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Battery management system (BMS) refers to a critical electronic control unit in the power
battery system of electric vehicles. It is capable of detecting and estimating battery status
online, especially estimating state of charge (SOC) and state of health (SOH) accurately.
Safe driving and battery life optimization are of high significance. As indicated from recent
literature reports, most relevant studies on battery health estimation are offline estimation,
and several problems emerged (e.g., long time-consuming, considerable calculation and
unable to estimate online). Given this, the present study proposes an online estimation
method of lithium-ion health based on particle swarm support vector machine algorithm.
By exploiting the data of National Aeronautics and Space Administration (NASA) battery
samples, this study explores the changing law of battery state of charge under different
battery health. In addition, particle swarm algorithm is adopted to optimize the kernel
function of the support vector machine for the joint estimation of battery SOC and SOH. As
indicated from the tests (e.g., Dynamic Stress Test), it exhibits good adaptability and
feasibility. This study also provides a certain reference for the application of BMS system in
electric vehicle battery online detection and state estimation.
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INTRODUCTION

Energy shortage and environmental pollution turn out to be global issues, and electric vehicles are
being increasingly used. Lithium-ion batteries, as the main power source of electric vehicles, impact
the safe operation of electric vehicles (Li et al., 2020). Battery SOC refers to a vital parameter to
measure the performance of lithium-ion batteries. SOH acts as an indicator to measure battery life.
Online estimation research of lithium-ion battery SOC and SOH is conducted, the real-time
parameters of battery working status are determined, and the energy efficiency of electric
vehicles is improved, which is critical to extend the cycle life of the battery.

The factors of battery SOH are more complicated. There are three common SOH prediction
methods, i.e., model building method Duan et al. (2020), Lai et al. (2020), Xiao et al. (2020),
Gholizadeh and Yazdizadeh (2019), Hu et al. (2020), experimental measurement method Tang et al.
(2018), Weng et al. (2016) and data-driven method (Khaleghi et al., 2019; Li et al., 2019; You et al.,
2016; Klass et al., 2014). The method of model establishment primarily exploits the corresponding
adaptive algorithm to continuously update the battery model parameters, as an attempt to adapt the
model to different working conditions. Wang et al. (2019) proposed the equivalent circuit model
(ECM) based on the Constant Voltage (CV) charging current curve to extract the corresponding
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feature quantity. To obtain the SOH of the battery, Yang et al.
(2018) proposed a Gaussian process regression model based on
the charging curve for the prediction of the SOH of the battery.
However, the mentioned algorithms are highly dependent of the
model. Whether the parameters can be updated in time
significantly impacts the SOH estimation results of the battery.
The experimental measurement methods primarily cover
electrochemical impedance spectroscopy (EIS), capacity
increment analysis, etc. Eddahech et al. (2012) proposed a
method of SOH estimation based on capacity incremental
analysis (ICA). By extracting the corresponding peak points,
the method of Gaussian regression is adopted to build the
SOH model of the battery, whereas the defect is that there are
fewer peak points. Besides, a complete charging process should be
achieved. With the rise of big data platforms, data-driven
methods under machine learning methods have aroused
widespread attention from scholars. Data-driven methods are
not required to understand the internal structure and working
principles of the battery, and rely solely on the extraction of the
corresponding aging characteristics of the battery that are
inputted into the corresponding SOH estimator to obtain the
health of the battery. As reported by existing studies, the common
battery aging characteristics largely include capacity, internal
resistance Ji et al. (2020), Chen et al. (2018), Hung et al.
(2014), battery cycle times Wognsen et al. (2015), and the use
of stacking pressure Cannarella and Arnold (2014), SEI
impedance Zhang and Wang (2009), etc. Meng et al. (2018)
developed a new method for accurately estimating battery SOH
using support vector machine (SVM) technology, which selects
the sharp point of the voltage response curve to be the
characteristic quantity of battery SOH. The sum slope can be
well exploited in practical tests, whereas this method should select
the appropriate estimated characteristic quantity in advance.
Different battery models are adversely affected by different
choices of characteristic quantity, so it is more estimated to be
complex. Second, as the battery continues to age, the capacity of
the battery gradually decays, which to a certain extent impacts the
estimation of the SOC and SOH of the battery. SOC and SOH
cannot be estimated separately, and a certain potential coupling
relationship is identified between the two. The SOC parameter of
the battery should be employed as a vital input parameter to
conduct the accurate research on battery SOH estimation.

Over the past period, scholars adopted the current SOH of the
battery as a constant when studying battery SOC estimation,
i.e., using SOH to estimate SOC backward to increase the
accuracy of SOC estimation (Talha et al., 2019; Bonfitto, 2020;
Gismero et al., 2020). In contrast, some scholars first obtained
SOC Estimate the results, and subsequent used the SOC as a
constant to estimate the SOH. Since the variation of battery health
status is a slow process, how to reasonably develop the
relationship between SOC and SOH has become the focus of
attention of scholars over the past few years. Huang et al. (2017)
proposed a method to establish a fitting relationship between
battery SOH and battery SOC by analyzing battery cycle life test
data. Accordingly, the battery SOH can be measured without
complicated model update algorithms. However, the relevant
correction coefficient of the algorithm is determined by the

