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The number of normal samples of wind turbine generators is much larger than the number
of fault samples. To solve the problem of imbalanced classification in wind turbine
generator fault detection, a cost-sensitive extremely randomized trees (CS-ERT)
algorithm is proposed in this paper, in which the cost-sensitive learning method is
introduced into an extremely randomized trees (ERT) algorithm. Based on the
classification misclassification cost and class distribution, the misclassification cost gain
(MCG) is proposed as the score measure of the CS-ERTmodel growth process to improve
the classification accuracy of minority classes. The Hilbert-Schmidt independence criterion
lasso (HSICLasso) feature selection method is used to select strongly correlated non-
redundant features of doubly-fed wind turbine generators. The effectiveness of themethod
was verified by experiments on four different failure datasets of wind turbine generators.
The experiment results show that averagemissing detection rate, averagemisclassification
cost and gMean of the improved algorithm better than those of the ERT algorithm. In
addition, compared with the CSForest, AdaCost and MetaCost methods, the proposed
method has better real-time fault detection performance.

Keywords: fault detection, fault diagnosis, cost-sensitive learning, extremely randomized trees, class imbalance,
wind turbine generator

INTRODUCTION

The global capacity of installed wind turbine generators in 2019 reached 60.4 GW, with an annual
increment of 19% (Kandukuri et al., 2016). The operation and maintenance costs of wind turbine
generators account for approximately 15–30% of their total cost (Artigao et al., 2018). Generator
failures account for approximately 4% of total failures, and generator fault identification has attracted
considerable attention in recent years (Chen et al., 2016; Quiroz et al., 2018; Lei et al., 2019). Failures
in the generator may cause the whole mechanical system to stop functioning, reduce the operation
efficiency of the wind turbine and even cause personnel casualties. Wind turbine generators,
intermittent operating conditions, and severe weather pose challenges to the safe operation of
wind turbines (Judge et al., 2019). Since the generator is the critical component of the wind turbine,
wind turbine failure detection can greatly reduce the operation and maintenance costs by reducing
unplanned failures (Willis et al., 2018; Yang et al., 2021).
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Fault detection methods can be divided into two categories:
model-based methods (Cho et al., 2018; Habibi et al., 2019) and
data-based methods (Mingzhu et al., 2020; Liming and Bo, 2020;
Song et al., 2021). Model-based fault detection methods include a
parameter estimation method (Pan et al., 2017), state estimation
methods (Shahriari et al., 2020; Ghahremani and Kamwa, 2016),
and an equivalent space method (Bakri and Boumhidi, 2018).
Bakri et al. proposed a model-based fault detection and isolation
technology to solve the early fault detection problem of wind
turbines (Bakri and Boumhidi, 2018).These methods can
comprehensively examine the essence of dynamic systems for
real-time fault detection. However, the structure of wind turbines
is complex, with many characteristic parameters, and model-
based methods have difficulty obtaining accurate models.

Data-based methods include signal-based methods, statistical
analysis-based methods, and machine learning-based methods.
Fernandez-Canti et al. proposed a wind turbine fault detection
method based on the hybrid Bayesian set membership method
(Fernandez-Canti et al., 2015). This method only uses the non-
fault behavior model to generate the consistency index and the
fault indicator, and detects whether the wind turbine fails by
analyzing the noise of the equipment. It is difficult for methods
based on statistical analysis to detect the fault of a combination of
signal distortion and signal fading. Ibrahim et al. proposed a
method based on an effective extended Kalman filter to iteratively
estimate a fault signature component (FSC) and track its
amplitude to realize fault detection in wind turbine generators
(Ibrahim et al., 2018). The state characteristic signal is weak at the
initial stage of the fault, which makes it difficult to accurately
detect generator faults by the signal-based method.

