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A nonlinear control without using anemometer is proposed to achieve the maximum power
of the wind turbine (WT) based on two-mass model in this paper. To track the maximum
power points, the optimal tip speed ratio control strategy requiring to know the optimal
rotor speed of the WT (ORS) is employed. To achieve the ORS, a torque observer is
designed to estimate the aerodynamic torque, then the ORS can be obtained by the
corresponding calculations based on the estimated torque. Due to the high nonlinearities
of the WT and time-varying wind speed, a nonlinear control based on feedback
linearization control (FLC) is adopted to track the ORS. In the FLC, the WT is linearized
firstly, then the rotor speed controller is designed via linear control technique. The
effectiveness of the proposed control strategy is verified by simulation studies. The
simulation results show that, compared with the traditional PI control based on torque
estimation and FLC based on wind speed estimation, the proposed control strategy
provides better dynamic performances and higher power conversion efficiency.

Keywords: maximum power point tracking, torque estimation, feedback linearization control, two-massmodel wind
turbine, high-gain observer

1 INTRODUCTION

With the increasingly serious energy crisis and environmental problems, renewable clean energy
such as wind energy, solar energy and hydrogen energy have attracted more and more attention (Liu
et al., 2020; Peng et al., 2020; Sun et al., 2020; Li et al., 2021). Among them, due to large reserves and
high conversion efficiency, the total installed capacity of wind turbine (WT) is much higher than that
of other renewable energy sources (Wang et al., 2020; Xiong et al., 2021). In order to reduce the
relatively high operation cost, it is necessary to improve the conversion efficiency of wind power
system. More than 50% energy of a typical wind turbine is captured in the operation area below the
rated wind speed (Huang et al., 2015). Therefore, it is necessary to effectively improve the efficiency
of wind energy conversion through the maximum power point tracking (MPPT) control strategy in
this operation area (Yang et al., 2016).

The essence of the MPPT control strategy is to make theWT always operate under the optimal tip
speed ratio (OTSR) (Yang et al., 2018). The traditional MPPT control strategies mainly include hill
climb searching (HCS) (Youssef et al., 2019), power signal feedback (PSF) (also known as optimal
torque method) (Zhang et al., 2019) and OTSR (Chen et al., 2019b). However, the general MPPT
control method using HCS is mainly suitable for small and medium-sized WTs, not for large inertia
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WTs. The PSF control method usually needs offline training, real-
time wind speed information statistics and so on. Compared with
the MPPT control strategy of HCS and PSF, the MPPT control
strategy based on OTSR directly adjusts the speed according to
the speed error, which can obtain faster response speed (Mousa
et al., 2021). The traditional OTSR needs to obtain the optimal
rotor speed (ORS) through the real-time wind speed. However, in
practical application, the wind speed measured by an
anemometer cannot accurately represent the effective wind
speed acting on the WT. Therefore, the acquisition of accurate
optimal rotor speed is one of the important factors for the
efficient implementation of MPPT control based on OTSR. In
order to achieve the ORS, a Newton-Rafson iteration method
(Mérida et al., 2014), a method based on adaptive neuro fuzzy
inference system (Golnary and Moradi, 2018), and a non-
standard extended Kalman filter-based estimator (Song et al.,
2017) are adopted to obtain the estimated wind speed. In this
paper, in order to obtain the accurate ORS, a high-gain observer
investigated in Chen et al. (2014), Chen et al. (2019b), and Lu
et al. (2020) is employed to estimate the aerodynamic torque
accurately. Then, the accurate ORS can be obtained based on the
estimated aerodynamic torque. The high-gain observer has been
successfully used in power system (Chen et al., 2014) and
permanent magnet synchronous motor (Chen et al., 2019a),
and provides satisfactory estimation ability and strong
robustness.

