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Lithium-ion batteries are a crucial element in the electrification and adoption of

renewable energy. Accurately predicting the lifetime of batteries with early-

stage data is critical to facilitating battery research, production, and

deployment. But this problem remains challenging because batteries are

complex, nonlinear systems, and data acquired at the early-stage exhibit a

weak correlation with battery lifetime. In this paper, instead of building features

from specific cycles, we extract features from multiple cycles to form a time

series dataset. Then the time series data is compressed with a GRU-based

autoencoder to reduce feature dimensionality and eliminate the time domain.

Further, different regression models are trained and tested with a feature

selection method. The elastic model provides a test RMSE of 187.99 cycles

and a test MAPE of 10.14%. Compared with the state-of-art early-stage lifetime

prediction model, the proposed framework can lower the test RMSE by 10.22%

and reduce the test MAPE by 28.44%.
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1 Introduction

Nowadays, lithium-ion batteries are utilized in a wide range of applications, from

portable devices to grid-level energy storage, due to their high energy density, high power

density, long lifetime, and falling cost (Chen T. et al., 2021; Severson et al., 2019).

However, a long battery lifetime impedes battery development because it takes months or

years to observe the deterioration. Moreover, despite the standardized manufacturing

processes of lithium-ion batteries, even from the same batch, batteries can have

significantly different lifetime due to internal heterogeneity (porosity, thickness, and

etc.) and different operation conditions. Therefore, early-stage lifetime prediction

methods are crucial to assess batteries in advance and shorten the required

experimental time which can accelerate battery research, production, and design

optimization (Chen B. R. et al., 2021).
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Existing studies for battery lifetime prediction can generally

be divided into two groups: model-based methods and data-

driven methods. For the model-based methods, researchers

either start with an empirical model with explicit parameters

(Schmalstieg et al., 2014) or a model (equivalent circuit model or

electrochemical model) combined with advanced filtering

algorithms to estimate the aging status (He et al., 2011;

Arachchige et al., 2017; Wassiliadis et al., 2018). Xing et al.

(2013) used a particle filter to update the parameters within an

empirical exponential and a polynomial regression model to

track the battery’s degradation trend. With a simple battery

model, Saha et al. (2009) proposed a particle filter method to

predict the state of charge (SOC), state of health (SOH), and

remaining useful life (RUL) based on the correlations between

the battery capacity and resistance. Yang et al. (2019)

implemented a particle filter with a semi-empirical model

based on Coulombic efficiency, which is highly correlated

with the loss of active lithium inventory, to estimate the

battery health. To facilitate the resample process within the

particle filter. Tang et al. (2019) proposed a model-oriented

gradient-correction particle filter method for future

degradation. By using the base-model as a regulation within

the evolution of the particle, the global information from the base

model is utilized and help the model achieve a better prediction

result. Gao et al. (2022) proposed a SOC and SOH co-estimated

framework comprising a simplified electrochemical model and

dual nonlinear filter. Compared with the mathematical model,

which is not adaptive to the real-time behavior of the battery, the

filter-based prediction approach treats parameters as state

variables that are identified online with real-time data.

Therefore, compared with empirical models, filter methods

offer better precision and accuracy. However, they still have

some drawbacks: 1) the performance is greatly affected by the

underlying battery degradation model; 2) early-cycle prediction

remains a challenge for these methods because of limited capacity

lost in the early cycles (Fei et al., 2022).

Unlike model-based methods, statistical and machine

learning approaches can infer from the cycle data and offer a

more general approach to predict battery lifetime in the early

stage stages of operation. Moreover, statistical and machine

learning approaches are attractive, with the recent

improvement in algorithms and computational power, and the

growing availability of battery cycling data. Nowadays, many

studies have been done using these advanced methods to address

engineering problems, such as computational fluid dynamics,

molecular design, and so on (Reich, 1997; Liakos et al., 2018;

Sanchez-Lengeling and Aspuru-Guzik, 2018; Brunton et al.,

2020; Hegde and Rokseth, 2020; Mendez, 2022). Nonetheless,

these techniques are also applied in predicting battery lifetime.