current batch of batteries. Different batches of batteries
require different correction coefficients. Thus, the algorithm
has certain limitations. Hu et al. (2020) proposed an estimation
framework based on multiple time scales to estimate the SOH of
the battery. The SOH of the battery is estimated based on the
calculation relationship between the battery SOH and SOC,
whereas the algorithm should establish a corresponding
equivalent circuit model. It is more dependent of model
parameters. Lee et al. (2020) developed a method to estimate
SOH based on the charging time that is capable of reaching CV
after charging. This method, however, requires a complete
battery charging. It is difficult to achieve complete charging
in actual operation, so the application of this method has certain
limitations. Therefore, the current problems are summarized as
follows: the establishment of the fitting relationship between
SOC and SOH has the difficulty in obtaining the corresponding
correction coefficient; the SOH estimation model established by
the equivalent circuit model is subject to high model parameter
dependence; the method of using the state of charge data for
SOH estimation cannot realize SOH online estimation. The
above-mentioned problems have certain restrictive conditions,
which limit the adaptability of the corresponding algorithm.
From this perspective, an algorithm with less restrictive
conditions and a wider application range should still be
found to realize SOC to estimate SOH.

To address the mentioned problems, the present study
proposes a method of online estimation of SOC-SOH based
on PSO-SVM. By analyzing the public battery health status
provided by NASA, a certain connection is identified between
the health status of the battery and the state of charge of the
battery. To be specific, as the battery continues to age, the slope of
the battery SOC and time tends to increase, and the slope of the
battery’s discharge voltage and time tends to be larger. For this
reason, this study takes the battery’s SOC change rate and
discharge voltage change rate as the characteristic quantities of
SOH, and optimizes the support vector machine by using the
particle swarm algorithm to effectively estimate the battery health
status. Lastly, through algorithm verification, which demonstrates

FIGURE 1 | Support vector machine model for battery SOC/SOH
estimation.
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that the algorithm exhibits good adaptability and feasibility and
can be applied in actual production and life.

METHODS

Support Vector Machine Principle
Support vector machines are based on statistical theory and used
to solve classification and regression problems. Compared with
traditional regression methods, support vector machines are
more suitable for solving small-sample, nonlinear, and high-
dimensional pattern recognition problems. Both the SOC and
SOH of the battery have a certain degree of non-linearity. This
paper mainly uses the support vector machine of the RBF kernel
function to estimate the SOC and SOH of the battery. The SVM
model structure for such an estimation is shown in Figure 1.

For solving nonlinear problems, the data in low-dimensional
space is mapped to high-dimensional space, so as to realize the
transformation of nonlinear problems into linear problems. For
lithium-ion batteries, the input can be voltage, current,
temperature, etc., and the output quantity is SOC/SOH. The
corresponding fitting relationship is shown in Eq. (1)

f (x) � w · ϕ(xi) + b (1)

The goal of SVM is to find the best coefficients of w and b in
the following constrained conditions. After introducing slack
variables, a series of derivations, the standard form of SVM
can be obtained, as shown in Eq. 2, and the constraints are
shown in Eq. 3.

st.min{1
2
‖w‖2 + C∑n

i�1(ξi + ξpi )} (2)

Restrictions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w · ϕ(xi) + b − yi ≤ ε + ξ i
yi − w · ϕ(xi) − b≤ ε + ξpi
ξ i ≥ 0
ξpi ≥ 0
i � 1, 2, ....n

(3)

By introducing the Lagrangian operator to simplify the
difficulty of solving the problem, Eq. 4 can be obtained:

f (x) � ∑n

i�1(api − ai)K(xi, x) + b (4)

Since the radial basis kernel function has the advantages of
simple processing, good analysis, good radial symmetry, and good
smoothness, the radial basis function K(xi, x) shown in Eq. 5 is
selected.

K(xi, xj) � exp(−����xi − xj
����2

2δ2
) (5)

Among them, in Eq. 5 δ is the parameter of the kernel
function, xi − xj represents the input variable of the radial
basis kernel function.

SVM relies heavily on the parameters c and δ. Specifically, c is
a penalty parameter. The smaller γ, the larger fitting error, and the

stronger generalization ability; the larger γ, the smaller fitting
error, and the weaker generalization ability. Moreover, δ is the
kernel width. The larger δ, the more support vectors; the smaller
δ, the fewer support vectors. Overtraining is likely to occur and
local optimization problems will occur. Therefore, the reasonable
selection of these two parameters can improve SVM accuracy. As
a simple and easy optimization algorithm, particle swarm
optimization (PSO) has attracted the attention of scholars.

PSO optimization algorithm principle
The PSO algorithm is also called the bird swarm foraging
algorithm. It starts from a random solution and finds the
optimal solution through iteration. The algorithm is easy to
implement, fast in convergence, and has few parameter
settings. It is an efficient search algorithm. Assuming that
there is only one piece of food in the search food area, all the
birds do not know where the food is. The closer the bird is to the
food, the higher the fitness value. Searching the area around the
bird closest to the food is the best way to find food. Therefore, it is
a simple and effective method to achieve the fastest search
through group collaboration.

FIGURE 2 | Particle swarm optimization algorithm.
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The PSO algorithm compares the optimal solution of each
optimization problem to a bird searching for food, which is called
a “particle.” Each particle updates itself through two extreme
values. One is the optimal solution found by the particle itself,
called the Individual extremum pbest ; the other is the optimal
solution currently found by the entire group, called the Global
extremum gbest . In addition, each particle also has a velocity,
which determines the “flying” direction and distance of the
respective particle. The particle can remember its position or
the position of its companion. By continuously following the best
one (with the largest fitness value), it quickly finds the optimal
solution. The flow chart of the particle swarm algorithm is shown
in Figure 2.