In order to obtain the maximum wind energy from time-
varying wind speed, effective control methods need to be adopted
after obtaining the accurate ORS. The traditional PI control is
widely used in industry because of its simple design and high
reliability. However, due to the high nonlinearities of WT and
time-varying wind speed, the traditional PI control designed
based on a certain operating point cannot provide satisfactory
dynamic performance, which reduces the wind energy conversion
efficiency. To overcome the shortcomings of traditional PI
control and improve wind energy conversion efficiency, a
feedback linearization control (FLC) has successfully realized
the maximum wind energy capture of permanent magnet
synchronous generator (Chen et al., 2019b). Meanwhile, FLC
techniques have been widely used in power system, permanent
magnet synchronous motor and power electronics. In this paper,
in order to obtain the maximum wind energy capture of WT
based on two-mass model and avoid using anemometer, the FLC
based MPPT control strategy and aerodynamic torque observer
will be proposed. Firstly, the aerodynamic torque observer based
on the high-gain observer is designed to obtain the accurate
aerodynamic torque, so as to obtain the accurate ORS. Then, the
WT with two-mass model is transformed into an equivalent
linear system. Finally, the ORS is tracked by the designed linear
speed controller. In the simulation studies, in order to verify the
effectiveness of the proposed control strategy, it will compare
with the traditional PI control and FLC based on wind speed
estimation (FLC-WE).

The rest of this paper is organized as follows. In Section 2, the
model of WT and problem formulation are briefly recalled.
Meanwhile, the design of aerodynamic torque observer and
wind speed estimation technique are presented in this section.

The design of the proposed MPPT control scheme is presented in
Section 3. In Section 4, simulation studies are conducted to verify
the performances of the proposed FLC based on torque
estimation (FLC-TE), and compared with the traditional PI
control and FLC-WE. Finally, conclusions are drawn in
Section 5.

2 TWO-MASS MODEL OF WIND TURBINE
AND PROBLEM FORMULATION

2.1 Two-Mass Model of Wind Turbine
The state-space model of theWT (Boukhezzar and Siguerdidjane,
2011) can be obtained as

_x � f(x) + g(x)u �
f1(x)
f2(x)
f3(x)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + g11

g21

g31

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦u (1)

where

f(x) �
f1(x)
f2(x)
f3(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

g11 � 0, g21 � − 1
Jg
, g31 � Ds

NgJg
,

a11 � −Kr

Jr
, a21 � 0, a31 � Ks − DsKr

Jr
,

a12 � 0, a22 � −Kg

Jg
, a32 � − 1

Ng
Ks − DsKg

Jg
( ),

a13 � − 1
Jr
, a23 � 1

NgJg
, a33 � −Ds

Jr +N2
gJg

N2
gJgJr

⎛⎝ ⎞⎠,

a14 � 1
Jr
, a24 � 0, a34 � Ds

Jr
,

x � [ωr ωg Tls]T, u � Tg, y � h(x) � ωr,

where, x ∈ R3, u ∈ R1 and y ∈ R1 are state vector, input vector and
output vector, respectively; f(x), g(x) and h(x) are smooth vector
fields. Jg is the generator inertia,Ds is the low-speed shaft stiffness,
Ng is the gearbox ratio, Kr is the rotor eternal damping, Kg is the
generator eternal damping, Ks is the low-speed shaft damping, Jr
is the rotor inertia, ωr is the rotor speed, ωg is the generator speed,
Tls is the low-speed shaft torque, and Tg is the generator torque. It
comes then that

Jtωr � Ta − Ktωr − Tg (2)

where Jt � Jr +N2
gJg and Kt � Kr +N2

gKg.