With the extracted features, previous capacity trend, temperature

and depth of discharge, and so on. Liu et al. (2019) predicted

cyclic aging using Gaussian progress regression (GPR) with a

modified kernel which reflects the electrochemical behavior. To

further improve the model performance, instead of using features

to construct a regression model alone, a base model is firstly fitted

to learn the battery’s long life information, and then a migrated

mean function and migrated-GPR model are used to predict the

fading curve with 30% starting data (Liu et al., 2022). Besides

GPR (Richardson et al., 2017; 2019b; 2019a), the recurrent neural

network (RNN), especially the long short-term memory (LSTM)

network (Zhang et al., 2018; Gupta et al., 2021; Hu et al., 2021,

2022; Li et al., 2021; Uddin et al., 2022), is usually used in battery

fading curve prediction due to its extraordinary ability in

handling time-series data. Zhang et al. (2018) used the LSTM

network to synthesize a data-driven battery RUL predictor. The

drop-out method is applied to avoid overfitting, and the Monte

Carlo (MC) simulation is used to generate the RUL prediction

uncertainties. Furthermore, to utilize the advantage of the LSTM

network and GPR. Liu et al. (2021) decompose the capacity data

with the empirical mode decomposition (EMD)method and feed

the decomposed result to LSTM and GPR, respectively.

Therefore, the long-term dependency of capacity is captured

by the LSTM network, while the uncertainty quantification

caused by the capacity regeneration is captured by the GPR.

Other methods such as deep neural network (Hsu et al., 2022),

linear regression with elastic net (Severson et al., 2019), random

forest (Yang et al., 2022), stacked denoising autoencoders (Xu

et al., 2021), etc., are used to predict RUL or to extrapolate battery

fading curve with some starting cycle data.

Early-stage lifetime prediction with limited data is crucial for

battery development and deployment and remains a challenge

for researchers. During the early stage, batteries will undergo a

formation process in which the electrochemical behavior is

different than in operation after the early stage. For example,

many batteries’ capacity increases in the early stage which is a

behavior that has not been fully understood yet (Guo et al., 2022).

This behavior results in relatively small capacity changes during

the early stage. Therefore, predicting lifetime with early cycle data

is challenging. Existing methods generally require 40%–70% of

historical data of the entire battery lifetime to estimate the model

parameters or train a data-driven model (Hu et al., 2020).

Therefore, careful feature engineering is needed to generate

features that highly correlate with lifetime while given limited

cycle data.

Feature engineering is a necessary process of selecting,

manipulating, and transforming raw data into features that

can be used in model development. Proper feature

engineering can ease the modeling difficulty and enable the

model to output results of higher quality (Zheng and Casari,

2018). Generally, features for battery prognosis can be derived

from 1) raw data (voltage/current/temperature-time curve); 2)

incremental capacity and differential voltage analysis; 3) directly

measured variables; 4) statistical metrics; and 5) extraction from

a deep neural network with raw data input (Fei et al., 2022).

These features are extracted through two feature extraction

techniques: 1) traditional knowledge-guided feature extraction
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and 2) deep learning based automatic feature extraction. The

traditional method ensures that the extracted features are

relevant to the lifetime prediction and have physical meaning

and implication. For example, temperature is often used. The

physical meaning behind this feature is that as batteries lose

capacity, the internal resistance increases, resulting in a higher

temperature during operation. In contrast to the physics-

knowledge-guided feature extraction, using a deep neural

network to extract features is hard to understand and lacks

physical meaning due to the black-box nature of the neural

network. Nevertheless, extracting features from time-series data,

especially physics-guided features, has seldom been studied. Fei

et al. (2022) construct the features from 2nd, 10th, and 100th

cycle. To represent the features’ evolution curve, Paulson et aluse

three multi-cycle features to capture the median, derivative with

respect to cycles (Paulson et al., 2022). Attia et al. (2021) extract

the feature from the difference between 10th and 100th cycle

along with fourteen summary statistic functions and four feature

transformations. However, the aging process is a continuous

process, and information can be extracted from the development

trend of physics-guided features. Instead of using some statistic

metric to keep track of the changes in features, Greenbank

et alutilize the distribution of the features within a certain

time and use the value at a certain percentile as input features

(Greenbank and Howey, 2022). Furthermore, by treating the

capacity-voltage curves from multiple cycles as a picture, Saxena

et al. (2022) use a convolution neural network to extract three

parameters for the proposed capacity fading curve model.