Machine learning-based methods—for instance, artificial
neural networks (ANNs) (Marugan et al., 2018; Hamidreza
et al., 2014), support vector machines (Zeng et al., 2019; Li Z.
M. et al., 2019), decision trees (Yu et al., 2018), bagging (Breiman,
1996), boosting (Cheki et al., 2016), and random forests (RFs) (Li
et al., 2016; Joshuva and Sugumaran, 2017)—are often applied to
solve binary classification problems. These methods can
effectively predict the operating state of a wind turbine. Chun
et al. used RF learning to evaluate the correlation between
characteristic variables and target variables and then used a
deep neural network (DNN) model to identify wind turbine
permanent magnet drop failures. However, DNNs are
computationally complex and easily overfit data (Teng et al.,
2018). Gao et al. used the integrated extended load mean
decomposition multiscale entropy method to extract features
and then applied the least square support vector machine
(LSSVM) method to perform wind turbine fault detection
(Gao et al., 2018). The LSSVM method achieved strong fault
detection performance but poor real-time performance when
processing big data. Gopinath proposed a method for wind
turbine fault detection that combines nuisance attribute
projection and the classification and regression tree (CART)
algorithm (Gopinath et al., 2016). Disturbance attribute
projection was used to extract the frequency domain statistical
characteristics of the current signal, and CART was used as a
decision model to realize synchronous generator fault detection.
Although a decision tree method has various advantages, such as

a simple structure, strong real-time performance, and the ability
to handle big data, a single decision tree is impractical. Li et al.
adopted the short-term memory network of the residual
generator and used an RF to build a detection model (Li M.
et al., 2019). This method can effectively detect early faults of
wind turbines in harsh environments. The RF model improves
the generalization ability via integration.

In the actual operation of wind turbines, the number of fault
samples is much smaller than the number of normal samples,
which is characteristic of typical imbalanced classification
problems (Malik and Mishra, 2016; Buda et al., 2018; Longting
et al., 2019). Traditional fault detection methods perform poorly
when applied to imbalanced data. For class-imbalanced
problems, cost-sensitive learning combines misclassification
costs and traditional fault detection methods. By introducing
different types of cost functions to characterize the importance of
a sample, the objective function is transformed from one designed
to maximize the classification accuracy into one designed to
minimize the misclassification cost. For example, the cost-
sensitive decision tree algorithm has been widely used in
industrial control processes and detection (Tan, 1993; Lomax
and Vadera, 2013; Kim et al., 2018). Because the test cost and
misclassification cost of cost-sensitive learning are often similar
in scale, Zhang et al. presented a multiscale cost-sensitive decision
tree algorithm that combines the misclassification cost and test
cost. The approach solves the problem of integrating multiple
costs together in cost-sensitive learning (Zhang, 2018). Qi et al.
proposed a cost-sensitive decision tree algorithm that
incorporates data cleaning algorithms to address poor-quality
data, including the high cleaning cost (Qi et al., 2019). However, a
single classifier easily leads to overfitting when considering
complex industrial problems and the poor model
generalization ability.

Ensemble learning combines multiple classifiers to obtain
better performance than that achieved by a single classifier.
Tree ensemble algorithms can be classified as either boosting
or bagging. Masnadi-Shirazi et al. presented a cost-sensitive
framework suitable for AdaBoost, RealBoost, and LogitBoost
for class-imbalanced problems (Masnadi-Shirazi and
Vasconcelos, 2011). Furthermore, Zelenkov et al. proposed a
sample-based cost-sensitive adaptive boosting algorithm
(Zelenkov, 2019) in which the misclassification cost and
sample distributions are combined, and the cost matrix of the
sample is corrected based on the training set to improve the
overall performance. Because the boosting algorithm uses serial
dependence, it is difficult to train data in parallel. The cost-
sensitive RF algorithm uses a parallel approach and has strong
generalization capabilities (Nami and Shajari, 2018; Siers and
Islam, 2015). Siers et al. combined cost-sensitive parameters with
an RF model, introduced misclassification costs when building
models, and implemented a cost-sensitive forest (CSForest)
algorithm based on a decision tree (Siers and Islam, 2015). Lu
et al. embedded the cost of misclassification, test cost and
rejection cost into a rotating forest algorithm (Lu et al., 2017),
which was transformed into a cost-sensitive problem to
effectively reduce the classification cost and improve the
effectiveness of the algorithm. However, the computational
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complexity of the cost-sensitive RF algorithm is high. Geurts et al.
proposed an extremely randomized trees (ERT) algorithm based
on the RF algorithm (Geurts et al., 2006). By adding random
disturbances when nodes are split, the model achieves stronger
generalization ability and reduced computational complexity.
Moreover, each base classifier uses the complete training
dataset for training, which reduces the variance of the ERT
algorithm.