Suppose that in a D-dimensional target search space, N
particles form a group. Then the position of the particle is Eq.
6, the speed is Eq. 7, the currently searched optimal position is
Eq. 8, and the optimal position searched by the entire group is
Eq. 9

Xi � (xi1, xi2, ...xiD), 1≤ i≤N (6)

Vi � (vi1, vi2, ...viD), 1≤ i≤N (7)

pbest � (pi1, pi2, ..., piD), 1≤ i≤N (8)

gbest � (pg1, pg2, ..., pgD), 1≤ i≤N (9)

Particles mainly update their own speed and position through
two optimal extreme values, and the update expression is shown
in Eqs. 10, 11

Particle velocity update expression:

vk+1iD � vkiD + c1r1(pkiD − xkiD) + c2r2(pkgD − xkiD) (10)

Particle position update expression:

xk+1iD � xkiD + vk+1iD (11)

Where c1, c2 are learning factor, r1, r2 are random numbers
between 0 and 1. formula(10) consists of three parts: 1) the
inertia part, which reflects the movement habits of particles; 2)
the cognitive part, which shows that the particles have memory,
and 3) the social part, which shows that the particles have
coordination. Therefore, we can combine the particle swarm
algorithm with the support vector machine algorithm to
improve the regression prediction accuracy of the support
vector machine.

Principle of PSO-SVM
Particle swarm optimization is used to optimize the penalty
parameter c and kernel parameter δin the support vector
machine. Due to the different dimensions of the battery input
voltage, current, and temperature, it is necessary to normalize the
input data to eliminate the influence of dimensions on prediction
results. For SVM, grid search is used to search for the penalty
parameter c and the kernel parameter δ, which undoubtedly
increases the amount of calculation. On the contrary, when PSO
is used for optimization, it greatly improves the prediction speed
and accuracy of SVM. Therefore, this paper uses the PSO
algorithm to optimize the results when SVM is adopted to

predict the SOC and SOH of the lithium-ion battery online.
The calculation steps are as follows:

Step 1: Data normalization processing
Step 2: Initialize the particle swarm, set the swarm size, particle
position and velocity
Step 3: Train support vector machine model and use the MSE
mean squared error function as the fitness function to calculate
the fitness value of the particles
Step 4: Get the individual optimal value of the particle and
Obtain the global optimal value of the group.
Step 5: Update particle speed and particle position
Step 6: Determine whether the end condition is met, and if so,
output the corresponding result.

The Advantage of PSO-SVM
The SVM uses the grid search method to find the best penalty
parameters and kernel parameters. The grid search sets the
possible solutions in advance before the optimization. After
the optimization starts, it is calculated in turn similar to the
grid. The corresponding values are calculated and compared
continuously to obtain the optimal solution. SVM under
particle swarm optimization uses a random search method to
find the best penalty parameters and kernel parameters. It
initializes the population randomly and iterates continuously
to find the optimal solution. Although the grid search can find
the current global optimal solution in the sense of cross-
validation, when the search range is expanded, the search time
will be very long. In contrast, the PSO algorithm doesn’t need to
traverse the all points in the grid but can quickly find the global
optimal solution through regular iteration. Therefore, the PSO
algorithm is used to optimize the support vector machine. The
algorithm can converge to the global optimal solution with a
greater probability. Compared with the traditional grid search
method, the algorithm has a higher calculation speed and better
global search ability.

FIGURE 3 | Experimental platform.
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EXPERIMENTAL DATA ACQUISITION

This paper mainly uses two types of batteries to carry out the
corresponding research. The positive electrode material of one
battery is LiFeO4, and that of the other battery is
LiNi0.8Co0.15Al0.05O2. The data set of the former was
obtained in the laboratory and named battery #1. The
experimental platform is shown in Figure 3. The latter data
set is a public battery data set provided by the Center for
Excellence in Diagnostics of NASA Ames Research Center in
Washington, DC, United States. The batteries numbered B0005,
B0018, and B0007 are used for research and named battery #2,
battery #3, and battery #4, respectively. The working conditions
of the two batteries are different. The former is used for DST,
while the latter is used for charging, discharging, and the
measurement of the internal resistance. Table 1 shows the
relevant information about these batteries. This paper mainly
studies their discharge status. The usage of the two battery types
is described as follows: battery #1 is only used to verify the
adaptability and feasibility of the PSO-SVM algorithm in
estimating battery SOC; batteries #2, #3 and #4 are mainly to
verify the adaptability and feasibility of the PSO-SVM algorithm
in estimating battery SOH.

MODEL BUILDING

Parameter Settings
The PSO-SVM-based online estimation method of lithium-ion
battery health status proposed in this paper. The parameters of
the method are set as follows: the particle swarm size is set to
20, the learning factorc1is set to 1.5, the learning factorc2is set
to 1.7, and the value of the penalty parametercis set to (1,1000),
the value range of the kernel parameters δ is set to (0.1,1000),
the inertia weight w is set to 0.9, the cross-validation fold
number is 5, and the maximum number of iterations allowed
is 200.

SOH Prediction Framework
The SOH of the battery reflects the reliability of the current
battery. Accurately predicting the battery SOH can enable the
battery management system to well manage each battery cell in
the battery pack, replace seriously aging batteries in time, and
ensure the safe operation of electric vehicles. There are many
ways to define battery SOH. The most common one is capacity as
a characteristic quantity. The following expression is the
definition of battery SOH, and Eq. 12 is the definition of
capacity characteristic quantity.