2.2 MPPT Control Strategy Based on OTSR
and Aerodynamic Torque Estimation
Technique
In this paper, an MPPT controller based on OTSR is used to
capture the maximum wind power. To achieve this objective, the
maximum power coefficient Cpmax should be achieved. It is
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obtained when the TSR λ keeps at its optimal value λopt. λopt can
be achieved if the rotor speed ωr can track its optimal reference
ωref (ORS), which can be calculated as

ωref � λoptV

R
(3)

In Eq. 3, the ωref (ORS) has a linear relationship with wind
speed when the λopt is constant. However, in practical application,
the effective wind speed acting on the WT cannot accurately
obtained (Ren et al., 2016). To obtain the wind speed, it can be
estimated by using the Newton-Raphson method (Ren et al.,
2016). In this paper, to achieve the ORS, the aerodynamic torque
is estimated by a designed torque observer firstly. The
aerodynamic torque observer is designed based on the high-
gain observer theory mentioned in Chen et al. (2014), Chen et al.
(2019a), and Chen et al. (2019b). In Chen et al. (2014), Chen et al.
(2019a), and Chen et al. (2019b), the high-gain observer theory
has successfully applied in power system, permanent magnet
synchronous generator and permanent magnet synchronous
motor, which provides satisfactory performance for
perturbation estimation. The detailed design process of the
observer can refer to the literature mentioned above.
According to Eq. 2 and high-gain observer theory, the
aerodynamic torque observer is designed as follows. Carry out
the input/output linearization of system (2)

_y � F1(x) + B1(x)u (4)

where

F1(x) � 1
Jt
(Ta − Ktωr) (5)

B1(x) � − 1
Jt

(6)

and the relative degree is ri � [1].
The following observer is designed to estimate the

perturbation F̂1(x):

S:
_̂y � F̂1(x) + l11(ωr − ŷ) + B1(x)Tg

_̂F1(x) � l12(ωr − ŷ)
⎧⎨⎩ (7)

where the gains are designed as lij � αij

ϵji
, i � 1, j � 1, ri + 1. ∈i is a

scalar chosen to be within (0,1) for representing times of the time-
dynamics between the observer and the real system, and
parameters αij, j � 1, . . . , ri + 1, are chosen so that the roots of

sri+1 + αi1s
ri +/ + αiris + αi(ri+1) � 0 (8)

are in the open left-half complex plane.
According Eq. 5 and the estimation of F1(x) obtained from

designed observer (7), the aerodynamic torque can be
estimated as

T̂a � JtF̂1(x) + Ktωr (9)

The aerodynamic torque is expressed as

Ta � Koptω
2
r , Kopt � 1

2
ρπR5Cpmax

λ3opt
(10)

According to Eq. 10, the estimation of the ORS can be
obtained as

ω̂r � T̂a

Kopt
( )

1
2

(11)

2.3 MPPT Control Strategy Based on OTSR
and Wind Speed Estimation Technique
To achieve the effective wind speed and avoid using anemometer,
the wind speed is estimated by using the Newton-Raphson
method (Mérida et al., 2014; Ren et al., 2016).

The wind speed estimator is realized by minimizing the cost
function J (t, V)

J(t, V) � (Ta(t) − fa(V))2 (12)

fa(V) � 0.5ρπR2V3Cp(β, λ)
ωr

(13)

where Ta(t) is the aerodynamic torque at time t, and fa(V) is the
aerodynamic torque function of wind speed V.

The problem is equivalent to find the solution of

I(t, V) � J(t, V) � Ta(t) − 0.5ρπR2V3Cp(β, λ)
ωr

� 0 (14)

From the partial derivative equation

ΔTa � zTa

zV
ΔV (15)

The iteration form of the estimator can be written as

_̂V � ΔTa
zTa

zV
( )−1

(16)

where

zTa

zV
� −3

2
ρπR2V2Cp(β, λ)

ωr
− 1
2
ρπR2V3

ωr

zCp

zV

zCp

zV
� −0.22(178.5 − 1450λt + 5β)

ωrR(λ + 0.08β)2 e−12.5λt

At time t, the iteration will be performed until

I(t, V̂) � Ta(t) − fa(V̂)< ε (17)

where ε is a small value. The estimation of wind speed at time t is
then V̂.