Although the ERT algorithm has faster calculation speed and
smaller prediction variance (Geurts et al., 2006), the problem of
low detection accuracy of failure samples still exists for
unbalanced data. For the imbalance problem, many cost-
sensitive fault detection methods based on tree ensemble
algorithms have been proposed and have made certain
achievements in the field of wind turbine generator fault
detection. However, these methods make it difficult to meet
both high performance and high real-time requirements.
Therefore, this paper proposes a wind turbine generator fault
detection method based on cost-sensitive extremely randomized
trees (CS-ERT). The main contributions of this paper are as
follows:

• To solve the class imbalance problem in the actual operation
of wind turbine generators, cost sensitive learning was
introduced into the ERT algorithm, and the CS-ERT
algorithm was proposed to detect the fault of wind
turbine generators. The objective function of the
algorithm was transformed from minimizing classification
error to minimizing misclassification cost. The proposed
method was verified by the data of 1.5 MW doubly-fed wind
turbine generators.

• The HSICLasso feature selection method was used to
remove weak correlation features to address the high
feature dimension problem of wind turbine generators. A
feature subset composed of strongly correlated non-
redundant variables was used to train the fault
detection model.

EXTREMELY RANDOMIZED TREES

ERT (Geurts et al., 2006) is an ensemble algorithm with high
randomness in which a set of nonpruned decision trees is
established via a top-down process. In contrast to the RF
algorithm, bagging is not used by the ERT model to train each
basic classifier. Each tree of ERT uses the complete training
samples for learning to minimize the deviation in the model.
In the traditional ensemble method, the best feature and cut-
point of a node are obtained by evaluating the Gini coefficient,
Shannon entropy of each feature value of each feature, etc. ERT is
different.

Given the dataset D (X, Y), the m-dimensional vector fi
represents the feature vector of the sample xi. In the extreme
decision tree splitting process, a value akc is randomly selected
from the maximum akmax to the minimum akmin for attribute k as
the cut-point of this feature. Then, the score measure of feature k
is calculated according to Eq. 1.

Scorec(k, S) � 2Ikc (S)
Hk(S) +Hc(S) (1)

where Ikc (S) represents the mutual information of the two subsets
with respect to the class after node S is split according to attribute k
and cut-point akc . Hk(S) represents the split entropy of attribute k.
Hc(S) represents the information entropy of node S. Each candidate
feature of the node is traversed according to the above method, and
the feature and cut-point with the largest score measure Scorec(k, S)
are selected to split the node. Then, the samples with a value of
feature k less than the cut-point are placed in the left leaf node, and
the remaining samples are placed in the right leaf node. The above
steps are repeated recursively until the stop splitting condition is
satisfied. The simplicity of the tree growth process makes the space
complexity of ERT lower than that of other ensemble methods.

The final result of the ERT algorithm is determined by voting
by all base classifiers, as follows.

P(c|fi) �
1
M

∑M
t�1

Pt(c∣∣∣∣fi) (2)

ĉ � argmaxc P(c∣∣∣∣f i) (3)

where M is the total number of trees, fi is the feature vector of
sample xi, and Pt represents the conditional probability that the
sample belongs to class c under the condition of vector fi. For
regression problems, Eq. 2 defines the classification probability of
the sample. For classification problems, the voting method is used
to make decisions according to Eq. 3. In the fault detection
method, Eq. 3 is used to realize the fault detection of the sample.

