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Cesium-based all-inorganic perovskite absorbers have attracted increasing attention due
to their superior thermal stability, compared to their organic–inorganic counterparts. Up to
now, it is a challenge to fabricate high-efficiency all-inorganic perovskite solar cells (PSCs)
with low defect densities. Herein, we used bivalent metal chloride salts (SrCl2 and NiCl2) to
optimize CsPbI2Br films. The experimental results indicate that this method could deliver
high-quality films with improved electronic property. As a result, the champion device
based on the 0.01 M SrCl2–doped CsPbI2Br film achieved a power conversion efficiency
(PCE) of 16.07% with a high open voltage (VOC) of 1,322 mV, which is about 18% higher
than that of the pristine device.
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INTRODUCTION

Lead halide perovskites are promising photovoltaic materials because of their tunable bandgap, long
carrier diffusion length, and easy fabrication (Chen et al., 2015; Shi et al., 2015; Lin et al., 2018; Yang
et al., 2019a; Qiao et al., 2019; Fang et al., 2020; Qiao et al., 2020). Unfortunately, the long-term
instability of perovskites, especially under thermal conditions, limits the commercial application of
PSCs (Yang et al., 2019b; Zhong et al., 2020). All-inorganic cesium lead halide perovskites (CsPbX3,
X �Cl, Br, I) have been developed quickly in recent years, whose PCEs have reached 19%with benign
thermal endurance (Bai et al., 2018; Wang et al., 2019a; Wang et al., 2019b; Straus et al., 2019; Tan
et al., 2019). The CsPbI3 perovskite has a low bandgap of ∼1.73 eV but suffers from the intrinsic
structural transition from the α-phase to the δ-phase at room temperature (Li et al., 2018; Zeng et al.,
2019).

Partial substitution of iodine for bromine anions can effectively stabilize the perovskite structure
by tailoring the tolerant factor (Rehman et al., 2017; Fu et al., 2019; Dong et al., 2020). A paradigm is
the CsPbI2Br perovskite with a bandgap of ∼1.9 eV and a stable cubic phase at room temperature
(Sutton et al., 2016; Yan et al., 2018). However, the PCEs of CsPbI2Br solar cells were still much lower
than those of CsPbI3 devices. Controlling the deposition process of perovskite thin films could
optimize film coverage at a long-range scale, as well as reducing the atomic crystal defects (Chen
et al., 2019; Duan et al., 2020; Liu et al., 2020). Processing parameters, such as coating speed and
annealing temperature, have been initially studied in previous reports (Yu and Gao, 2017; Zhang
et al., 2020a). Besides, additives can selectively adsorb on the perovskite surface and regulate
perovskite crystallization (Zhang et al., 2019). A number of organic additives, such as
dimethylammonium iodide, choline iodine, and dithiocarbamate, have been used to achieve
high-quality perovskite films (Yang et al., 2019c; Fu et al., 2020; He et al., 2020). However,
inorganic salts have been less investigated in this field, particularly for optimizing the film
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morphology and electronic property of all-inorganic perovskites
(Wang et al., 2019c; Zhang et al., 2019). Bivalent metal salts are
commonly used as inorganic additives to improve films’ quality,
which is suitable for different organic–inorganic perovskite
formulations (Aydin et al., 2019; Wang et al., 2019a). ZnI2
(Shai et al., 2018) and SnI2 (Eperon and Ginger, 2017) have
been incorporated into organic–inorganic perovskites, which
could enhance PCEs of the corresponding PSCs attributed to
increased grain size and crystallinity. In addition, the Cl− ion
could passivate grain boundaries and trap defects of perovskite
polycrystalline films (Aydin et al., 2019).

Here, we studied the effect of bivalent metal chloride salts
(SrCl2 and NiCl2) on the film quality of the CsPbI2Br perovskite.
We revealed that certain amount of metal chloride salts is
substantially beneficial for the formation of the perovskite with
less trap sites, while excess metal chloride salts are detrimental to
the perovskite films. By utilizing SrCl2 dopants, the best planar
heterojunction CsPbI2Br perovskite solar cell achieved a high
PCE of 16.07%, with ∼18% increment than the pristine one.