SOH � Qmax

Qrated
× 100% (12)

Where Qmax is the current maximum usable capacity of the
battery, Qrated is the rated battery capacity.

The SOH of the battery is estimated to be a complicated and
slow process. Battery SOC reflects the discharge of the battery,
and it is closely related to battery SOH. SVM estimates the SOC
and SOH of the battery mainly through nonlinear mapping, as
shown in Figure 1. The input can be the voltage, current, and
temperature of the battery, and the output is the SOC or SOH.
The specific implementation process of PSO to optimize SVM is
as follows. First, the collected data such as voltage, current, and
temperature are normalized to eliminate the problems caused by
dimensions. Second, the particle swarm algorithm is initialized
according to Parameter settings by setting various parameters of
the particle swarm. After the parameter setting is completed, the
normalized data is input into the SVM estimator. Then, the mean
square error (MSE) is used as the fitness function value to
calculate the individual extreme value and the group extreme
value, and continuously update the velocity and position of
particles. When the maximum number of iteration is reached
or the error meets the needs, the algorithm ends. If the output
requirements are not met, it is necessary to recalculate and repeat
the above steps until the requirements are met. The optimal
penalty parameters and kernel parameters are output. The PSO-
SVM algorithm’s flow chart is shown in the light blue area in
Figure 4. Therefore, after the estimation of battery SOC, it is
saved in the memory. Then, historical voltage, current,
temperature, SOC and other data are collected through the
BMS system, and saved in the memory. Thus, in the normal
use of the electric vehicle, a training model is built online and the
collected online data is input into this model to realize the online
prediction of battery SOH. The block diagram regarding the
online prediction of battery SOH is shown in Figure 4.

SOH Feature Extraction
The estimation accuracy of the data-driven model mainly
depends on two aspects: 1) whether the training data covers
all battery environments, and 2) whether the type of training data
has a greater correlation with the accuracy of the SOC. Therefore,
the extraction of reasonable SOH feature quantities can improve
the accuracy of data-driven prediction of SOH.

As we all know, the parameters of the battery will change with
the increasing number of cycles. Figure 5 is the discharge voltage
curve of battery #2. With the increase of cycle numbers, the
derivative of the battery voltage with respect to time becomes
larger. It can be found from the figure that the slope of the

TABLE 1 | Experimental conditions of batteries #2 and #3.

Battery number Charge cutoff
Voltage(V)

Discharge cutoff
Voltage (V)

Charging current
(A)

Discharge Current
(A)

Rated capacity
(Ah)

#2 4.2 2.7 1.5 2 2
#3 4.2 2.5 1.5 2 2
#4 4.2 2.2 1.5 2 2
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battery’s discharge voltage curve gradually changes from flat to
steep, indicating that this voltage can be used as one of the
characteristic quantities to measure battery aging.

Figure 6 is the discharge current diagram of battery #2, which
shows that the battery is discharged at a constant current of 1C.
Moreover, as the degree of battery aging increases, the discharge
time of the battery decreases. The battery is discharged for the
first time, as shown by the red line, for about 3,400 s; in the 84th
discharge, it takes about 2,800 s; in the 168th discharge, it takes
about 2,400 s. It can be seen that as the battery ages, the battery

discharging time will gradually decrease, that is, the discharge
time of the battery can be regarded as an important characteristic
quantity to measure battery aging.

Figure 7 is the discharge temperature diagram of battery #2. It
can be seen from Figure 7 that as the number of cycles increases,
the temperature of the battery gradually increases, indicating that
the internal impedance of the battery is gradually increasing.
Therefore, it can also be used as a battery characteristic. The
quantity of aging is limited by the fact that it is not convenient to
measure the internal resistance of the battery under the actual

FIGURE 4 | Battery SOH online prediction process based on PSO-SVM.

FIGURE 5 | The discharge voltage curve of battery #2. FIGURE 6 | Discharge current diagram of battery #2.
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working conditions of the battery. Therefore, we can judge the
aging degree of the battery by analysing the internal temperature
of the battery.

Figure 8 shows the relationship between SOH-SOC-U of
battery #2. The Z-axis represents the health of the battery, the
X-axis represents the battery’s discharge voltage, and the Y-axis
represents battery SOC. It can be found from Figure 8 that as the
battery ages, the decay rate of battery SOC increases from 1 to 0.
Figure 9 is a graph of the relationship between battery #2’s SOC
and time, which can clearly show the relationship between battery
SOC and battery health. The SOC of the battery can also be
regarded as an important characteristic quantity to measure
battery aging.

It can be seen from the above findings that the characteristic
quantities of battery aging can be the discharge voltage, SOC, and
discharge time of the battery. Therefore, the health of the battery
can be determined by the analysis of these three quantities.

However, due to the large amount of battery SOC data,
directly inputting the battery SOC, discharge voltage, and
discharge time into the SOH estimator tends to increase
calculation complexity. Therefore, this paper does not directly
add SOC to the SOH estimator, but adopts the method of
indirectly adding SOC to estimate the health of the battery.
This algorithm can effectively reduce training data, speed up
calculations, and improve prediction efficiency. The relationship
between battery SOC, voltage, and discharge time is shown in
Figure 10. The SOC value presented by the Z-axis corresponds to
a two-dimensional coordinate (Time, U), and the same SOC
value corresponds to a two-dimensional coordinate (Time, U).
The value is also different. With this feature, battery SOH can be
predicted by the support vector machine based on the particle
swarm algorithm, and the prediction expression is in Eq. 13.

