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Wind turbines (WTs) generally comprise several complex and interconnected systems,
such as hub, converter, gearbox, generator, yaw system, pitch system, hydraulic system
control system,integration control system, and auxiliary system. Moreover, fault diagnosis
plays an important role in ensuring WT safety. In the past decades, machine learning (ML)
has showed a powerful capability in fault detection and diagnosis of WTs, thereby
remarkably reducing equipment downtime and minimizing financial losses. This study
provides a comprehensive review of recent studies on MLmethods and techniques for WT
fault diagnosis. These studies are classified as supervised, unsupervised, and semi-
supervised learning methods. Existing state-of-the-art methods are analyzed and
characteristics are discussed. Perspectives on challenges and further directions are
also provided.
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INTRODUCTION

Wind power has gained remarkable attention in the past decade because wind energy is one of the
rapidly clean energy sources and has received worldwide support for renewable energy development
(MUA, 2017). In recent years, in order to achieve the goal of carbon peak and carbon neutralization,
China has commercialized the use of renewable energy, expanded the use of renewable energy, and
demonstrated its determination to reach the peak of carbon dioxide emission by 2030 and carbon
neutralization by 2060. As the main force of global renewable energy development, China attaches
great importance to new energy, especially wind power generation. According to the statistics of the
Global Wind Energy Commission (GWEC), the newly installed capacity of the country has reached
65.1 GW 2) in 2019 (Elizondo et al., 2019). The large-scale development and utilization of wind
energy have brought huge opportunities for the development of the market economy, and also raised
important crucial challenges related to reliability, cost-effectiveness, and energy blade images of the
security. On the one hand, wind turbines (WTs) are often located in remote areas, operated in harsh
working environments for a long time, and have withstood randomly varying weather conditions,
wind shear, temperature, wind speed, and load, thereby frequent WT failures. As shown in Figure 1,
the highest proportion of fault rate of WT components is the electrical system (Hahn et al., 2007),
followed by the control system and sensor. On the other hand, the high cost of operation and
maintenance (OM) ofWTs underscores the urgency of fault diagnosis. Evidently, fault diagnosis and
the timely maintenance of WTs can reduce huge financial losses.

Given the preceding reasons, fault warning and fault diagnosis of WTs should be performed. The
fault diagnosis method based on machine learning (ML) is suggested to detect the operating
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conditions of the WT for it can minimize the downtime and
reduce OM costWTs, and extend the service life of these turbines.
With the advent of the era of fault diagnosis technology, many
local and international experts and scholars have proposed some
efficient fault diagnosis methods for various components (Liu
et al., 2015), such as power system (Qiao and Lu, 2015; Zappalá
et al., 2019), mechanical (Wang et al., 2016a; Chen et al., 2016b;
Garg and Dahiya, 2017; Salameh et al., 2018), and driving faults
(Nasiri et al., 2015; Zeng et al., 2015), etc. Among these methods,
generator (Hossain et al., 2015; Yang et al., 2017) and gearbox
faults (Wang et al., 2016b; Igba et al., 2016; Teng et al., 2016;
Wang et al., 2019) are mostly studied. Fault diagnosis methods
are classified into fault diagnosis methods based on analytical
models, knowledge-based methods, and data-driven fault
diagnosis methods (Chen et al., 2016a).

The analytical model-based WT fault diagnosis methods need
to analyze and model the system to achieve real-time diagnoses of
the faults, which are often directly related to WT model
parameters (Gao et al., 2015; Zhong et al., 2018). With a
further understanding of the fault diagnosis mechanism of
WT, modeling is implemented to increase the accuracy of
fault diagnosis. However, in the process of analytical model-
based WT fault diagnosis methods by uses system residuals to
model the internal subsystem of the WTs for state estimation and
online approximation; nevertheless, this process has difficulty in
ensuring the accuracy of fault diagnosis (Liu et al., 2017; Cho
et al., 2018). Consequently, inevitable errors and unknown
interference terms will result, and the aforementioned process
is insufficient to guarantee robustness.

Knowledge-based WT fault diagnosis methods rely on expert
experience in wind power-related fields (da Silva et al., 2012; Yang
et al., 2016). The accuracy of fault diagnosis results depends on
the extensiveness of expert experience and knowledge the level of
WT fault diagnosis experts, which lack self-learning and
recognition abilities. Knowledge-based WT fault diagnosis
methods cannot acquire new knowledge from the diagnosed
engineering examples during the operation of WT. Hence,
poor diagnosis accuracy may be resulted.

Without relying on prior experiences, data-driven WT fault
diagnosis methods uses data mining technology to obtain hidden
useful information to characterize the fault and normal states
of the system, and eventually realize real-time fault diagnosis
(Ding, 2012; Qin, 2012). The WT supervisory control and data
acquisition (SCADA) system contains real-time online data and
extensive offline data. The use and analysis of data mining is
necessary to obtain detailed fault characteristics, thereby realizing
real-time WT fault diagnosis. Data-driven WT fault diagnosis
methods include the ML, multivariate statistical analysis, signal
analysis, and information fusion methods (Yin et al., 2014).

As shown in Figure 2, the fault diagnosis methods of WT
based on ML can be generally divided into supervised,
unsupervised, and semi-supervised learning methods.
Although some literature reviews on WT fault diagnosis (Liu
et al., 2015) and condition monitoring (de Azevedo et al., 2016)
have been published, there still lack of comprehensive review on
the ML-based fault diagnosis method of ML. Therefore, the
current study provides a systemic and pertinent state-of-the-
art review on recent studies on ML methods and techniques that
have been used forWT fault diagnosis. In particular, this research
summarizes the research methods inWT fault diagnosis, presents
the strengths and shortcomings of existing methods, and reveals
the challenges and recommendations of future research direction
in this domain.