Combining physics-guided and deep learning-based

automatic feature extraction methods, in this study, we

proposed a novel two-stage data-driven feature engineering

framework for predicting battery lifetime with early-stage

cycle data. In the first stage, with physics-guided insight,

features are extracted from the first 100 cycles of data to form

time series data that contain information from each cycle and

how the features evolve during battery aging. Next, a gated

recurrent unit (GRU)-based autoencoder is used to process

and extract information from the time series data and

eliminate the time domain. Finally, an elastic net regression

model is used to build a regression model between extracted

features and battery lifetime.

2 Battery dataset

In this study, the dataset is provided by the Massachusetts

Institute of Technology (Severson et al., 2019), which is the

largest known dataset for studying the degradation behavior of

lithium-ion batteries. This dataset contains 124 lithium iron

phosphate (LFP) batteries with different charging policies.

However, within this dataset, there is an outlier with a

lifetime less than 300 cycles. Therefore, the outlier is removed

to avoid further problems in the following study. The batteries

are cycled until losing 20% of their nominal capacity (1.1 Ah),

which is a standard end-of-life criterion for the battery industry.

Due to various operation conditions, the lifetime ranges from

300 to 2300 cycles, as shown in Figure 1.

3 A two-stage data-driven feature
engineering framework

In this section, the proposed two-stage data-driven feature

engineering framework is introduced. The framework is depicted

in Figure 2, which is comprised of extracting physics-guided

features from early-stage raw data, a GRU-based autoencoder,

feature selection, and lifetime regression. First of all, with

physical knowledge, five features are selected and calculated

FIGURE 1
Battery capacity fade curves of the dataset. The lifetime ranges from 300 to 2300 cycles.
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within multiple cycles to form a time series dataset. Then, the

time series dataset is compressed with the GRU-based

autoencoder to remove the time domain. A feature selection is

applied to the compressed features to increase the performance of

final regression models. Finally, the selected features are used to

train and test the regression model.

3.1 Physics-guided features

During cycling, due to electrochemical reactions such as

the SEI formation and lithium plating, lithium-ion batteries

will gradually lose capacity. In this study, five features are

selected.

1) Log variance of the difference of the discharge curve between

two cycles (ln var ΔQN-10). The physical meaning behind this

features is related to the dependence of the discharged energy

dissipated in voltage (Severson et al., 2019). Generally, for an

aged battery, due to loss of capacity, the discharge curve will

shift lower, as demonstrated in Figure 3A.

2) Log minimum of the difference of the discharge curve

between two cycles (ln min ΔQN-10). In contrast to the

previous feature, which uses variance to capture the

difference between two designed curves, Feature 2 focuses

on the local difference, indicating the largest difference

between the two cycles.

3) The internal resistance (IR) difference between two cycles (ln

ΔIRN-4). The formation process is crucial for the operation of

Li-ion batteries. A successful formation of SEI can help to

minimize solvent reduction and graphite exfoliation. The

capacity retention and storage life of the Li-ion batteries

directly depend on the stability of the SEI. However,

during the early stage, due to trapped air within the

electrode, part of the electrode is not soaked with

electrolyte leading to high internal resistance (Jeon, 2019).

As the formation process progresses, the trapped air will be

consumed, forming the SEI layer and reducing the internal

resistance. Therefore, as shown in Figure 3B, the IR drops in

the few beginning cycles. However, as the trapped gas

diminishes, the SEI formation behavior becomes dominant,

along with the loss of active lithium-ion inventory and the loss

of active electrode material. All these aging behaviors increase

internal resistance in later cycles (Figure 3B). Therefore, by

measuring the difference in the internal resistance between

the two cycles, we can extrapolate how the aging behavior will

happen in the future and predict the corresponding lifetime.