SOH � f (Tsoc�100%,Usoc�100%,Tsoc�current%,Ucurrent�100%) (13)

FIGURE 7 | Discharge temperature diagram of battery #2.

FIGURE 8 | SOH-SOC-U relationship diagram of battery #2.

FIGURE 9 | SOC-Time relationship diagram of battery #2.

FIGURE 10 | SOC-U-Time relationship diagram of battery #2.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6932497

Li et al. State Estimation of Lithium-Ion Battery

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


SOC-SOH ONLINE JOINT ESTIMATION

SOC Prediction
Online Estimation of Li-Ion Battery SOC
The first two discharge data of battery #2 are used for SOC
prediction. The first discharge data is used for training and the
second discharge data is used for testing. The prediction effect is
shown in Figure 11. The mean relative error of SOC of battery #2
is shown in Figure 12. From Figure 12, it can be found that the

accuracy of the PSO-SVM algorithm is higher than that of the
SVM algorithm, and the PSO-SVM algorithm is more stable.

Here, three criteria, including the mean relative error (MRE),
the mean absolute error (MAE) and the mean squared error
(MSE) are introduced to evaluate the prediction performance as
shown in Table 2.

MRE(%) � 1
N
∑N

i�1

∣∣∣∣∣∣∣∣yi′ − yi
yi

∣∣∣∣∣∣∣∣ × 100% (14)

MAE � 1
N
∑N

i�1
∣∣∣∣yi′ − yi

∣∣∣∣ (15)

MSE � 1
N
∑N

i�1(yi′ − yi)2 (16)

As shown in Table 2, It can be evidently discovered that the
PSO-SVM method obtain much better prediction performance
than the SVM method. For example, the prediction MRE (%) on

FIGURE 11 | SOC prediction of battery #2.

FIGURE 12 | The mean relative error of SOC of battery #2.

TABLE 2 | Comparison of two method for battery #2.

Method MRE (%) MAE MSE

SVM 6.6742 1.6243 2.814
PSO-SVM 2.5543 0.4973 0.3506

FIGURE 13 | Voltage under DST operating conditions.

FIGURE 14 | Current under DST conditions.
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battery #2 based on the SVM was 6.6742, while the prediction
MRE based on the PSO-SVM was only 2.5543. This means that
the prediction precision with the PSO-SVM improved greatly
compared to the SVM.

DST Working Condition Verification
The DST working condition is used to verify the accuracy of
the algorithm. The voltage and current under DST working
conditions are shown in Figures 13, 14. The DST working
condition is a dynamic stress test working condition, which
can well reflect the current and voltage changes of the electric
vehicle in the actual operating state, and help with judging
whether the estimation method can be applied in practice.

The DST working condition verification is shown in
Figure 15, and the mean relative error of SOC operating
conditions under DST operating conditions is shown in
Figure 16. The SOC estimation error under DST
conditions is shown in Table 3.

It can be seen from Figure 16 that the SOC estimated by the
PSO-SVM algorithm is more accurate and the overall estimation
stability is better without large local errors compared to the SVM
algorithm. This indicates that the estimation method can be
applied to the actual estimation. The SOC estimation error is
shown in Table 3.

SOH Prediction
Analysis of Prediction Performance
Battery #2 is used as training data to predict the SOC of battery
#3. Figure 17 shows the SOH diagrams of batteries #2 and #3. It
can be seen from Figure 17 that the overall downward trends of
batteries #2 and #3 are the same, and the aging speed of battery #3
is higher than that of battery #2. When the capacity drops to 70%
of the rated capacity, the battery is regarded as a failure. (Qin
et al., 2015).

Battery SOC is estimated in turn and substituted into the
established SOC-SOH joint estimation model. Nine SOC interval
segments are selected to reflect the estimation effect of the model.
The SOH estimation effect is shown in Figure 18. From the
figure, it can be found that the PSO-SVM algorithm has a more
stable overall estimation effect than the SVM algorithm. The root
mean square error (RMSE) is employed to evaluate the model’s
performance as shown in Figure 19.

FIGURE 15 | DST working condition verification.

FIGURE 16 | The MRE of SOC estimation under DST operating
conditions.

TABLE 3 | Comparison of two method for battery #1.

Method MRE (%) MAE MSE

SVM 5.7249 1.6075 10.0314
PSO-SVM 2.9963 0.7556 0.9059

FIGURE 17 | Battery SOH diagram.
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SOH estimation error is shown in Figure 19. The following
conclusions can be obtained:

1) The overall error of SVM is twice that of PSO-SVM. The
RMSE of SVM does not exceed 4.5% and the RMSE of PSO-
SVM does not exceed 2%, which meets the requirements for
the prediction accuracy of battery SOH.

2) With the increase of ΔSOC, the estimation error of SOH
shows an overall downward trend; but in the interval of SOC
(100–70%)-SOC (100–30%), the estimation error of SOH
rebounds instead. This is because of the flat discharge
interval, the dense SOH curve, and the slightly worse
algorithm discrimination than that of the two sides. Thus,

the error in this interval is slightly higher than that of the
two ends.