Fault Diagnosis of Wind Turbine
Numerous countries have earlier previously conducted research
on WT technology, and European countries and the US have
made some progress in fault diagnosis and prediction (Habibi
et al., 2019). For example, Siemens’ SCADA system is widely used
in major wind power generation industries (Dao et al., 2018).

Compared with European and American countries, China’s
wind power industry started late, but WT fault diagnosis research
has made some progress in recent years. Since the progress and
development of artificial intelligence and ML in recent years, the

FIGURE 1 | Fault rate of wind turbine components (Hahn et al., 2007).

FIGURE 2 | ML methods for WT fault diagnosis.
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fault diagnosis methods ofWT have been intensively studied. The
WT structure is shown in Figure 3. The main components of WT
include wind wheel, gearbox, generator, converter, yaw system,
pitch system, hydraulic system control system, integration
control system, and auxiliary system (Lin et al., 2016).

The wind wheel is key to the energy conversion of WT, and
operational stability directly affects the efficiency and safety of
WT. As the operating time of WT increases, the failure rate of the
wind wheel and other components also increases, which seriously
affects the working performance ofWT. In a non-stationary state,
the frequency component of the WT failure at the generator
output will expand over the bandwidth proportional to the speed,
thereby making its diagnosis capabilities considerably
complicated. Therefore, Dahiya (2018) proposed a fault
diagnosis method of WT based on wavelet analysis, using
electrical signals to diagnose rotor eccentric faults. The
effectiveness of this method under varying speed and load
conditions has been verified through experiments.

Gearboxes are one of the important WT, but the most
expensive WT sub-assemblies. Gearboxes are often operating
under extreme temperature and high speed of rotation, which
will cause a high fault rate and irreversible damage to WT. At
present, many studies and research have been conducted on the
fault diagnosis of WT gearboxes (Salameh et al., 2018). Du et al.
(2015) proposed a convex optimization-based WT generator
gearbox fault diagnosis method. This method considers
identifying multiple features from the superimposed signal of
WT gearbox, and makes full use of the potential a priori
information, that is, multiple faults with similar spectrum
have different morphological waveforms, which can be sparse
represented on the joint of redundant dictionaries. The
proposed framework is verified by diagnosing multiple faults
of gearbox in wind farm. (Zhang et al., 2017) used the Morlet
wavelet-based continuous wavelet transform for actual wind
turbine gear fault diagnosis. This diagnosis uses the signal
analysis method, which has considerably refined time
frequency characteristics and achieved satisfactory results.

A generator is the core equipment for generating electricity
throughWT, which converts kinetic energy into electrical energy.
Generators will also experience a high failure rate owing to the
harsh environment, large load fluctuation, and diverse operating
parameters of this equipment. Numerous publications have
specially reviewed the WT generator fault diagnosis, including
those involved in avoiding incorrect internal pattern recognition
caused by heavy noise, Chen et al. (2016b) extract inherent
modulation information by decomposing the signal into
mono-components on an orthogonal basis using empirical
wavelet transform (EWT). Moreover, before EWT, they
applied wavelet spatial adjacent coefficient denoising with
data-driven threshold to improve signal-to-noise ratio (SNR),
which is considered to be a powerful tool for WT generator fault
diagnosis. Yang et al. (2017) considered the shortcomings of
sparse representation results affected by dictionaries, and
proposed a novel data-driven fault diagnosis method based on
shift-invariant dictionary learning and sparse representation for
WT generator, which can effectively identify the WT generator.
The coefficients obtained can be considerably sparse based on the
learned shift-invariant dictionary, and the impulse signal
extracted nearly approximating to the real signal.

The converter is a critical component of the WT energy
conversion, and the WT outputs current with stable frequency
and amplitude to the grid through the converter. Converters have
poor stability and are often impacted by high-temperature and
high-pressure working circumstances, and the long-term
operation will cause irreversible damage to the WT system.
Toubakh et al. (Toubakh and Sayed-Mouchaweh, 2016)
analyzed the converter fault caused by parameter drift, and
proposed a fault diagnosis method of the WT converter based
on a hybrid dynamic classifier, which can monitor the normal
operation of converters in the discrete mode affected by
parameter failure. The parameter drift under conditions is
used for fault diagnosis in the early period of the WT
converter. Liang et al. (2020) proposed a fault diagnosis
method based on WT converters. A series of inherent mode

FIGURE 3 | Main structure of WT.
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functions are obtained through the overall empirical mode
decomposition processing of the measured output voltage.
Thereafter, the standard entropy is calculated according to the
inherent model functions statistical characteristics, the extracted
information is used to describe the diagnostic characteristics, and
the fault diagnosis of the fan system is performed. The diagnostic
accuracy is 99.57%, and its performance was impressive.

The yaw system is an important WT component and can drive
theWT engine room to revolve around the tower centerline, thereby
maintaining the verticality of the wind wheel scanning surface and
wind direction vertical. Yaw system failures often occur owing to its
harsh operating environment and load fluctuation, thereby affecting
the power generation efficiency ofWTs. To qualitatively evaluate the
zero-offset error of the yaw system, Pei et al. (2018) proposed a data-
driven method for WT yaw system fault diagnosis, which can detect
the zero-point shifting fault by analyzing the power characteristics of
different yaw angles. If the yaw angle measurement error is greater
than a predetermined threshold, then the zero-point shift fault will
be triggered, which can detect the fault in time and improve theWT
performance. In the case of yaw system faults, Ouanas et al. (2018)
proposed a fault diagnosis method of WT yaw system based on the
signal analysis method. By filtering the inverter signal provided by
the yaw drive, the discrete wavelet transform and empirical mode
decomposition method were used to eliminate redundant
information. Faults from the envelope of the Hilbert transform
are detected, thereby verifying its effectiveness.