4) Difference of the maximum temperature between two cycles

(ΔTmax N-10). Corresponding to Feature 3, as the internal

resistance increase, during charging and discharging, more

heat is generated (Figure 3C). The maximum temperature

difference between two cycles infers the internal degradation

status.

5) Log variance of the temperature difference during discharge

(ln var ΔTN-10). Unlike Feature 4, this feature focuses more on

the temperature difference during discharging. Moreover, as

shown in Figure 3D, the temperature is plotted against

voltage, which can help capture changes in temperature

and voltage curves.

In contrast to previous studies, in which features are only

extracted from some specific cycles, this study calculates features

from multiple cycles (cycle 11–100) and forms a time series

dataset, X ∈ Rm×90×5, where m is the number of batteries. So far,

guided by electrochemical knowledge, five features are extracted

from 90 cycles. However, ignoring the time domain and using all

these features to build a regression model may lead to an

overfitting issue because the number of features (90 × 5 =

450) is far more than the number of samples. Moreover,

battery aging is a continuous process, and some information

is hidden within the time series. Therefore, in the next stage, a

GRU-based autoencoder is applied to compress the time series

dataset, extract hidden information, and eliminate the time

domain.

3.2 GRU based autoencoder

To address the need to handle time series data, an RNN is

proposed. Unlike the traditional neural network and

FIGURE 2
The two-stage data-driven feature engineering framework
for the early-stage battery lifetime prediction.
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FIGURE 3
Different feature behaviors for battery #b2c33. (A) Discharge Capacity vs. discharge voltage at different cycles; (B) Internal resistance trend; (C)
Maximum temperature trend; (D) Discharge temperature vs. discharge voltage at different cycles.

FIGURE 4
GRU structure.
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convolutional neural network, the hidden input within the RNN

contains hidden information from previous input. Therefore, the

RNN considers not only the current input but also the previous

input. But RNNs, in general, face a short-term memory issue due

to the vanishing gradient problem. To address this issue, LSTM

and GRU are proposed and able to handle the long-time series

problem by introducing the forgetting mechanism. Compared

with LSTM, which has already been used to predict fading curves

(Zhang et al., 2018; Hu et al., 2021; Li et al., 2021), the GRU has a

simple structure. Therefore, it usually converges faster than

LSTM and fits well, given a small dataset. Moreover, the GRU

has similar performance compared to LSTM. Thus, in this study,

the GRU is chosen to build the autoencoder. The structure of

GRU is shown in Figure 4. The inputs are processed with Eqs 1–4

(Cho et al., 2014). The GRU comprises a reset gate and an update

gate. The reset gate controls how much previous information

needs to be forgotten by a sigmoid function which range from

0 to 1. In this application, the reset gate can help to reduce the

noise or measure error from the time series data and obtain better

features. On the other hand, the update gate determine how

much of the past information needs to be passed along to the next

state. Note that the subscript t represents the moment which

means the cycle that features are extracted. The superscripts are

used to distinguish different variables. h denotes the hidden state,

x represents the input, W is the matrix of weight, b is the bias.

Variables are in vector form.

Rest Gate: rt � σ(W1ht−1 + U1xt + b1) (1)
Update Gate: zt � σ(W2ht−1 + U2xt + b2) (2)

h′t � tanh(W3xt + rtU
3ht−1) (3)

ht � zth
′
t + (1 − zt)ht−1 (4)

Thanks to the electrochemical knowledge-guided feature

selection, there is a strong relationship between the time series

data and the battery lifetime. However, treating time series

data as individual features will lead to model information

redundancy and computational inefficiency. For example, in

our case, if we treat time series data from every cycle as an

individual feature, there will be 450 features (5 × 90). For

modeling, the information dimension is related to the

information representation ability. However, an increasing

number of dimensions often result in model information

redundancy and overfitting caused by the increasing

number of correlated features. Specifically, in our case, the

features extracted from cycle N+1 may contain most of the

information from cycle N. Therefore, it is necessary to reduce

the number of dimensions to improve model performance.