COST-SENSITIVE EXTREMELY
RANDOMIZED TREES

In this section, the CS-ERT algorithm is proposed, and the
computational complexity of the algorithm is analyzed.

The Principle of Cost-Sensitive Extremely
Randomized Trees
CS-ERT is a derivative of the ERT algorithm. CS-ERT combines
cost-sensitive learning with the ERT algorithm, which solves the
problem of low accuracy in the failure samples of traditional ERT

TABLE 1 | Cost matrix of two classification problems.

Predict class Actual class

Normal Fault

Normal CTN CFN

Fault CFP CTP

Note that CFN is the cost of predicting the fault sample as a normal class, CFP is the cost
of predicting the normal sample as a fault class, and CTN and CTP represent the cost of
correct detection. The larger the misclassification cost parameters, the more important
the classification. For practical wind turbine generators, the economic losses caused by
false negatives are far greater than those caused by missing detection. Therefore, the
misclassification cost parameter CFN of the fault class is greater than the misclassification
cost parameter CFP of the normal class (CFN >CFP).

Frontiers in Energy Research | www.frontiersin.org May 2021 | Volume 9 | Article 6866163

Tang et al. Cost-Sensitive Extremely Randomized Trees Algorithm

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


algorithms in imbalanced data. The cost matrix is introduced to
represent the misclassification cost in the fault detection field, as
shown in Table 1.

The CS-ERT algorithm is composed of multiple cost-sensitive
extreme decision trees (CS-EDT). Each CS-EDT model has a
chain structure similar to a decision tree, which includes a finite
set and edge set that constitute the root node, branch nodes and
leaf nodes, as shown in Figure 1.

In Figure 1, Ni represents the i-th node. If Ni is a branch node,
the cut-point is randomly selected for each feature of the node. To
solve the problem of category imbalance, this paper proposes the
MCG as the score measure of the branch node. The MCG Gk for
attribute k is defined as follows:

Gk � C(parent node) − NL

NL + NR
C(left child node)

− NR

NL + NR
C(right child node) (4)

where C(parent node) represents the misclassification cost of the
parent node; C(left child node) and C(right child node) are the
misclassification costs of the left and right child nodes,
respectively; and NL and NR represent the numbers of the left
and right child nodes, respectively. According to Eq. 4, the
misclassification cost gain is calculated for each candidate
feature. Then, the attribute and random value with the largest
MCG is selected as the split feature and cut-point of the
branch node.

The MCG is essentially the difference between the
misclassification cost of the parent node and the weighted sum
of the costs of all child nodes. The misclassification cost of the leaf
node is defined as follows:

C(node) � CP + CN (5)

where CP is the cost of the fault class at node, and CN is the cost of
the normal class at node, as shown in Eqs. 6, 7:

FIGURE 1 | Split rule of CS-ERT algorithm.

FIGURE 2 | Cost-sensitive extremely randomized trees algorithm.
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CP � CFP · NFP + CTP · NTP (6)

CN � CFN · NFN + CTN · NTN (7)

where NFP is the number of false alarm samples, and NFN is the
number of missing detection samples. NTP and NTN are the
numbers of samples correctly predicted as faults and normal,
respectively. As shown in Table 1, CFN ,CFP,CTN and CTP are the
misclassification cost parameters.

The score measure of the branch node is affected by the sample
distribution. Thus, to reduce the impact of class imbalance, the
class distribution is added to the calculation of the
misclassification cost function. In addition, CTP and CTN are
usually regarded as zero in industry. The expression of the
misclassification cost function is as follows:

CP � pP · CFP · NFP (8)

CN � pN · CFN · NFN (9)

where pP � NP/(NP + NN) represents the proportion of faulty
samples in the node, and pN � NN /(NP + NN) is the
proportion of normal samples in the node. NP and NN are
the numbers of samples classified as faults and normal,
respectively.

If Ni is a leaf node in Figure 1, according to Bayes’ theorem,
the classification with the minimized misclassification cost is
selected as the category of the leaf node. The definition is as
follows.