Pitch control system is the speed control device ofWT and can
adjust power change by changing the blade angle of attack. Given
to the variable external wind conditions of WT and complicated
internal system structure of the pitch system, abnormal output
power, blade damages of the s, and even unit collapse can easily be
caused, in which the failure rate is high. Many studies have
proposed fault diagnosis methods for pitch systems. Habibi et al.
(2017) proposed the fault diagnosis method of the WT pitch
system by using a nonlinear model and presented the problem of
maximizing energy extraction by designing the optimal desired
state. Experiments have been performed to verify the
practicability of the proposed method. Lan et al. (2018)
conducted a study based on the adaptive step-by-step sliding
window observer’s state estimation and fault indicator functions
of a pitch system, which can effectively deal with the nonlinear
fault distribution function and identify the pitch fault of WTs.

A hydraulic system is an important WT component and plays
a essential role in the yaw, pitch, and transmission chain braking
of WTs. Hydraulic system function in all-weather, open-air and
high-altitude running conditions, which is prone to failures such
as oil leakage and spool jamming, thereby making maintenance
difficult. In the case of WT hydraulic system faults, Yang et al.
(2011) proposed a fault detection method for WT hydraulic
system based on the Petri net model. First, Petri net theory is
used to establish a model for each discrete operating state of the
WT hydraulic pitch system, and a fault Petri net model is built.
Thereafter, a system reliability index is obtained based on the
fault qualitative analysis and calculation of the Petri net. The Petri
net model calculation is simple, which is ultilized to the WT
hydraulic system fault diagnosis and has a broad application
prospect.

Machine Learning Methods for Wind
Turbine Fault Diagnosis
ML refers to a computer that learns from a limited amount of
data without specialist intervention to train an inductive
model and uses this model thereafter to guide future
decisions (Clifton et al., 2013; Stetco et al., 2019). The ML
method has been used for fault diagnosis in WT (Leahy et al.,
2016), which consists of inputs, outputs, models, and
objective functions. Given the WT data sample
data x � {x1, x2, . . .xn} (x represents a data set containing n
samples) and fault category y, n represent the total number of
data sample. Thereafter, we use the training sample {xi, yi}M1
({xi, yi}M1 ∈ {x, y}) to train the model and obtain the
approximate value f(x) to fit the real value y. Moreover, yp

represents the mapping relationship between x and y, and M is
the total number of training samples.

FIGURE 4 | Flowchart of WT fault diagnosis based on the supervised
Learning method.
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yp � argminf(ExyL(y, f(x)))
� argminf(Ex(Ey(L(y, f(x)))|x)) (1)

In Equation 1, L represents a loss function, and the average
loss of the training set is called empirical risk. The goal of ML is to
minimize empirical risk. Frequently employed loss functions
include 0–1, square, absolute value, and log loss function.

The problem of overfitting is one of the key issues in the ML
method. Therefore, empirical and structural risks should be
minimized. The regular term J(f) is introduced to measure
the model complexity. The frequently employed regular terms
are Lasso and Ridge regression. The final optimized objective
function can be expressed as follows:

Obj � min
1
M

∑
M

i�1
L(y, f(x)) + λ J(f) (2)

ML methods are divided into supervised, unsupervised, and
semi-supervised learning methods (Lei et al., 2020). The current
study also classifies the ML-based WT fault diagnosis methods as
the supervised, unsupervised, and semi-supervised learning
methods, which are analyzed and discussed in the following
sections.

Supervised Learning Methods for Wind
Turbine Fault Diagnosis
Supervised learning is a process of adjusting classifier parameters
using samples of a known class to achieve the desired
performance. In supervised learning (Schwenker and Trentin,
2014; Zhou, 2018), the computer is received the example inputs
and its required outputs, given input and output, and the target is
to learn a general rules of mapping input to output. Supervised
learning methods are widely used in the WT fault diagnosis field.
As shown in Figure 4, supervised learningmethods have different
algorithms for specific problems. First, we take WT fault
diagnosis (Jiménez et al., 2019) as the research object to
obtain data from the SCADA of WTs; divide the training,
validation, and the test sets and perform data preprocessing
on the data set; and normalize the data after processing the
missing values. Second, an ML algorithm is chosen to train the
training set which is used for modeling. Thirdly, the test set is
used to evaluate the model quality. Lastly, an accurate fault
classification is obtained by continuously optimizing the fault
diagnosis model of the WT.

Artificial Neural Network
Artificial neural network (ANN) (Agatonovic-Kustrin et al., 2000;
Xi et al., 2020) is one of the most frequently used supervised
learning algorithms. ANN consists of numerous neurons and is
divided into input layer, hidden layer, and output layer. ANN is
widely used in the fault diagnosis field (Samanta et al., 2003;
Saravanan and Ramachandran, 2010). By learning from known
fault samples, the mapping relationship between fault
characteristics and fault categories is established to detect
whether a device is faulty. Figure 5 shows a three-layer simple
WT fault diagnosis model based on ANN, x1, x2, . . . , xn are the

input characteristics of WT, n is the total sample of input
characteristics, and m is the total fault types of WT.