Currently, many methods have been proposed to reduce

dimension, such as principal component analysis (PCA),

independent component analysis (ICA), and the

autoencoder method. However, both PCA and ICA are

applicable due to the lack of Gaussian distribution and

prior knowledge. Therefore, an autoencoder is utilized.

In contrast to other artificial neural networks, by introducing

a bottleneck structure, the neural network can be divided into

two multi-layer neural networks, denoted as the encoder and the

decoder. Both neural networks are trained simultaneously.

During training, the encoder learns a compressed

representation of the data while the decoder learns how to

recover information from the compressed representation. The

quality of the compressed information is evaluated by calculating

the mean square error between the recovered data and the

original data. In this study, the autoencoder is trained with

mini-batch and stochastic gradient descent.

3.3 Feature analysis

Feature analysis is carried out to analyze the correlation

between the compressed features obtained from the GRU-

based autoencoder and the target battery lifetime. The

correlation is evaluated with the Pearson correlation

coefficient, which ranges from −1 (negative correlation) to 1

(positive correlation), as defined in Eq. 5. M denotes the total

number of batteries. j denotes compressed feature j. xij
represents values of feature j for battery i. �xj denotes the

average value of feature j. yi is the lifetime of battery i. �y is

the average lifetime of the sample set.

rj �
∑m

i�1(xij − �xj)(yi − �y)������������∑m
i�1(xij − �xj)2√ �����������∑m

i�1(yi − �y)2√ (5)

With Eq. 5, the correlation between compressed features and

battery lifetime is demonstrated in Figure 5. To avoid

interference between each selected features, all features are

compressed separately. In other words, five GRU-based

autoencoders are trained. Each time series are compressed

into three features. For example, compressed feature 1, 2, and

3 are obtained by compressing the time series of ln var ΔQN-10.

These compressed features contain the most important

information within the time series dataset. Therefore, all the

compressed features exhibit some correlation with the battery

lifetime. Especially compressed feature 1 to 6. These six

compressed features are generated by compressing the time

series data of ln var ΔQN-10 and ln min ΔQN-10. Compared

with the original time series dataset, in which correlation with

battery lifetime fluctuates and varies between cycle and cycle, the

compressed features have a relatively stable correlation. This high

correlation indicates that the GRU-based autoencoder can

capture the most critical information from the time series

dataset and reduce the dimension, facilitating the following

regression step and elevating the regression model’s

performance.
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3.4 Feature selection

After the GRU-based autoencoder, the time series dataset is

compressed to the features set, Xc ∈ Rm×15. However, these

features may contain some common information with each

other. Moreover, feature selection can improve learning

performance, increase computational efficiency, and build a

better generalization model. There are different kinds of

feature selection methods. This study uses the wrapper

method as a feature selection method due to its simplicity

(Pudil et al., 1994).

3.5 Regression model

With the compressed and selected features, a regression

model can be trained to predict the battery lifetime. Different

kinds of regression models can be applied to this data set. In this

study, three regression models are studied: 1) GPR, 2) support

vector regression (SVR), and 3) elastic net.

3.5.1 Gaussian process regression
Derived from the Bayesian framework, GPR has been widely

applied to different problems, including the estimation of SOH

because of its advantage in flexibility, being nonparametric, being

probabilistic, and having good performance with a small dataset

(Li et al., 2019). Instead of fitting the training set with some

optimal parameter, the GPR assumes the prediction follows a

joint Gaussian distribution described by its mean Eq. 6 and

covariance Eq. 7. In Eq. 6, yk is the expected lifetime for battery k,

f(xk) is the distribution of the predicted lifetime, xk is the features

of battery k. In Eq. 7, x’ represents the features from the training

set. In this study, the well-studied and widely used radial basis

function kernel is utilized. The length scale, l, is a hyperparameter

and is optimized during validation.

yk � E(f(xk)) (6)

K(xk, x′) � exp(



xk − x′




2

2l2
) (7)

3.5.2 Support vector regression
Similar to GPR, SVR is also a nonparametric regression

method. Therefore, SVR can be flexible and model any

complex system given sufficient data and a proper kernel.