EXPERIMENT

Material Preparation
Titanium(IV) chloride (TiCl4, 99%), lead iodide (PbI2, 99%), cesium
iodide (CsI, 99.9%), lead bromide (PbBr2, 98%), bis(trifluoromethane)
sulfonimide lithium salt (Li-TFSI, 99.95%), 4-tert-butylpyridine (tBP,
96%), dimethyl sulfoxide (DMSO, 99.8%), and chlorobenzene (99.9%)
were purchased from Sigma-Aldrich. Strontium chloride hexahydrate
(SrCl2·6H2O, 99.9%) and nickel chloride hexahydrate (NiCl2·6H2O,
99.9%) were purchased from Sinopharm Chemical Reagent Co., Ltd.
Poly(3-hexylthiophene-2,5-diyl) (P3HT) was purchased from Xi’an
Polymer Light Technology Corp. All the chemicals and solvents were
used as received without further purification.

Device Fabrication
Fluorine-doped tin oxide (FTO) glasses (Nippon Sheet Glass, 8Ω/
square) were cleaned with soap, acetone, ethanol, and deionized water
sequentially for 15min, respectively. Then, the cleaned FTO glass
substrates were treated by a plasma cleaner with O2 gas for 3min at
middle power radio frequency (10.2W). Then, the substrates were
immersed in a 25mMTiCl4 aqueous solution for 60min at 70°C and
washed with distilled water and ethanol, followed by annealing at
500°C for 60min in a muffle oven to form a compact TiO2 blocking
layer. The preparation of CsPbI2Br films was based on a modified
method according to the reported article (Liu et al., 2018). P3HT
solution (15mg/ml in chlorobenzene) as a hole transport layer (HTL)
was spin-coated on perovskite films at 2,500 rpm for 30 s, followed by
annealing at 120°C for 10min. Finally, 100 nm-thick Ag was
thermally evaporated onto the HTL as a metal electrode. All steps
were carried out in a nitrogen glove box (H2O < 0.01 ppm, O2 <
0.01 ppm).

Characterization
Field emission scanning electron microscopy (FESEM, HITACHI
S4800) was used to characterize the morphology of films. X-ray
diffraction (XRD) patterns were acquired by powder X-ray

diffraction (PXRD, Bruker Advance D8 X-ray diffractometer
Cu Kα radiation, 40 kV). Ultraviolet and visible (UV-Vis)
absorption spectrometry was collected using a Cary 500 UV-
Vis-NIR spectrophotometer. Photoluminescence (PL) spectra
were characterized at room temperature by exciting the
sample deposited on the FTO substrate. The excitation
wavelength of the Fluorolog-3-p spectrophotometer is 380 nm.
The solar cells were illuminated by a solar light simulator (Solar
IV-150A, Zolix), and light intensity was calibrated by a standard
Newport calibrated KG5-filtered Si reference cell. Current
density–voltage (J–V) curves of solar cells were measured by a
Keithley 2400 digital source meter under simulated AM 1.5G
illumination of 100 mW cm−2 with a reverse scan rate of
0.15 V s−1. Solar cells were masked with a metal aperture to
define the active area of 0.0625 cm2. External quantum
efficiency (EQE) spectra of solar cells were measured by an
SCS10-X150-HBSD system. The electrochemical impedance
spectra (EIS) were acquired under an applied voltage of 0–1 V
with frequency ranging from 1 Hz to 1 MHz in dark condition. In
transient photovoltage (TPV) decay tests, the cells were
connected directly in series with an oscilloscope
(DSOX3104T), and the input impedance of DSO was 106Ω.
An attenuated green laser pulse (DSP-532-A Laser) was used as a
small perturbation to the background illumination on the device.
The laser-pulse–induced photovoltage variation and the VOC are
produced by the background illumination. The wavelength of the
laser was 532 nm, the repeating frequency was about 10 Hz, and
the pulse width was less than 10 ns.

RESULTS AND DISCUSSION

The deposition of CsPbI2Br perovskites is based on the spin-
coating of perovskite precursors dissolved in DMSO solution. We
firstly included SrCl2 into perovskite precursor solution in the
concentrations of 0.005, 0.01, and 0.05 M, respectively. The
morphological characteristics of CsPbI2Br films were firstly
visualized by SEM characterizations. As shown in Figure 1A,
the pristine film presents a non-flat surface with a high coverage.
By the addition of 0.005–0.01 M SrCl2, the CsPbI2Br films
retained the fully covered morphology (Figures 1B,C). For the
film with 0.05 M SrCl2 (Figure 1D), a rough surface with many
pinholes was observed, implying the adverse effect of excess SrCl2
on film formation.