The frequently employed neural network methods include
adaptive resonance theory (ART), self-organizing map (SOM)
neural network and radial basis function (RBF) neural network.

Zhang et al. (Zhang and Wang, 2014). proposed an ANN-
based fault diagnosis method for the WT main bearing based
on the WT SCADA system data. The difference between the
theoretical and the actual parameter values can identify the early
stage of the main bearing faults of WT. To decrease the time of
ANN for WT fault detection, Bielecki et al. (2014) proposed a
hybrid method of ART and RBF neural networks for online
detection of the operating status of WT, which can monitor the
status of WT in time, identify the early fault conditions and have
good real-time performance. However, the actual engineering in a
wind farm cannot collect all information on the fault, and the
ANN cannot make accurate fault diagnosis. Therefore, Zhao
(Zhao et al., 2015) proposed to apply the SOM neural network
to the fault diagnosis of WT and to train the network through the
sample data of the normal WT state. This is judged whether the
wind turbine malfunctions according to the position of the output
neuron in the output layer. Accordingly, the SOM neural network
method can effectively diagnose the WT fault with good
robustness.

Although the fault diagnosis of ANN has high precision and
good robustness, this method requires numerous parameters for
modeling, and the training model takes a long time. China’s wind
power industry started late, but WT fault diagnosis research has
been developed in the recent years. However, WT fault data
samples are considerably lacking, and the accuracy and
completeness of the WT data samples directly affect the
accuracy of fault diagnosis classification. This issue is currently
the main drawback restricting the development of ANN in WT
fault diagnosis.

Support Vector Machine
Support vector machine (SVM) is a kernel-based ML method
used in regression problems and classification tasks introduced by
Vapnik (2013). The main idea is to find two parallel hyperplanes
to separate two sets of data in a multi-dimensional space and
maximize the margin between the hyperplanes. SVM formulation

FIGURE 5 | ANN-based WT fault diagnosis model.
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ensures that the decision hyperplane is constructed with
structural risk minimization to obtain a balance between
empirical risk and complexity of model (Deka, 2014). SVM is
mainly used in nonlinear problems, by building a classification
hyperplane as a decision plane, in which the isolation boundry
between negative and positive samples is maximized. As shown in
Figure 6, any hyperplane can be represented by a normal vector
W and a constant b (intercept) as follows:

wTx + b � 1 (3)

wTx + b � 0 (4)

wTx + b � −1 (5)

For point A(x1, y1), any two hyperplanes have a geometric
interval d.

SVM is to find a hyperplane to make the data points separable,
in which the minimum geometric distance is the largest. The
SVM solution process can be regarded as the solution process of a
convex quadratic problem, which has a global optimal solution.
Thus, SVM is widely used in the fault diagnosis field.

To solve the local optimal phenomenon caused by the
improper selection of sample parameters, Laouti et al. (2011)
chose a radial basis function as the kernel parameter of SVM,
which can immediately detect the WT blade pitch positionand
generator failureand has good generalization performance. To
further solve the problem of overfitting or underfitting caused by
the improper selection of nuclear parameters, Tang et al. (2014)
proposed a method of WT fault diagnosis based on the Shannon
wavelet SVM (SWSVM) and manifold learning. In this method,
mixed-domain features are extracted to construct a high-
dimensional feature set, manifold learning is used to compress
the high-dimensional feature set into low-dimensional
eigenvectors, and low-dimensional eigenvectors are inputted
into an SWSVM to recognize WT gearbox faults. Gao et al.
(2018) proposed a novel fault diagnosis method of WT that
combines mean decomposition, multi-scale entropy, least
squares, and SVM. In this method, the WT raw vibration
signal is divided into several groups for preprocessing.

Thereafter, the mean decomposition method is applied to
group the signals to obtain the product function. Moreover,
the feature parameters are obtained using the multi-scale
entropy method of processing the main product function to
obtain the feature vector. The characteristic parameters were
input into the least squares SVM, which was trained. This
method can significantly enhance the fault classification ability
of a single SVM and classify the fault type precisely. In the case of
single kernel parameters and parameter optimization, Zhao et al.
(2018) proposed a fault diagnosis method of WT based on
random subspace identification and multi-kernel SVM.
Compared with the traditional SVM, the multi-kernel SVM
can successfully identify the bearing fault of the WT and has
higher fault diagnosis accuracy. In the classification problem,
there are not only two classification problems, but also multi
classification problems. SVM can also show good classification
ability in the face of two classification problems. (Liu K. et al.,
2020) used multi-SVM machine to diagnose the fault of
renewable energy power grid, which effectively improves the
accuracy of fault diagnosis. (Xue et al., 2017). proposed a fault
intelligent diagnosis method combining optimal composition of
symptom parameters (SPOC) and multi-SVM to diagnose the
motor fault, and realized the fault detection and identification of
multiple motor faults. In recent years, with the wide application of
SVM, experts began to optimize and improve SVM, put forward
some machine learning algorithms derived from SVM, put them
into the field of fault diagnosis, and achieved good results. (Zhang
and Zhou, 2014; Tang et al., 2019).introduced margin mean and
margin variance on the basis of SVM and proposed a largemargin
distributed machine (LDM), and this method has better
classification performance than SVM. (Tang et al., 2020a) used
LDM to detect the fault of WT’s pitch system and optimized it
with state transition algorithm (STA), which significantly
improved the accuracy of fault detection.

SVM uses inner product kernel function to turn the raw data
into linear data through mapping the raw data to a high-
dimensional space. However, modeling WT big data is
difficult, and the selection of kernel parameters also affects the
fault diagnosis accuracy. Moreover, guaranteeing the
classification of multi-type WT fault problems is difficult.