Unlike GPR, which uses a kernel to generate the prediction

distribution, in SVR, the kernel is used to help to solve the

nonlinear problem by transforming data to a higher dimension

space where the problem can be solved linearly. SVR is solved by

searching for a minimummargin fit for all the input datasets. The

SVR problem is demonstrated in Eq. 8.

min
w,b,ζ ,ζ*

1
2
wTw + C∑N

i�1(ζ i + ζ *i )
subject toyi − wTϕ(xi) − b≤ ϵ + ζ *i (8)

wTϕ(xi) + b − yi ≤ ϵ + ζ *i

ζ i, ζ
*
i ≥ 0,∀i

where yi is the lifetime for battery i, xi represents the

corresponding features, w represents the parameters, b is the

FIGURE 5
The Pearson correlation coefficient of the compressed features.
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bias, C is the regularization parameter, ζ i and ζ*i are the slack

variables that account for how far the prediction is away from the

actual value, and ϵ is the tolerance which allows the model to

ignore some noise and helps to generate a general model. ϕ is the

function that helps to transfer the dataset into a higher dimension

and is defined by the kernel function. In general, instead of

solving Eq. 8 directly, the dual problem is solved. In this study,

the radial basis function kernel is adopted.

3.5.3 Elastic net regression
Unlike the previous two methods, by introducing l1 and

l2 regularization within the objective function Eq. 9, the model

can automatically choose the proper features that provide the

best regression result. Therefore, in this study, the compressed

features, X ∈ Rm×15, are fed directly into the elastic net

regression.

min
w

1
2N

∣∣∣∣∣∣∣∣y −Xw
∣∣∣∣∣∣∣∣22 + αrl1||w||1 + 1

2
α(1 − rl1)||w||22 (9)

where yi is the lifetime for battery i, xi represents the

corresponding features, w represents the weight for features, α

is the regularization parameter, rl1 is the ratio of l1 regularization.

Both α and rl1 are hyperparameters and optimized with cross-

validation during training.

4 Result

In this section, the result of different regression models is

presented. To demonstrate the improvement, the proposed

framework is compared with a state-of-art regression model

(Severson et al., 2019).

In this study, the batteries are randomly separated into a

training set (83 batteries) and a testing set (40 batteries).

Moreover, for a regression model that requires tuning of

hyperparameters, 10-fold cross-validation is applied. The

performance of the proposed framework is evaluated with two

metrics calculated with Eqs 10 and 11.

Root-mean-square error (RMSE)

RMSE �
���������������
1
N

∑N

i�1(yi − ŷi)2
√

(10)

Mean absolute percentage error (MAPE)

MAPE � 1
N

∑N

i�1

∣∣∣∣∣∣yi − ŷi

∣∣∣∣∣∣
yi

× 100% (11)

where N is the number of batteries, yi is the actual lifetime of

battery i, and ŷi is the corresponding predicted lifetime. RMSE

represents the absolute error, while MAPE evaluates the

relative error. Lower RMSE and MAPE mean smaller

prediction error.

4.1 Feature selection performance

Through the GRU-based autoencoder, the original time

series dataset, X ∈ Rm×90×5, is compressed to Xc ∈ Rm×15.

However, because of the black-box property of the neural

network, these 15 features may contain similar information.

Therefore, a feature selection is necessary to produce a

regression model that has better performance. To control the

impact of different regression models, all selected features are

input into a general linear regression model defined as Eq. 12.

Ŷ � wTXs + b (12)
where Ŷ is the vector for predicted lifetime, Xs is the selected

features dataset, b is the bias.

