cumulative. The deviation between two steps generated by
Attack-3 is smaller than other attacks, which can avoid
being detected. However, the deviation accumulates over a
period of time and the amplitude at the end of attack is
also considerable, so the consequence of Attack-3 can be
severe.

Taking Attack-1 as an example, Figure 4 shows the
differences between valid and invalid attacks. In Figure 4A,
the residual modulus of the no-attack case is about 0, and almost
overlaps with the valid-attack case. But in Figure 4B, the residual
modulus fluctuates greatly at a high level under an invalid attack,
exposing the attack to detector. In summary, the difference of
effectiveness between valid and invalid attacks to bypass the bad
data detection is obvious.

Changes in node voltage of IEEE 9-bus system when
attacked by the FDIA are shown in Figure 5. Since the intended
deviation of angle cφi = 0°, the phase angle deviates slightly
during the attack in Figure 5A. Moreover, the intended deviation
of magnitude cVi = 0.1p.u., so the intensity of attack is within

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1104989
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Lin et al. 10.3389/fenrg.2022.1104989

FIGURE 5
Static state estimation results under valid attack. (A) Change of node voltage angle after the valid attack and (B) Change of node voltage magnitude
after the valid attack.

FIGURE 6
Attack detection rate under different state spaces.

(0,cj). Correspondingly, the bus voltage magnitude undergoes
a large deviation in Figure 5B, misleading the following grid
operation.

6.3 Effectiveness of optimized
DQN-based method

Simulations in this section compare the optimized DQN-
based method with the original DQN-based method and
empirical threshold method. Moreover, cases with different
dimension of state space are also compared Effectiveness of
adopting sampled replay buffers and extending state space is
proved.

First, to verify that effectiveness of extending state space, we
changed the dimension of state space in different cases. Results
are shown in Figure 6. The detection of original method is

unstable during the training and reaches convergence after 3,000
episodes, the attack detection rate fluctuates at a low level (43%),
and the detection rate is unstable with fluctuation.

With the extended state space, the detection rate increases
by at least 21%–64%, and the fluctuation decreases significantly.
Comparing the above cases, the detection rate reaches near 100%
after convergence in cases that N ≥ 4, so in the rest of this paper
N = 4.

Second, to prove efficacy of the optimized method,
we simulated the detections with optimized DQN-based
method, original DQN-based method and empirical
method.

The empirical threshold method uses a fixed threshold
consturcted from experiences. In this paper the algorithm is:
By τ = ‖xKF − xWLS‖2, calculate τ1 in no-attack cases and τ2 in
attacked cases, τattack = τ2 − τ1. So the detection rate is a fixed
number and behaves as a horizontal line since the empirical
threshold is hardly updated online in practice.

Results are shown in Figure 7. Each case is simulated in five
parallel groups utilizing random seeds inTable 4. Detection rates
are averaged and the shadows denote the standard deviations
between different groups.

Comparing the performances in Figure 7, empirical method
doesn’t perform well in detection. Detection rate of empirical
method is 61% and 80% against Attack-1 and Attack-2, and
is only 30% against Attack-3. What’s more, the method with
original DQNperformswell at certain episodes in Figures 7C, F,
but the detection rate fluctuates substantially throughout the
training in Figures 7A, D, E. The convergence of training with
original DQN is difficult, too.

As for the optimized DQN-based method, cases with EKF
converges around 8,000 episodes, and the converged detection
rate is 98.42% against Attack-1, 99.70% against Attack-2, and
100% against Attack-3, with some fluctuation. Cases with UKF
converges around 5,000 episodes, and the converged detection
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FIGURE 7
Detection with optimized-DQN, original-DQN and empirical method against attacks. (A) Detection with EKF against Attack-1, (B) Detection with
EKF against Attack-2, (C) Detection with EKF against Attack-3, (D) Detection with UKF against Attack-1, (E) Detection with UKF against Attack-2
and (F) Detection with UKF against Attack-3.