3 NONLINEARMPPTCONTROLLER BASED
ON FEEDBACK LINEARIZATION CONTROL
TECHNIQUE
For system (1), choose the output of the system as y � h(x) � ωr

and control input u � Tg, we have

y(2) � F2(x) + B2(x)u (18)

where
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F2(x) � _Ta

Jr
− (Kr + a34Jr)

J2r
Ta + (K2

r − a31Jr)
J2r

ωr − a32
Jr

ωg

+ (Kr − a33Jr)
J2r

Tls

(19)

B2(x) � −g31

Jr
(20)

where B2(x) ≠ 0 for all nominal operation points.
The feedback linearization control of system (1) is obtained as

u � B2(x)−1(−F2(x) + v) (21)

B2(x)−1 � − Jr
g31

(22)

And the original system is linearized as

€y � v (23)

v � €yr + k1(yr − y) + k2( _yr − _y) (24)

where, v is input of linear system, k1 and k2 are gains of
linear controller, and yr � ω̂r is the desired output reference.
Define e � yr − y as track error, the error dynamic is

€e + k2 _e + k1e � 0 (25)

The final control law represented by physical variables is given
as follows:

u � −JrNgJg
Ds

[−F2(x) + k1(yr − y) + k2( _yr − _y) + €yr] (26)

To clearly illustrate the principle of the proposed control
strategy for the WT system, a overall control block diagram is
shown in Figure 1.

4 SIMULATION RESULTS

In simulation studies, to verify the performance of the proposed
FLC-TE, it compares with the traditional PI control and

FLC-WE. The detailed parameters of the WT are given in
Boukhezzar and Siguerdidjane (2011). The parameters of the
designed observer are α11 � 3.2 × 102, α12 � 2.56 × 104, ∈1 � 0.02.
The controller parameters are k1 � 25, k2 � 10.

It can be seen from Figure 2 that, the FLC-TE achieves the best
tracking performance among these three controllers. The worst
performance is obtained by the traditional PI control. It is because
that the PI control designed based one operation point cannot
provide optimal performance during time-varying operation
points. The FLC-WE achieve a worse tracking performance
than the FLC-TE. Although the Newton-Raphson method can
be used to estimate wind speed, it requires accurate systemmodel.
The inaccurate systemmodel may result in large estimation error.
The Cp cannot maintain around its maximum value Cpmax when

FIGURE 1 | The overall control block diagram of the proposed FLC-TE.

FIGURE 2 | Rotor speed response to random wind speed. (A) Rotor
speed; (B) relative error of the rotor speed.

FIGURE 3 | Power coefficient response to random wind speed. (A)
Power coefficient; (B) relative error of power coefficient.

FIGURE 4 | Aerodynamic torque response to random wind speed. (A)
Aerodynamic torque estimation; (B) relative error of aerodynamic torque
estimation.
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the rotor cannot be well tracked. Figure 3 shows that the FLC-TE
and PI achieve the highest and lowest efficiency, respectively. In
Figure 4, the aerodynamic torque Ta is well estimated by the
designed observer in most of the time, which is always around its
optimal value Taopt � Koptω2

ref . When the wind speed varies
rapidly, it exists the estimation error of Ta. This is mainly due
to theWT has large inertia, which cannot immediately respond to
the variation of wind speed.

5 CONCLUSION

In this paper, a FLC-TE has been proposed to relaize the MPPT
control of the WT. In the proposed control strategy, a high-gain
observer is designed to estimate aerodynamic torque, then the ORS
can be obtained through the estimated aerodynamic torque. The
FLC technique is employed to linearize theWT system, then a linear
speed controller is designed for rotor speed regulation. Among the
traditional PI, FLC-WE and FLC-TE controllers, the proposed FLC-
TE achieves the best dynamic performance and highest efficiency. In
the future work, a nonlinear adaptive control based on perturbation
estimation technique will be investigated to improve the robustness
of the FLC-TE against parameter uncertainties and disturbances.
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