A forward wrapper method starts fitting the model with each

individual feature one at a time and selects the feature that

provides the best prediction result. In step 2, the algorithm will

try to fit with two features by trying combinations of the

previously selected feature. Step 3 selects the second feature

that provides the best prediction result along with previously

selected features. Repeat Step 2 and 3 until the number of selected

features reaches the desired number. The result is demonstrated

in Figure 6. According to the result, in the beginning, as the

FIGURE 6
Test error (RMSE and MAPE) changes with different selected
features. Selecting 12 features provides the best regression result.

TABLE 1 Metric for different regression models.

Model Test RMSE (Cycle) Test MAPE (%)

GPR 188.40 10.50

SVR 213.31 13.89

Elastic Net 187.99 10.14
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number of features increases, the test error decreases. This

indicates that the regression model gets more information

from the additional features. However, after selecting

12 features, adding more features decreases the model

performance and increases the test error. This indicates that

adding more features causes an overfitting problem due to the

shared information within the features. Compared with selecting

all 15 features, according to the result, selecting 12 features

reduces the test MAPE by about 7 cycles and test MAPE by

about 0.32%. Therefore, in the following study, these selected

12 features are used as the input features for the regression

model.

According to the result shown in Table 1, the elastic net and

GPR provide a similar result. The GPR has a test RMSE at

188.40 cycles and a testMAPE at 10.50%. The elastic net has a test

RMSE of 187.99 and a test MAPE of 10.14%. The elastic net has a

slightly better performance than GPR. This improvement is

caused by the regularization within the elastic net, which will

automatically scale down the unimportant features. However,

SVR provides a poor performance which may cause by the noise

within the dataset. Therefore, the result generated from the

elastic net is used in the following comparison.

To demonstrate the advantage of the proposed framework

which utilizes time series dataset, a comparison between the

proposed framework and a state-of-art battery lifetime prediction

model (discharge model) (Severson et al., 2019) is presented

(Figure 7). With the same training set and test set, the

benchmark model only uses data from cycle 10 and 100 to

construct the necessary features. With the limited information

within the selected features, the benchmark only achieves a test

RMSE at 209.53 cycles and a test MAPE at 14.17%. Moreover,

according to Figure 7, both models tend to under-predict the

lifetime for batteries that have a long lifetime (>1500 cycles).

This prediction error is caused by the imbalanced sample. In

this dataset, there are 116 batteries have a lifetime shorter than

1500 cycles, and only 8 batteries have a lifetime longer than

1500 cycles. Nevertheless, the proposed two-stage feature

engineering framework lowers the test RMSE by 10.22% and

reduces the test MAPE by 28.44%. This improvement indicates

that the proposed framework can recover some information

from features obtained from multiple cycles. Furthermore, with

the help of the GRU-based autoencoder, the hidden

information within the features evolution curve can be

recovered and facilitates the lifetime regression model to

achieve a better result.

5 Conclusion

This study proposes a novel two-stage data-driven feature

engineering framework to predict battery lifetime with early-

stage cycle data. In the first stage, instead of constructing

features from certain cycles (Fei et al., 2022; Severson et al.,

2019; Paulson et al., 2022), the proposed framework acquires

features from multiple cycles, forming a time series dataset. In

the second stage, a GRU-based autoencoder is applied to

compress the time-series dataset to reduce the features’

dimensionality and recover hidden information within the

time domain. After compression, a wrapper method is

employed to select the best combination of compressed

features to enhance the regression model’s performance.

With the selected features, the elastic net model provides

the best regression result with a test RMSE at 187.99 and a

test MAPE at 10.14%. Furthermore, a comparison with a state-

of-art battery lifetime prediction model is presented to

demonstrate the proposed framework’s advantage.

Compared with the benchmark model, the proposed

method lowers the test RMSE by 10.22% and reduces the

test MAPE by 28.44%. This work provides insight into

extracting information from features obtained from

FIGURE 7
The actual lifetime vs. predicted lifetime: (A) Elastic Net; (B) Benchmark.
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multiple cycles and highlights the information within the

features’ evolution curve. By treating the dataset as time

series data and compressing it with a GRU-based

autoencoder, hidden information can be extracted. In the

future, we would like to explore a hybrid model technique

that combines both machine learning and physics knowledge.
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