Decision Tree
Decision tree (DT) is composed of multiple judgment nodes, and
a classification or regression model is formed by the tree structure
(Safavian and Landgrebe, 1991). The basic idea is simple, and
Figure 7 shows a WT fault diagnosis model based on DT.

Rabah et al. (Benkercha and Moulahoum, 2018) proposed a
fault diagnosis method for a grid-connected WT generator
system based on the DT algorithm with high prediction
performance and high accuracy. Abdallah et al. (2018)
adopted the DT algorithm to perform fault diagnosis on WT,
continuously sampled extensive data from thousands of WT at a
high rate, and trained integrated DT classifier. Compared with
other ML algorithms, DT is easy to implement but it has
limitations in dealing with missing values. The WT fault
diagnosis process, there are few samples of fault type and
more samples of fault-free type. For DT that deals with data

FIGURE 6 | Interval and support vector machine.
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with inconsistent sample sizes in various categories, information
gain is biased toward features with additional numerical values,
which is easy to overfit and minimally used inWT fault diagnosis.

Ensemble Learning
The basic concept of ensemble learning (Polikar, 2012; Liu et al.,
2019) is to adjust and train multiple base learners as ensemble
members into a strong learner that should have greater
performance on average than any other ensemble member.
Thereafter, a model is estabilshed by optimizing the loss
function to advance the performance of fault classification.
The frequently employed ensemble learning methods include
bagging, boosting.

Bootstrap aggregating, also called bagging (Breiman, 1996)
applied in regression and statistical classification, is an ML
ensemble that obtains a new data set by returning the
samples, trains a better base learner based on each new data
set, and eventually combines the base learners. The algorithm
reduces variance and helps to prevent overfitting. Typical
bagging algorithm including random forest (RF). A diagnosis
method (Cabrera et al., 2015) was presented for detecting the
faults of WT gearboxes, which is based on Random Forest. First,
the condition parameters of the vibration signal are extracted by
wavelet packet decomposition and used as the input feature of
the classification problem. Second, a study approximates the
parameter space to find the best mother wave set, and select the
best feature through the internal ranking of the random forest
classifier. Lastly, the RF algorithm is used to detect the fault of
the WT gearbox. To further improve the fault detection rate, Li
et al. (2016) proposed a method based on deep RF fusion
(DRFF) to improve the fault detection performance of the
WT gearboxes. Two deep Boltzmann machines are used to
characterize the parameter values of the wavelet packet
transform, and the output of the two deep Boltzmann
machines is fused into an integrated DRFF model using an
RF algorithm. The results indicate that DRFF may improve fault

diagnosis capabilities for gearboxes compared with
conventional RF.

Boosting (Freund and Schapire, 1996) adjusts the algorithm by
giving considerable importance to the bad classification that
results in significant improvements in performance of
classification. The bagging algorithm focuses on reducing bias
facilitates prevention of overfitting. Many algorithms are based
on boosting methods, such as XGBoost and LightGBM. Zhang
et al. (2018) proposed an efficient WT fault detection method
based on the RF and XGBoost. RF is used to rank the features by
importance, while XGBoost trains the ensemble classifier for each
specific fault based on the top-ranking features. The proposed
ensemble classifier can protect against overfitting and
experiments verifies the robustness of this method. To
enhance the fault diagnosis accuracy, Tang et al. (2020b)
proposed the adaptive LightGBM method for the WT gearbox
fault detection. The correlation of the WT data samples is
analyzed using the maximum information coefficient to realize
the feature selection of fault detection. Meanwhile, the LightGBM
method after Bayesian hyperparameter optimization is used for
the fault detection of WT gearbox. Experiments prove that this
method has a low false alarm rate and missing detection rates.

Ensemble learning is widely used in fault diagnosis and early
warning of WT with high accuracy. However, some algorithms
have slow convergence speed, weak learners rely heavily on one
another, and over-fitting problems occur. When using the
ensemble methods, the number of iterations, number of base
learners, and weights are the issues that should be considered.

Deep Learning
Deep learning was proposed by Hinton et al. (LeCun et al., 2015),
and the basic idea is a ML process that includes a multi-level deep
network structure through a certain training method based on
sample data. Deep learning combines low level features to form a
considerably abstract high-level representation to discover the
distributed feature representations of data. Deep learning

FIGURE 7 | WT fault diagnosis method based on decision tree.
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(Schmidhuber, 2015; Goodfellow et al., 2016) is widely used in
image processing, data mining, fault diagnosis (Helbing and
Ritter, 2018), and other fields. Different deep learning (Jiang
et al., 2018) configurations have also been introduced such as
deep belief nets (DBNs), deep auto-encoder (DAE) network, and
convolutional neural networks (CNNs).