Adaptability Analysis
Considering the background of estimating battery SOH in the
practical application of electric vehicles, we need to further verify
the adaptability of this method. Based on the above analysis, the
applicability of the proposed SOH estimation method in electric
vehicle batteries is further analysed. Battery #2 is still used as training
data and battery #4 is tested. The error result is shown in Figure 20.

It can be found from Figure 20 that the predicted results
conform to the corresponding conclusions in Analysis of
prediction performance. The method proposed in this paper is
also applicable to battery #4, which has better estimation
accuracy. The results show that the method proposed in this
paper has certain adaptability.

FIGURE 18 | Estimation of SOH in different states of charge (A) SOC change (100–10%),(B) SOC change (100–20%), (C) SOC change (100–30%), (D) SOC
change (100–40%), (E) SOC change (100–50%), (F) SOC change (100–60%), (G) SOC change (100–70%), (H) SOC change (100–80%), (I) SOC change (100–90%).
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Comparison With Other Models
Using battery #2 as the training data set, we test batteries #3 and #4
respectively. Comparing the algorithms proposed in the literature
Khumprom and Yodo (2019), Table 4 shows the SOH prediction
errors of PSO-SVM and five known published methods.

As shown inTable 4, the RMSE based on the PSO-SVMmodel
was the smallest compared to the other four models, by

comparison, it can be concluded that the PSO-SVM could
effectively improve the prediction performance of battery SOH.

CONCLUSION

To solve the problems of battery SOC and SOH estimation (e.g.,
long time-consuming, considerable calculation, and unable to
estimate online), the present study proposes a method of SOC-
SOH joint estimation based on PSO-SVM, and implements the
online detection and estimation for the battery management
system.

First, the data of NASA battery samples are introduced to
complete the modeling of the battery SOC estimation model,
and the accuracy and stability of the SOC model are verified
by using DST conditions, and the estimation error does not
exceed 3%. Second, the SOC estimation complies with this
model. The algorithm further explores the battery SOH
estimation. The study suggests that with the increase of
battery aging, the battery SOC decline rate and the voltage
decline rate will increase under the identical working
conditions. Therefore, to find the coupling relationship
between the two, this study proposes the optimized PSO-
SVM algorithm to realize the joint estimation of battery SOC/
SOH. Lastly, the effectiveness and adaptability of the
algorithm are verified and analyzed, and the errors of the
algorithm proposed in this paper are compared with other
algorithms. As revealed from the result, the error of the SOH
estimation result is not more than 2.5%.

Finally, the advantages of the method proposed in this paper
are summarized as follows:

1) The method has fewer restrictions and does not need to obtain
the fitting coefficients of the corresponding SOC-SOH
function relationship, nor to identify the corresponding
equivalent circuit model parameters, etc., thus improving
the applicability of the algorithm.

2) This method can realize the online estimation of battery
health. Most traditional estimation methods can only
realize offline estimation. Also, this method can closely link
the battery’s SOC and SOH. When estimating the battery’s
health status, it fully considers the SOC information to further
improve the effectiveness of estimation.

3) Compared with the traditional support vector machine
algorithm, this method can converge to the global
optimal solution with a greater probability, and has a
higher calculation speed and better global search
capability.

4) This method can overcome the “curse of dimensionality”
problem. By introducing k-fold cross-validation, it prevents
the over-fitting problem and further improves the
generalization ability of the model.

It is noteworthy that for the consistency differences between
the battery cells in the electric vehicle battery system, the
applicability of the algorithm in different battery cells and
other issues should be studied in depth.

FIGURE 19 | RMSE of battery #3.

FIGURE 20 | RMSE of battery#4.

TABLE 4 | Comparison of different SOH prediction models.

RMSE k-NN LR SVM ANN DNN PSO-SVM

5.598 4.558 4.1831 4.611 3.427 2.452

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 69324911

Li et al. State Estimation of Lithium-Ion Battery

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
prognostic-data-repository/.

AUTHOR CONTRIBUTIONS

Writing-original draft preparation, WL; writing-review and
editing, RL and WL; funding acquisition, RL; project
administration, RL; investigation, HZ and WT; formal

analysis, YZ All authors have read and agreed to the published
version of the manuscript.

FUNDING

This research was funded by the National Key Research
Program of China, Grant number 2016YFC0300104, the
Advanced Research Project of Equipment of China under
Grant 41421040301, and the Elite Project of Harbin
University of Science and Technology under Grant
LGYC2018JC026.

REFERENCES

Bonfitto, A. (2020). A Method for the Combined Estimation of Battery State of
Charge and State of Health Based on Artificial Neural Networks. Energies 13
(10), 2548. doi:10.3390/en13102548

Cannarella, J., and Arnold, C. B. (2014). State of Health and Charge Measurements
in Lithium-Ion Batteries Using Mechanical Stress. J. Power Sourc. 269, 7–14.
doi:10.1016/j.jpowsour.2014.07.003

Chen, L., Lü, Z., Lin, W., Li, J., and Pan, H. (2018). A New State-Of-Health
Estimation Method for Lithium-Ion Batteries through the
Intrinsic Relationship between Ohmic Internal Resistance and
Capacity. Measurement 116, 586–595. doi:10.1016/
j.measurement.2017.11.016

Duan, W., Song, C., Chen, Y., Xiao, F., Peng, S., Shao, Y., et al. (2020). Online
Parameter Identification and State of Charge Estimation of Battery Based on
Multitimescale Adaptive Double Kalman Filter Algorithm. Math. Probl. Eng.
2020, 1–20. doi:10.1155/2020/9502605

Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., and Vinassa, J.-M.
(2012). Behavior and State-Of-Health Monitoring of Li-Ion Batteries
Using Impedance Spectroscopy and Recurrent Neural Networks. Int.
J. Electr. Power Energ. Syst. 42 (1), 487–494. doi:10.1016/
j.ijepes.2012.04.050

Gholizadeh, M., and Yazdizadeh, A. (2020). Systematic Mixed Adaptive
Observer and EKF Approach to Estimate SOC and SOH of Lithium-Ion
Battery. Iet Electr. Syst. Transportation 10 (2), 135–143. doi:10.1049/iet-
est.2019.0033

Gismero, A., Schaltz, E., and Stroe, D.-I. (2020). Recursive State of Charge and State
of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb
Counting and Open Circuit Voltage. Energies 13 (7), 1811. doi:10.3390/
en13071811

Hu, X., Jiang, H., Feng, F., and Liu, B. (2020). An Enhanced Multi-
State Estimation Hierarchy for Advanced Lithium-Ion Battery
Management. Appl. Energ. 257, 114019. doi:10.1016/
j.apenergy.2019.114019

Huang, S.-C., Tseng, K.-H., Liang, J.-W., Chang, C.-L., and Pecht, M. (2017). An
Online SOC and SOH Estimation Model for Lithium-Ion Batteries. Energies 10
(4), 512. doi:10.3390/en10040512

Hung, M.-H., Lin, C.-H., Lee, L.-C., and Wang, C.-M. (2014). State-of-charge and
State-Of-Health Estimation for Lithium-Ion Batteries Based on Dynamic
Impedance Technique. J. Power Sourc. 268, 861–873. doi:10.1016/
j.jpowsour.2014.06.083

Ji, H., Zhang, W., Pan, X. H., Hua, M., Chung, Y. H., Shu, C. M., et al. (2020). State
of Health Prediction Model Based on Internal Resistance. Int. J. Energ. Res 44
(8), 6502–6510. doi:10.1002/er.5383

Khaleghi, S., Firouz, Y., VanMierlo, J., and Van den Bossche, P. (2019). Developing
a Real-Time Data-Driven Battery Health Diagnosis Method, Using Time and
Frequency Domain Condition Indicators. Appl. Energ. 255, 113813.
doi:10.1016/j.apenergy.2019.113813

Khumprom, P., and Yodo, N. (2019). A Data-Driven Predictive Prognostic Model
for Lithium-Ion Batteries Based on a Deep Learning Algorithm. Energies 12 (4),
660. doi:10.3390/en12040660

Klass, V., Behm,M., and Lindbergh, G. (2014). A Support VectorMachine-Based State-
Of-Health Estimation Method for Lithium-Ion Batteries under Electric Vehicle
Operation. J. Power Sourc. 270, 262–272. doi:10.1016/j.jpowsour.2014.07.116

Lai, X., Wang, S., Ma, S., Xie, J., and Zheng, Y. (2020). Parameter Sensitivity
Analysis and Simplification of Equivalent Circuit Model for the State of Charge
of Lithium-Ion Batteries. Electrochimica Acta 330, 135239. doi:10.1016/
j.electacta.2019.135239

Lee, J., Kim, J.-M., Ryu, K., and Won, C.-Y. (2020). An Energy Storage System’s
Operational Management and Control Method Considering a Battery System.
Electronics 9 (2), 356. doi:10.3390/electronics9020356

Li, R., Xu, S., Li, S., Zhou, Y., Zhou, K., Liu, X., et al. (2020). State of Charge
Prediction Algorithm of Lithium-Ion Battery Based on Pso-Svr Cross
Validation. Ieee Access 8, 10234–10242. doi:10.1109/ACCESS.2020.2964852

Li, Y., Liu, K., Foley, A. M., Zülke, A., Berecibar, M., Nanini-Maury, E., et al. (2019).
Data-driven Health Estimation and Lifetime Prediction of Lithium-Ion
Batteries: A Review. Renew. Sustain. Energ. Rev. 113, 109254. doi:10.1016/
j.rser.2019.109254

Meng, J., Cai, L., Luo, G., Stroe, D.-I., and Teodorescu, R. (2018). Lithium-ion
Battery State of Health Estimation with Short-Term Current Pulse Test and
Support Vector Machine. Microelectronics Reliability 88-90, 1216–1220.
doi:10.1016/j.microrel.2018.07.025

Qin, T., Zeng, S., and Guo, J. (2015). Robust Prognostics for State of Health
Estimation of Lithium-Ion Batteries Based on an Improved PSO-SVR Model.
Microelectronics Reliability 55 (9-10), 1280–1284. doi:10.1016/
j.microrel.2015.06.133

Talha, M., Asghar, F., and Kim, S. H. (2019). A Neural Network-Based
Robust Online SOC and SOH Estimation for Sealed Lead-Acid Batteries
in Renewable Systems. Arab J. Sci. Eng. 44 (3), 1869–1881. doi:10.1007/
s13369-018-3200-8

Tang, X., Zou, C., Yao, K., Chen, G., Liu, B., He, Z., et al. (2018). A Fast Estimation
Algorithm for Lithium-Ion Battery State of Health. J. Power Sourc. 396,
453–458. doi:10.1016/j.jpowsour.2018.06.036