ĉ � argmin
i�0,1

⎧⎨⎩∑
j

p(cj∣∣∣∣x)cij⎫⎬⎭ (10)

where p(cj∣∣∣∣x) represents the posterior probability that sample x
belongs to class cj, and cij represents the cost of a sample of class i
being classified as belonging to class j.

The CS-ERT model is developed through generating sample
subsets, establishing the CS-EDT method, and making decisions.
A structure diagram of the CS-ERT method is shown in Figure 2.

D(X, Y) is the dataset, where X � [x1, x2, . . . , xm] is the
m-dimensional feature space, and Y ∈ [0, 1] represents the
target variables. First, Figure 2 shows that one of the
differences between ERT and a traditional random forest is
that it generates M subsets that are the same as the original
dataset D. Then, CS-EDT models {h(X, θm),m � 1,/,M} are
trained with these subsets, where M represents the number of
CS-EDT models. Notably, the candidate features of the root
node are all the features of the sample subset in the process of
tree growth, and the leaf node is established recursively.
Finally, the classification results of multiple CS-EDTs are
integrated by means of the CS-ERT method, and the
predicted category of the sample is determined according
to majority voting, as shown in Eq 11:

H(x) � argmax
y

∑M
m�1

I[h(x, θm) � y] (11)

where h(x, θm) is a CS-EDT model, y is the classification result of
the base classifier, and I(•) is an exponential function.

Pseudocode of CS-ERT is presented as follows.

Algorithm 1 CS-ERT approach.

Input: Training dataset D, Number of base classifiers M, Base
classifier CS-EDT, Cost matrix C � [CFP,CFN ,CTP ,CTN ],
Candidate attribute set attribute list � {f1,/, fm}

1 for m�1,2,. . .,M do
2 Obtain the same dataset Dm as the train set D
3 Create node N
4 if the samples of node N have the same class c, then
5 Return node N is a leaf node, node N classification is c;
6 End if
7 if attribute list is empty, then
8 Calculate the misclassification cost of node N marked as

normal or fault according to (5);
9 Return node N is a leaf node, and node N is marked as a

class with a low misclassification cost;
10 End if
11 Select the attributeAbest with the highest MCG in attribute list;
12 for each attribute A in attribute list, do
13 Randomly select a value of the attributeAi as the cut-

point aci , and the MCG Gi is calculated according to (4);
14 Return Select the attribute Abest with the largest Gi;
15 End for
16 attributelist←attributelist − Abest

17 Put the samples with abest < acbest into the left node NL, and
put the samples with abest ≥ acbest into the right node NR;

18 Add node CS-ERT(NL, C � [CFP ,CFN ,CTP,CTN],
attributelist − Abest) and CS-ERT(NR, C � [CFP,CFN ,
CTP,CTN], attributelist − Abest);

19 return h(x, θm) // Each base classifier is trained with a
complete training set

20 End for
21 return H(x) � ∑M

m
I[h(x, θm) � y]

Output: CS-ERTH(x)

The Computational Complexity of
Cost-Sensitive Extremely Randomized Trees
The computational complexity of the RF algorithm isO(M(mnlogn)),
where M represents the number of base classifiers, m represents the
number of features, and n represents the number of samples.
Compared with RFs, the CS-ERT algorithm introduces
randomness in the process of tree growth. When a node selects a
split feature, a random value for each feature is used as the cut-point
for that attribute. Therefore, the computational complexity of CS-EDT
is O(mlogn), and the computational complexity of the CS-ERT
algorithm is O(M(mlogn)), according to (11). The CS-ERT
algorithm has better real-time performance.

WIND TURBINE GENERATOR FAULT
DETECTION

In wind turbine generator fault detection, there are generally two
types of erroneous predictions: 1) missed detection, where a
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system in the fault state is predicted to be working normally, and
2) false alarm, where a system in the normal working state is
predicted to be in a fault state. Clearly, the economic loss caused
by missed detection is far greater than the loss caused by false
alarms. CS-ERT can be used for fault detection of wind turbine
generators to minimize the missing detection rate.