Toward the WT gearbox faults, Qin et al. (2018) proposed a
novel fault diagnosis method that combines DBNs and improved
logical Sigmoid unit for the WT gearbox. The integrated
approach, which uses the optimized Morlet wavelet transform,
kurtosis index, and soft-thresholding is used to extract impulse
components from original signals to advance the accuracy of
dignosis. Compared with the traditional Sigmoid method, the
WT gearbox fault diagnosis method based on deep confidence
network and improved logical Sigmoid unit has the higher
comprehensive performance. To achieve anomaly diagnosis
and fault analysis of WT components, Zhao et al. (2018)
proposed a deep learning method based on DAE networks
using the WT SCADA data, while the Boltzmann machine
builds a deep automatic encoder network model. This method
can realize the early warning of the faulty component and derive
the physical location of the faulty WT component through the
residual of the deep autoencoder network model. Since the
diverse operating status of WT with a large amount of noise
interference, which leads to a decrease in the accuracy of fault
diagnosis of WT. To solve this problem, Chang et al. (2020)
proposed a fault diagnosis method for WT based on a concurrent
convolution neural network (CeCNN). The raw WT data do not
require any prior knowledge, and the characteristics are learned
adaptively and directly from input with high accuracy and
powerful generalization ability. The convolutional layers of
different branches select kernels of varying scales at the same
level, thereby improving the accuracy of the WT fault diagnosis.
Yi and Jiang (2020) proposed a DAE-based discriminative feature
learning for WT blade icing fault detection.

Although deep learning has a strong learning ability and high
fault diagnosis accuracy, it requires extensive data and computing
power with high cost and high hardware requirements, which are
current issues should be considered.

Unsupervised Learning Methods for Wind
Turbine Fault Diagnosis
The basic idea of unsupervised learning is the process that a
machine learns unlabeled data to reveal the hidden structure,
explain the key features of data, and divides them into several
categories. Representative technique is clustering. Many
algorithms typically used in unsupervised learning are based
on the clustering method. Unlike supervised learning methods
that analyzes class-labeled instances, unsupervised learning
(Figueiredo et al., 2002; Zhang T. and Zhou Z. H., 2018) does
not need all information, but trains the information of unlabeled
samples. The sample set is clustered according to the similarity
between the samples to minimize the intraclass variance and
maximize the interclass variance, thereby establishing the model.
Unsupervised learning methods can classify and predict test data
by extracting hidden concepts and relationships in the data set,

which are widely used in fault diagnosis, data mining, and image
processing among others. Many methods are typically employed
in unsupervised learning, such as the K-means algorithm, fuzzy
C-means (FCM), hierarchical clustering method, Gaussian
mixture model, and other methods (Hastie et al., 2009).

K-Means
K-means clustering (Kanungo et al., 2002; Jain, 2010) is a simple
unsupervised learning method which aims to divide n observations
into K clusters, in which the observation belongs to the cluster with
the nearest mean. First, we initialize cluster centers and determine
K initial points in the data as the center of clustering; Second, we
calculate the distance from each point to the center and assign it to
the nearest cluster. Third, we recalculate the cluster center to
minimize the internal sum. Lastly, the allocation and update
operations are repeated until the centers of all clusters no
longer change. If all points are allocated to the same cluster as
before, then K-means clustering is completed. For example, given
the data set of WTs, K-means algorithm was used for clustering
and the five types of clustering result is shown in Figure 8.

To overcome the sensitivity of K-means to the choice of the
initial cluster centers, Yiakopoulos et al. (2011) proposed a
K-means clustering method for fault diagnosis of rolling
bearings, and the initial centers are selected using features
extracted from simulated signals. The fault detection
experiments on three types of bearings show that this method
can successfully classify faults. Khediri et al. (2012) proposed an
unsupervised learning process based on kernel technology, which
can separate different non-linear process modes, and effectively
detect faults, and reduce the false alarm rate. Kusiak et al. (Kusiak
and Verma, 2012) used three different operating curves
(i.e., power rotor and blade pitch curves) to monitor the
performance of wind farms, and proposed a multivariate
outlier based on Mahalanobis distance and K-means
clustering. This method, uses the skewness and kurtosis of
bivariate data as metrics to evaluate the WT performance,
which is simple to apply and has a rapid convergence speed.

FIGURE 8 | K-means clustering.
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K-means clustering is simple to implement and has a good
effect on WT fault diagnosis. However, the choice of the initial
cluster center K is difficult to grasp and even cause difficulty in
convergence in the case of non-convex data sets. WT has many
fault-free samples and few samples of faults, which will result in
poor clustering effect when the amount of data is unbalanced.

Fuzzy C-Means
The FCM algorithm (Bezdek et al., 1984; Pal et al., 2005) is a
clustering algorithm in which each data point can belong to more
than one cluster. The basic idea is to maximize the similarity
between objects divided into the same cluster while minimizing
the similarity between viaroius clusters.

Given the WT gearboxes fault detection, Luo et al.(Luo and
Huang, 2014) proposed a fault diagnosis method based on global
local mean decomposition and FCM clustering. In this method,
the known sample was clustered using the FCM clustering, and
the test sample was classified and recognized, which has simple
implementation and good diagnosis results. Although the WT
fault diagnosis methods require supervision and training based
on historical samples of known faults, collecting samples of
known faults is time-consuming and expensive. Given the lack
of complete characteristics of known samples in WT, Li et al.
(2015) presented a method based on the kernel FCM (KFCM)
clustering to the fault diagnosis of the WT gearbox. The KFCM
clustering algorithm is used to classify the samples of known
samples, and the classification center of each known fault is
obtained. Similarity parameters are also calculated to diagnose
whether the new data samples belong to the known faults. This
method can accurately and effectively diagnose the known and
unknown faults of WT.

Some issues should be considered when the FCM algorithm is
used in the WT fault diagnosis. For example, a large fault-free
sample size and extremely small fault sample size may lead to
failure, thereby ensuring that the optimal solution of the fault
diagnosis model is found.