We also noted that the 0.05MSrCl2–doped films degraded rapidly
in ambient condition. XRD patterns in Figure 2A disclose the non-
perovskite phase of the doped film with 0.05M SrCl2. Although the
ionic radius of Sr2+ (118 pm) is similar to that of Pb2+ (119 pm)
(Shannon, 1976), we still infer that excess metal dopants would favor
the formation of non-perovskite phases (Phung et al., 2020). An
intriguing phenomenon is that the full width at half maximum
(FWHM) of the (100) diffraction peak reduces from 0.161 of
pristine to 0.139 of film with 0.01M SrCl2. The narrowed XRD
diffraction peak signifies the enhanced crystallinity with less crystal
defects (Li et al., 2020). Therefore, we conclude that the SrCl2 additive
is a double-edged sword for the perovskite: low concentration of SrCl2
can promote the formation, while high concentration can generate the
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non-perovskite structure. The identical trend was also observed in the
UV-Vis spectra in Figure 2B.

To further examine the effect of bivalent metal chlorides on
CsPbI2Br perovskite films, we used NiCl2 as an additive into
perovskite films. The concentration of NiCl2 is 0.01M for all
samples, which corresponds to 0.83% of the molar ratio with Pb
ions. As expected, the NiCl2-doped sample exhibits smooth and
uniform morphology (Figure 3). XRD patterns in Figure 4A
further ascertain the cubic perovskite phase of all samples.
Absorbance offsets of films were determined to be ∼650 nm by
UV-Vis spectra in Figure 4B. Steady-state PL spectra were
operated to assess the photoelectrical property of perovskite films
deposited on glass substrates. As shown in Figure 4C, the PL
intensities of SrCl2- and NiCl2-doped perovskite films are 4.46 and

2.72 times higher than that of the pristine film, respectively, indicating
mitigated non-radiative recombination in bivalent metal
chloride–doped films (Han et al., 2016; You et al., 2018).

We then measured the J–V characteristics of as-prepared solar
cells. Solar cells were fabricated with a planar n-i-p configuration of
FTO/compact-TiO2 (c-TiO2)/CsPbI2Br/P3HT/Au (Figure 5A). All
J–V characteristics were measured under simulated AM 1.5G
illumination with a reverse scan rate of 0.15 V s−1. As shown in
Figure 5B and Table 1, the pristine device shows a short-circuit
current density (JSC) of 15.28mA cm−2, an open-circuit voltage (VOC)
of 1,197mV, a fill factor (FF) of 0.71%, and a PCE of 12.89%. The
addition of SrCl2 mainly enhances the VOC values of devices: the VOC

are 1,266, 1,278, 1,278, and 1,163mV, by using 0.001, 0.005, 0.01, and
0.05M SrCl2 additives. The champion doped device was obtained by

FIGURE 1 | Top-view SEM images of (A) pristine, (B) 0.005 M SrCl2–doped, (C) 0.01 M SrCl2–doped, and (D) 0.05 M SrCl2–doped CsPbI2Br films.

FIGURE 2 | (A) XRD patterns and (B) UV-Vis spectra of CsPbI2Br films with different dopant concentrations of SrCl2 deposited on compact TiO2/FTO.
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FIGURE 3 | Top-view SEM images of (A) 0.01 M SrCl2–doped and (B) 0.01 M NiCl2–doped CsPbI2Br films.

FIGURE 4 | (A) XRD patterns and (B) UV-Vis spectra of the pristine, 0.01 M SrCl2–doped, and 0.01 M NiCl2–doped CsPbI2Br thin films on compact TiO2/FTO. (C)
Photoluminescence (PL) spectra of the pristine, 0.01 M SrCl2–doped, and 0.01 M NiCl2–doped CsPbI2Br thin films deposited on glass.

FIGURE 5 | (A)Device architecture of a typical PSC device. (B) J–V curves of PSCs based on SrCl2-doped CsPbI2Br films with different dopant concentrations. (C)
J–V curves of the champion device for the SrCl2-doped PSC scanned from forward bias (FB) to short circuit (SC) and SC to FB with a scan rate of 0.15 V s−1. (D)
Photocurrent density as a function of time for a device held at the maximum power point. (E) Statistical distribution of PCEs of 20 individual PSCs based on pristine and
0.01 MSrCl2–doped CsPbI2Br films. (F) J–V curves of typical devices under simulated AM 1.5G illumination of 100 mW cm−2 for pristine, 0.01 MSrCl2–doped, and
0.01 M NiCl2–doped CsPbI2Br cells.
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using 0.01M SrCl2 with a JSC of 15.75mA cm−2, aVOC of 1,322mV, a
FF of 0.77, and a PCE of 16.07% under reverse scan condition
(Figure 5C and Table 2). Notably, negligible hysteresis was
observed for this champion device. In contrast, the best pristine
sample exhibited a JSC of 15.69mA cm−2, a VOC of 1,217mV, a
FF of 0.73, and a PCE of 13.66% under reverse scan condition
(Supplementary Figure S1 and Supplementary Table S1). We
then held these devices under maximum power point (MPP) to
measure the stabilized power output, as shown in Figure 5D and
Supplementary Figure S2. The current density at the MPP was
14.39mA cm−2 at a bias voltage of 1,100mV, corresponding to an
efficiency of 15.83%. The current density at the MPP was
13.47mA cm−2 at a bias voltage of 960mV, corresponding to an
efficiency of 12.93%. Supplementary Figure S3 exhibits the external
quantum efficiency (EQE) spectra of PSCs. The integration of the
EQE spectrum yields the photocurrent of 15.37mA cm−2 for the
0.01M SrCl2–doped device and 15.24mA cm−2 for the pristine
device, which are consistent with the corresponding J–V
measurements shown in Figure 5C and Supplementary Figure S1.