To provide a clearer structure, this section introduces three
evaluation indicators for fault detection in advance. The missing
detection rate, average misclassification cost, and gMean are
abbreviated as MDR, AMC, and gMean, respectively. The
evaluation index calculation equation is as follows.

MDR � FN/(TP + FN) (12)

AMC � FN · CFN + FP · CFP + TP · CTP + TN · CTN

FN + FP + TP + TN
(13)

gMean �
��������������
Recall*Specificity

√
(14)

Referring to Eqs 12, 13 TP represents true positives, FN
represents false negatives, FP represents false positives, and TN
represents true negatives. CFN , CFP , CTP , and CTN are the cost
matrices. In Eq 14, Recall � TP/(TP + FN) represents the
probability of correct detection of fault samples, and Specificity �
TN/(TN + FP) represents the probability of correct detection of
normal samples. The MDR refers to the ratio of the number of
missed detection samples to the total number of samples when the
wind turbine generator fails. The AMC considers not only the failure
recognition rate but also the case where the misclassification cost is
unequal. The gMean refers to the square root of the product of the
failure detection rate and the normal detection rate, which is typically
used as an evaluation of performance for class-imbalanced problems.
The running time is closely related to the computational complexity of
the algorithm. In this experiment, the running time is the mean value
of the model’s 10-fold cross-validation.

Figure 3 is a flowchart of a fault detection method based on the
CS-ERT model. Offline wind turbine generator data are first

collected from the SCADA database, and data cleaning is
performed. Data cleaning includes normalization and removal of
missing and null values. Expert experience and the HSICLasso
method are used to select features and generate feature subsets to
avoid the impact of weakly correlated features and redundant
features on the fault detection performance. In addition, the
offline data are divided into a train dataset and a validation
dataset. The train set is used to train the CS-ERT model. The
validation dataset is used to adjust the hyperparameters of the model
and initially evaluate the performance of the model. The optimal
hyperparameters of the CS-ERT model are obtained through
offline data, and the CS-ERT model with optimal parameters is
established according to the optimal hyperparameters. In the
last step, wind turbine data is collected online, and data
preprocessing is performed. The processed online data are
then used as the input for the optimal CS-ERT model, which
is used to predict the real-time working status of wind turbine
generators. If a fault is predicted, an alarm is triggered. Finally,
the performance of the fault detection model on online data is
analyzed according to Eqs 12–14.

The pseudocode of the large-scale wind turbine generator fault
detection method based on CS-ERT is described as follows.
Algorithm 2 represents the process of obtaining the optimal
CS-ERTmodel on the offline dataset.Algorithm 3 realizes online
fault detection of wind turbine generators.

Algorithm 2 Offline implementation of the CS-ERT fault
detection method.

Input: Wind turbine SCADA dataset Doff ;

1 Perform data cleaning on dataset Doff , and normalize it
using (15)

2 Use HSICLasso method for feature selection, divide Doff into
the train datasetDtrain and the validation dataset Dvali

3 The CS-ERT model M was established by train dataset Dtrain

FIGURE 3 | Flowchart of wind turbine generator fault detection based on CS-ERT.
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4 Taking AMC as the evaluation index, the hyperparameters of
the model are adjusted by the validation datasetDvali to obtain
the optimal hyperparameters θ

5 the CS-ERT model M* with optimal parameters is established
according to the optimal hyperparameters θ

Output: model M*

Algorithm 3 Online implementation of CS-ERT fault detection
method.

Input: CS-ERT model M*, Online data Don;

1 Perform data cleaning and feature selection on the online data
Don and normalize it using (15) to obtain D′on

2 Begin timing
3 Obtain model M* from Algorithm 1, and use M* and D′on to

predict the operating state of the wind turbine
4 If online data Don is predicted to be a failure, then
5 Trigger alarms
6 End if
7 End timing
8 running time � Ending time - Beginning time

9 According to (12)–(14), analyze the performance of the
model M* on the online data Don

Output: Trigger alarms, missing detection rate, gMean, AMC
and running time

EXPERIMENTAL ANALYSIS

In this section, data preprocessing is first performed on the data in the
SCADA database. Then, the HSICLasso feature selection method
extracts the main features and verifies the effectiveness of the method.
Finally, the operating data of a 1.5MWwind turbine in awind farm in
Shandong is used as experimental data, the effectiveness of the
proposed method in the wind turbine generator fault detection
problem is verified, and its superiority is emphasized by comparison.