FIGURE 8
Attack detection rate while training against multiple attacks under multiple systems based on EKF or UKF. (A) Training against Attack-1 based on
EKF, (B) Training against Attack-2 based on EKF, (C) Training against Attack-3 based on EKF, (D) Training against Attack-1 based on UKF, (E) Training
against Attack-2 based on UKF, and (F) Training against Attack-3 based on UKF.
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TABLE 5 Performance of detection in different systems against multiple attacks.

Type of attack Number of buses Detection rate (EKF)/% Detection rate (UKF)/%

 Attack-1 9 99.46 99.88

14 99.58 99.72

30 100.00 100.00

57 100.00 ∖

 Attack-2 9 99.87 100.00

14 99.00 99.95

30 99.32 100.00

57 100.00 ∖

 Attack-3 9 99.46 99.88

14 100.00 100.00

30 100.00 100.00

57 100.00 ∖

rate is 96.95% against Attack-1, 98.99% against Attack-2, and
100% against Attack-3 with little fluctuation. After convergence,
fluctuation of detection rate has been restricted within 4%. In
addition, the training process of EKF-based method is less stable
than the UKF-based method.

In conclusion, detection rate is improved by at least 15.95%
utilizing the optimized DQN-based method. Stability of the
training is also improved fundamentally over the original DQN-
based method, especially the UKF-based method.

6.4 Simulation in multiple cases

In this section, we compared three types of FDIAs in power
systems in different networks to prove that the proposed method
is effective for multiple scenarios. In addition, each case was
repeated at least three times and results are averaged. Results are
shown in Figure 8 and Table 5.

In Figure 8, the training process converges after about 8,000
episodes against Attack-1 and 6,000 episodes against Attack-2.
Meanwhile, the speed of convergence is faster in cases based on
UKF, especially in the cases against Attack-3. At the final stages
of training in above cases, the detection rates fluctuate by 2%.
In addition, the convergence speed is slightly faster of a more
complex network, since the accumulation of state deviation is
faster.

First, in Table 5, the detection performances are similar in
different networks, since the detection mechanism only depends
on the state estimation performance and is not affected by the
network complexity. Second, detection rates in different cases are
consistently close to 100% after convergence. Third, UKF-based
method performs better in detection than EKF-based method.

FIGURE 9
Attack detection rate against the hybrid attack.

In summary, the method performs well under different attacks
in multiple scenarios.

6.5 Simulation against hybrid attacks

To prove utility of the detection method, a hybrid attack
model is constructed. In each episode, the type and start of attack
is random and unknown. One of Attack-1, 2, 3 is randomly
selected and conducted during the attack based on IEEE 14-bus
network.

Rusult of training is shown in Figure 9. Detection rates are
also averaged by results of five groups, and standard deviations
are given by the shadows.
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After training, the detection rate of EKF-based method
reaches 99.01%, and the UKF-based method reaches 99.71%. In
Figure 9, since the attack is hybrid, the detection rate fluctuates
at the early stage of training. Trainings converge more slowly
compared to the cases against single attack. EKF-based method
converges at about 5,500 episodes and UKF-based method
converges at about 8,500 episodes.

7 Conclusion

In this paper, a FDIA model with complete topology
information and unlimited cost is introduced first. Attacks
constructed under this model is verified to have the ability of
bypassing the empirical bad data detection. FDIAs are classified
by duration and intensity. Three types of attacks and their
effects are performed. Then, a detection mechanism is proposed
by combining static and dynamic state estimation. Second,
the FIDA detection process was formulated as a MDP, and
a DQN-based detection method is constructed. To address
the problems while training and detection, optimizations were
made to improve the efficacy. The DQN-based method is
adaptive and has a non-deterministic threshold. Third, sufficient
simulations were conducted, including a variety of cases, laying
the foundation for studying multiple types of FDIAs. Simulation
results prove that the detection rate against FDIA is improved
by at least 15.95% over the empirical threshold method.
The fluctuation of detection rate has been restricted within
4% during the final stage of training. Moreover, the highest
detection rate reached 99.71% against the proposed hybrid
attack.
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