A statistical analysis of 20 individual devices reveals the good
productivity of SrCl2-doped devices such that the mean PCEs of
pristine and SrCl2-doped devices are 14.66 and 12.96%,
respectively (Figure 5E). Moreover, inclusion of NiCl2 also

improved the device performance significantly (Figure 5F
and Supplementary Table S2). The VOC of the NiCl2-doped
device increased to 1,245 mV, yielding a PCE of 13.83%. The
results presented herein manifest our strategy as versatile and
universal with a large variety of possible metal salts for
perovskite devices.

We then studied the optical and electrical properties of the
doped perovskite devices to probe the origin for performance
enhancement. EIS spectra were operated to characterize the
carrier behaviors of as-fabricated CsPbI2Br devices, and the
equivalent circuit model (Cui et al., 2020; Zhang et al., 2020b)
is displayed in Figure 6A. The charge recombination
resistance (Rrec) of the SrCl2-doped device is much higher
than that of the pristine device at a bias of 0.8 V (Figure 6A).
The Rrec values of the SrCl2-doped device are about one time
larger than Rrec values of the pristine one under the bias range
of 0–1 V, which confirms the longer carrier lifetime of the
SrCl2-doped device (Figure 6B) (Quilettes et al., 2015). We
further investigated charge-transport properties of PSCs with
and without SrCl2 by using TPV measurements. The TPV
curve revealed that incorporation of SrCl2 increased the
charge-carrier lifetime (Figure 6C), indicating a decrease in
the undesired charge-carrier recombination (Seitkhan et al.,
2020). As shown in Supplementary Figure S4, the ideality
factor (m) was measured to evaluate the recombination
process in PSCs. The value of m for SrCl2-doped devices
(1.31 kT/e) is smaller than 1.74 kT/e of the pristine device,
illustrating the reduced trap-assisted charge recombination,
where K is the Boltzmann constant, T is an absolute
temperature of 300 K, and e is the elementary charge
(Aydin et al., 2019; Dong et al., 2021).

CONCLUSION

In summary, we report a simple strategy to modulate the CsPbI2Br
perovskite by using bivalent metal chloride additives, which facilitates
the formation of high-quality perovskite films. A high PCE of 16.07%
was achieved on solar cells by SrCl2 doping, which could eliminate
defective trap states and extend carrier lifetime. Our strategy would
provide new insights into controllably fabricating high-efficiency all-
inorganic perovskite solar cells.

TABLE 1 | Photovoltaic parameters of PSCs with different SrCl2 dopant
concentrations under simulated AM 1.5G of 100 mW/cm2 solar irradiation.

Sample JSC (mA cm−2) VOC (mV) FF PCE (%)

Pristine 15.28 1,197 0.71 12.89
0.001 M SrCl2 15.37 1,266 0.70 13.55
0.005 M SrCl2 15.64 1,278 0.72 14.32
0.01 M SrCl2 15.67 1,278 0.73 14.61
0.05 M SrCl2 15.02 1,163 0.70 12.11

TABLE 2 | Summary of photovoltaic performance for champion devices (FB–SC
and SC–FB) based on the 0.01 M SrCl2–doped perovskite film.

Direction JSC (mA cm−2) VOC (mV) FF PCE (%)

FB–SC 15.75 1,322 0.77 16.07
SC–FB 15.66 1,312 0.77 15.73

FIGURE 6 | (A)Nyquist plots of the PSCs based on pristine and 0.01 M SrCl2–doped CsPbI2Br films recorded at 0.8 V in dark condition. (B)Rrec of PSCs based on
pristine and 0.01 M SrCl2–doped CsPbI2Br films measured at different applied bias voltages. (C) TPV measurements of CsPbI2Br cells with and without SrCl2 dopants.
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