Hierarchical Clustering
Hierarchical clustering (Johnson, 1967; Corpet, 1988) is a cluster
analysis method in unsupervised learning, which builds a model

by establishing a hierarchical structure of clusters. The
hierarchical clustering method can be represented as a tree
structure (i.e., “tree diagram”, which includes roots and leaves.
In clustering tree species, the original data points of different
categories are the lowest level of the tree, and the top level of the
tree is the root node of a cluster. As shown in Figure 9, the
hierarchical clustering method (Navarro et al., 1997) involves a
process that starts from the leaves and successively merges
clusters called agglomerative hierarchical clustering; or a
process that begins from the root and recursively splits the
clusters called divisive hierarchical clustering. The hierarchical
clustering method uses Euclidean distance to calculate the
distance between the data points of different categories.

Li Y. et al. (2018) proposed a fault diagnosis method based
on adaptive multi-scale morphological filters and improved
hierarchical arrangement entropy to identify varoius health
situations of gearboxes, and used the hierarchical aggregation
method to reduce noise fault features extracted from the
signal. Liu and Ge (2018) presented a weighted random
forest scheme based on hierarchical clustering selection for
fault classification in complex industrial processes. The
application of the hierarchical clustering method to offline
model selection in RF can reduce the complexity of online
fault classification.

In the fault diagnosis process of WT, the need to calculate the
proximity matrix in the hierarchical clustering algorithm, is time-
consuming, and unsuitable for use in the WT big data sets.
Hierarchical clustering method is appropriate for the
clustering of small data sets, and real-time issues should be
considered when dealing with the WT big data.

Gaussian Mixture Model
The Gaussian mixture model (GMM) (Reynolds, 2009) assumes
that all data points conform to the Gaussian distribution, and is
generated from a mixed finite number of probability models with
unknown parameters. GMM can be regarded as the process of
fitting a linear combination of multiple Gaussian distribution
functions to perform data distribution.

Heyns et al. (2012) proposed a Gaussian hybrid model to detect
WT gearbox failures and calculate the negative log-likelihood of the

FIGURE 9 | Hierarchical clustering method.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7510669

Tang et al. Review and Perspectives of ML for WT FD

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


gearbox bearing vibration signal segment, which represents the
healthy gearbox. This method is suitable for nonlinear and non-
stationary wind turbine gearbox vibration signals. Given the highly
complex and unstable operating conditions of WT, Dong et al.
(2013) proposed a multi-parameter WT health assessment
framework that considers dynamic operating conditions. After
the characteristic parameter selection and GMM based multi-
regime modeling, the operation status of WT can be evaluated,
which can effectively detect WT faults. In response to frequentWT
faults, Luis et al. (Avendaño-Valencia et al., 2017) proposed a fault
diagnosis method for WT based on a GMM random coefficient
model. The vibration response signals ofWT that change with time
under the environment and operating conditions are extracted and
the model coefficients are determined through the GMM random
coefficient framework. The method offering significant
performance improvements and most fault levels and types are
represented to be correctly diagnosed.

GMM is effective in handling the big volume of WT data
samples, but it has a large calculation amount and slow
convergence. Selecting the number of sub-models in advance
is difficult and is sensitive to abnormal points. When processing
small data set samples in WT, the result cannot meet the
requirements.

Semi-supervised Learning Methods for
Wind Turbine Fault Diagnosis
Semi-supervised learning (Chapelle et al., 2009; Zhou et al.,
2014) is a learning paradigm that detects some common
features of labeled data samples and unlabeled data samples
to help determine the model characteristics and to
disseminate labels from labeled data to unlabeled ones,
which is an ML method between supervised and
unsupervised learning. In selecting data sets, combining
unlabeled samples and labeled samples in the training
process can improve training accuracy. There are four
mainstream paradigms for semi-supervised learning (Zhu,
2005), are the semi-supervised SVM (S3VM), generative
model-based, disagreement-based, and graph-based
methods. Disagreement-based semi-supervised learning
(Blum and Mitchell, 1998) started with the work on co-
training (Zhou and Li, 2005) by Blum, which is less
affected by the non-convexity of the loss function and the
data size and is mainly used in the field of human-computer
interaction. The graph-based method (Camps-Valls et al.,
2007) was developed by the graph min-cut method (Blum
and Chawla, 2001) proposed by Blum, but it is rarely seen in
WT fault diagnosis. The method based on S3VM and
generative model is also applied in WT fault diagnosis.

S3VM
S3VM (Bennett and Demiriz, 1998) involves the development
of SVM in semi-supervised learning (Wang et al., 2017). The
major idea of S3VM is to mark unlabeled samples to maximize
the interval after the hyperplane is divided. The frequently
used S3VM is a transductive SVM (TSVM). The basic idea of
this method can be presented as five steps. The first step

involves training an SVM classifier with labeled samples. The
second step entails using SVM to predict the classification
results of unlabeled data. The third step aims to find the
opposite label in the predicted unlabeled data that may be
wrong for the labeled sample to swap the label, and use the
existing labeled sample and unlabeled sample to retrain SVM;
The fourth step involves repeating the second and third steps
until the best S3VM classifier is obtained. The fifth step entails
using use the S3VM classifier to label the unlabeled samples
and predict the classification results.

The S3VM methods are widely used in the field of WT fault
diagnosis. Liu C. et al. (2020) proposed a fault diagnosis method
for rolling bearing based on S3VM using only a few labeled
samples to build a model with good classification effect. In order
to reduce false alarm rates and improve the discriminative ability
of incipient fault features, Mao et al. (2020) proposed an online
method for early fault detection of bearings using a semi-
supervised architecture. A safe semi-supervised SVM (S4VM)
is introduced to identify the sequentially arrived data of the goal
bearing as anomalous or normals and fault states and a stacked
noise reduction automatic encoder is used to extract depth
features from the normal state data and fault state data of the
bearing. According to the S4VM generalization error upper
bound to adaptively identify the occurrence of an incipient
fault. Optimal margin distribution learning machine (ODM),
which is also classified based on split hyperplane, has also
appeared semi-supervised ODM(ssODM) in recent years, and
has been applied to wind turbine fault detection with good
performance (Zhang T. and Zhou Z.-H., 2018).