Wang, Z., Zeng, S., Guo, J., and Qin, T. (2019). State of Health Estimation of
Lithium-Ion Batteries Based on the Constant Voltage Charging Curve. Energy
167, 661–669. doi:10.1016/j.energy.2018.11.008

Weng,C., Feng, X., Sun, J., andPeng,H. (2016). State-of-healthMonitoring of Lithium-Ion
BatteryModules and Packs via Incremental Capacity Peak Tracking.Appl. Energ. 180,
360–368. doi:10.1016/j.apenergy.2016.07.126

Wognsen, E. R., Haverkort, B. R., Jongerden, M., Hansen, R. R., and Larsen, K. G.
(2015). A Score Function for Optimizing the Cycle-Life of Battery-Powered
Embedded SystemsA Sco-Re Function for Optimizing the Cycle-Life of Battery-
Powered Embedded Systems. International Conference on Formal Modeling
and Analysis of Timed Systems, September 2–4, 2015. Cham: Springer,
305–320. doi:10.1007/978-3-319-22975-1_20

Xiao, D., Fang, G., Liu, S., Yuan, S., Ahmed, R., Habibi, S., et al. (2020). Reduced-
Coupling Coestimation of SOC and SOH for Lithium-Ion Batteries Based on
Convex Optimization. IEEE Trans. Power Electron. 35 (11), 12332–12346.
doi:10.1109/TPEL.2020.2984248

Yang, D., Zhang, X., Pan, R., Wang, Y., and Chen, Z. (2018). A Novel Gaussian
Process Regression Model for State-Of-Health Estimation of Lithium-Ion
Battery Using Charging Curve. J. Power Sourc. 384, 387–395. doi:10.1016/
j.jpowsour.2018.03.015

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 69324912

Li et al. State Estimation of Lithium-Ion Battery

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://doi.org/10.3390/en13102548
https://doi.org/10.1016/j.jpowsour.2014.07.003
https://doi.org/10.1016/j.measurement.2017.11.016
https://doi.org/10.1016/j.measurement.2017.11.016
https://doi.org/10.1155/2020/9502605
https://doi.org/10.1016/j.ijepes.2012.04.050
https://doi.org/10.1016/j.ijepes.2012.04.050
https://doi.org/10.1049/iet-est.2019.0033
https://doi.org/10.1049/iet-est.2019.0033
https://doi.org/10.3390/en13071811
https://doi.org/10.3390/en13071811
https://doi.org/10.1016/j.apenergy.2019.114019
https://doi.org/10.1016/j.apenergy.2019.114019
https://doi.org/10.3390/en10040512
https://doi.org/10.1016/j.jpowsour.2014.06.083
https://doi.org/10.1016/j.jpowsour.2014.06.083
https://doi.org/10.1002/er.5383
https://doi.org/10.1016/j.apenergy.2019.113813
https://doi.org/10.3390/en12040660
https://doi.org/10.1016/j.jpowsour.2014.07.116
https://doi.org/10.1016/j.electacta.2019.135239
https://doi.org/10.1016/j.electacta.2019.135239
https://doi.org/10.3390/electronics9020356
https://doi.org/10.1109/ACCESS.2020.2964852
https://doi.org/10.1016/j.rser.2019.109254
https://doi.org/10.1016/j.rser.2019.109254
https://doi.org/10.1016/j.microrel.2018.07.025
https://doi.org/10.1016/j.microrel.2015.06.133
https://doi.org/10.1016/j.microrel.2015.06.133
https://doi.org/10.1007/s13369-018-3200-8
https://doi.org/10.1007/s13369-018-3200-8
https://doi.org/10.1016/j.jpowsour.2018.06.036
https://doi.org/10.1016/j.energy.2018.11.008
https://doi.org/10.1016/j.apenergy.2016.07.126
https://doi.org/10.1007/978-3-319-22975-1_20
https://doi.org/10.1109/TPEL.2020.2984248
https://doi.org/10.1016/j.jpowsour.2018.03.015
https://doi.org/10.1016/j.jpowsour.2018.03.015
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


You, G.-w., Park, S., and Oh, D. (2016). Real-time State-Of-Health Estimation for
Electric Vehicle Batteries: A Data-Driven Approach. Appl. Energ. 176, 92–103.
doi:10.1016/j.apenergy.2016.05.051

Zhang, Y., and Wang, C.-Y. (2009). Cycle-Life Characterization of Automotive
Lithium-Ion Batteries with LiNiO[sub 2] Cathode. J. Electrochem. Soc. 156 (7),
A527. doi:10.1149/1.3126385

Conflict of Interest: Author WT was employed by the company China Henan
Xintaihang Power Source Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Li, Zhang, Zhou and Tian. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 69324913

Li et al. State Estimation of Lithium-Ion Battery

https://doi.org/10.1016/j.apenergy.2016.05.051
https://doi.org/10.1149/1.3126385
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	On-Line Estimation Method of Lithium-Ion Battery Health Status Based on PSO-SVM
	Introduction
	Methods
	Support Vector Machine Principle
	PSO optimization algorithm principle
	Principle of PSO-SVM
	The Advantage of PSO-SVM

	Experimental Data Acquisition
	Model Building
	Parameter Settings
	SOH Prediction Framework
	SOH Feature Extraction

	SOC-SOH Online Joint Estimation
	SOC Prediction
	Online Estimation of Li-Ion Battery SOC
	DST Working Condition Verification

	SOH Prediction
	Analysis of Prediction Performance
	Adaptability Analysis
	Comparison With Other Models


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