Data Description and Data Cleaning
A generator fault detection experiment was conducted on a
1.5 MW doubly fed wind turbine in a wind farm in Shandong,
China, which proved the effectiveness of the method. The main
structure diagram of the doubly fed wind turbine is shown in
Figure 4. Wind turbines are mainly composed of generators,
gearboxes, pitch systems, etc. Fan blades convert wind energy into

FIGURE 4 | Main structure of the doubly fed wind turbine.

TABLE 2 | Wind turbine generator fault type and sensitive parameters.

Dataset Fault type Failure mechanism Sensitive parameters

Data 1 Generator winding
temperature error

The winding temperature exceeds 165°C for 5 s Winding temperature, bearing temperature, gearbox
bearing temperature, cooling air temperature

Data 2 Generator bearing
temperature error

The temperature of the front axle D-END of bearing a or the rear axle
N-END of bearing b is greater than 95°C for 5 s

Bearing temperature, winding temperature, cooling air
temperature

Data 3 Generator fan pump heater
protection error

Protection switch of generator fan or heater trips Cold wind temperature, wind speed, bearing temperature

Data 4 Generator brush error The generator carbon brush is badly worn and lasts 5 s Bearing temperature, engine room temperature, winding
temperature
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mechanical energy, and generators convert mechanical energy
into electrical energy. The electrical energy generated by the
generator is integrated into the power grid through
components such as converters, power cabinets and transformers.

The research object of this paper is a doubly-fed wind turbine
generator. The doubly-fed wind turbine generator is mainly
composed of a generator and a cooling system. The generator
is composed of a stator, a rotor, a bearing, etc. The stator winding
of the generators is directly connected to the power grid, and the
rotor winding is connected to the power grid through a frequency
converter. The equipment realizes variable-speed and constant-
frequency power generation, which meets the requirements of the
grid connection. Due to the AC excitation characteristics, the
doubly-fed wind turbine can accurately adjust the output voltage
of the generator by adjusting the excitation current. However, the
power factor of doubly-fed wind turbines is low and requires
additional power compensation. Therefore, in order to ensure the
normal operation of the wind turbine, it is very important to
perform fault detection on the generator.

Four kinds of defects (i.e., generator winding temperature error
(F1), generator bearing temperature error (F2), generator fan
pump heater protection error (F3) and generator brush error
(F4) are generated in the actual operation of the generator.
Table 2 shows the fault mechanism and sensitive parameters of
the four types of faults of the generator. The failure mechanism
indicates the cause of the failure. Sensitive parameters are features
that have a greater impact on faults throughmanual analysis.Wind
turbine generator data are obtained from the SCADA database.
Each sample has 213 features. The starting sampling point is half an
hour before the start of a fault. The ending sampling point is half an
hour after the end of a fault, and the data sampling interval is 2 s.

Data cleaning methods include missing value processing
outlier value processing, and commonly used methods such as
the deletion method and data repair method. To solve this
problem, this paper adopts the deletion method to clean the
data. This experiment was conducted on the Python 3.6 platform.
The multi-duplicated samples and the samples with missing and
null values were removed from the dataset. This method can not
only reduce the influence of noise on the model performance, but
also reduce the data diversity. Furthermore, features that have all
0 values were removed to reduce the dimensionality of the feature
space and the model. To ensure the comparability of each feature,
z-score normalization was used to eliminate the dimensionality of
each feature. The value of each feature was transformed into a
dimensionless value in the interval [0, 1].

x＇i � xi − μ

σ
(15)

where xi represents an attribute variable, μ is the mean of attribute
xi, and σ is the variance of attribute xi. Each dataset of Data 1-Data
4 contains only normal samples and designated failure samples.
Each dataset is normalized using the z-score method.