S3VM predicts the unlabeled samples, adds the prediction
results to the labeled data set and improves the fault diagnosis
rate. However, S3VM should determine a few known WT data
samples as a guide. Accordingly, we cannot ensure such WT data
samples with delicate information and it is uncertain to know
how many WT data samples are needed to achieve an effective
S3VM model.

Generative Models
The main idea of the semi-supervised generative model is that the
probability that unlabeled samples belong to each category as a set
of missing parameters. Thereafter, the expectation maximization
(EM) algorithm is used to perform maximum likelihood estimate
on the parameters of the generated model. Generative model
methods (Zhu, 2005; Kingma et al., 2014) includemixed Gaussian
distribution, mixture multinomial distribution, and hidden
Markov model.

Ge et al.(Xin et al., 2018) proposed a semi-automatic fault
detection method based on a probabilistic model in the form of a
hybrid Gaussian with good robustness. Wang et al. (Wang et al.,
2015) proposed a comprehensive method based on semi-
supervised learning, using a small amount of labeled data and
a large amount of unlabeled process data to construct a
neighborhood weighted graph. By solving the optimization
problem, the optimal regression function and the optimal
prediction label matrix of unlabeled data are acquired. This
method can obtain the promised results of fault detection and
fault diagnosis in the monitoring process. To achieve automatic
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detections, Omid et al. (Geramifard et al., 2013) introduced a
semi-parametric method based on the hidden Markov model for
fault detection and diagnosis of synchronous motors. After
training the hidden Markov model classifier (parameter stage),
which is based on each probabilistic (non-parametric stage)
hidden Markov model. Moreover, the probabilistic inference
are used to compute two matrices to solve the efficiency
problem in the fault classification process. Li X. et al. (2018)
presented a fault detection method on a multivariate Bayesian
control scheme and a hidden semi-Markov model to predict early
bearing failures of gearboxes. The method of using the
continuous-time hidden semi-Markov decision process to
characterize the failure process of the gearbox bearing system,
which can predict the early failure of the gearbox bearing and
detect the remaining useful life at each sampling epoch.

The semi-supervised generative model method has good
robustness, but the fault diagnosis model has low accuracy,
long model training time, and many iterations. These issues
must be considered in WT fault diagnosis.

CONCLUSION AND PERSPECTIVES

Given the rapid development of early wind power generation,
wind power equipment has entered a high failure period, and the
fault diagnosis methods of WT have high requirements for their
operation and maintenance stability. Accordingly, the
development fault prediction, fault diagnosis, fault detection,
and condition monitoring of WT have improved. Various
studies have proposed various methods and strategies for the
fault diagnosis and detection of various WT components (Faiz
and Moosavi, 2016). Following studies and research on the most
recent WT fault diagnosis methods, the current study gathers a
review of WT fault diagnosis methods and techniques based
onML. Given the many uncertainties in the WT operation, many
issues should continue to be considered in the ML-based fault
diagnosis of WT.

Improvement of ML algorithms effects. Many types of ML
algorithms have advantages and disadvantages, in which among
the research fields in the future include improving algorithm
performance, optimizing algorithm parameters, combining
algorithms, and studying new algorithms. Given that the
algorithm has advantages and disadvantages, the need to adopt
the advantages and bypass the disadvantages in the algorithm
have become urgent issues to be addressed. Moreover, a single
algorithm cannot detect all WT faults. Hence, the combined
algorithm will become a hot research topic in the future. The
advantages and disadvantages of existing algorithms indicated
that future research involves proposing and improving new
algorithms.

Comprehensive simulation of WT fault conditions. The wind
power generation system is a typical complex system, given
the uncertain severity and probability of faults. In the research
on the WT fault mechanism, only a single fault is modeled, and
the single component faults of WT are accompanied by multiple
faults, which causes serious damage to WT. All WT units are
interconnected and their variables are highly coupled. The

occurrence of a fault in a particular component affects all
remaining units. Therefore, additional compound fault models
should be established to conduct a comprehensive analysis of the
WT system.

Research on the feature selection method. WT have many
characteristic parameters because the operation state of WT is
time-varying Redundant and useless feature parameters will
inevitably exist in WT feature extraction. Given the need to
extract additional fault features, the research on optimized
feature extraction algorithms will become popular in the
future, thereby enabling us to better describe and detect the
status of WT.

Multi-parameter information fusion. A single sensor or piece
of single parameter information cannot acquire dedicated WT
operating status information, which entails difficulty in
accurately reflecting the fault or normal state of each WT
component. Therefore, a multi-parameter information fusion
method is adopted to obtain additional parameter information
from multiple sensors and improve the efficiency of fault
diagnosis.

Establishment of remote WT fault diagnosis system. The WT
fault diagnosis system should be able to predict fault and provide
the period plan maintenance to keep the WT minimum
downtime and maintain long-distance condition monitoring.
Long-term available historical data should be provided by the
WT fault diagnosis system to set the correct alarm for preventive
maintenance. In large wind farms, multiple wind power
generation systems must be installed for fault diagnosis and
early warning. The need to develop a low-cost and high-
efficient remote WT fault diagnosis system should also be
considered in the future.
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