Experimental Results and Analysis
In accordance with the procedure of Figure 3, the HSICLasso
method is used to select the features of the wind turbine generators

dataset. The HSICLasso feature selection method (Yamada et al.,
2014) is a derived algorithm of the least absolute shrinkage and
selection operator (lasso) (Tibshirani, 1996). We use non-negative
constraints on α to improve the algorithm’s ability to select
effective features. In addition, the Gaussian kernel function and
the triangular kernel function are used on the input vector and
output vector of HSICLasso, respectively. We can incorporate
structured outputs via kernels. Ren et al. (2020) proved that
HSICLasso can effectively analyze the nonlinear relationship
between multivariate time series. The F-norm replaces the L2-
norm. The HSICLasso algorithm is defined as follows.

min
α

1
2

���������L −∑m
k�1

αkK
(k)
Frob

���������
2

+ λ‖α‖1, (16)

s.t. α1,/, αk ≥ 0,

whereL � ΓLΓ andK(k) � ΓK(k)Γ are centeredGrammatrices, andL
and K(k) are both Gram matrices. Γ � In − 1

n1n1
T
n is the centering

matrix. In represents the n-dimensional identity matrix. 1n represents
an n-dimensional matrix with all elements of 1. The first term in the
above expression represents the linear set of the input kernel matrix K
and the fitting output kernel matrix L, and the last part represents the
regular term. The above formula is further expressed as:

min
α
⎛⎝1
2
HSIC(y, y) −∑d

k�1
αkHSIC(uk, y)

+1
2
∑d
k,l�1

αkαlHSIC(uk, ul)⎞⎠ + λ‖α‖1,
(17)

where HSIC(·) is the Hilbert-Schmidt independence criterion
(HSIC). HSIC(uk, y) represents a measure of independence
based on the core. The higher the correlation between uk and y
is, the larger the value of HSIC(uk, y) and the smaller the result of
Eq 16. The strong correlation between the feature and the output
vector is ensured. The lower the correlation between uk and ul is,
the smaller the value of HSIC(uk, ul) and the smaller the result of
Eq 16. Non-redundancy between features is guaranteed. In this
way, the HSICLasso feature selection method is similar to a
minimum redundancy maximum relevancy algorithm. The
global optimal solution is effectively obtained by Eq 17. The
method is extended to the high-dimensional feature selection
problem. For massive high-dimensional data, the Gaussian
kernel in HSIC Lasso is computationally expensive. Yamada
et al. (2014) proposed a table lookup approach to reduce the
computation time and memory size, reducing the computational
complexity from O(dn2) to O(dn + B), where d is the feature
dimension, n is the number of samples, and B is the
hyperparameter (we use B � 20 in our implementation).

The wind turbine generator dataset contains a large number of
nonlinear and nonfunctional relationships. The high-dimensional
feature space entails a large amount of calculation and low real-
time performance for fault detection. The non-redundant features
that have a strong correlation with the output vector are extracted
based on expert experience and HSICLasso feature selection.
Yamada et al. (2018) used the HSICLasso feature selection
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method for ultrahigh-dimensional big data nonlinear feature
selection and achieved good results. The features with the top 8
are selected as inputs for the wind turbine generator fault detection
model. The feature selection results are as follows.

According to Table 3, the winding temperature, bearing
temperature, and cooling air temperature are strongly correlated
in the four fault datasets, consistent with the failure mechanism
and sensitive parameters in Table 2. Therefore, the HSICLasso
feature selection method can accurately extract attribute subsets
from wind turbine generator data. The feature dimensions, fault
types, and sample imbalance of the dataset after applying the
HSICLasso feature selection method are shown in Table 4.

TheCS-ERT model has 4 hyperparameters: the number of
decision trees M, the minimum number of leaf nodes nnode, and
two misclassification cost parameters CFP and CFN. Because the
model has many hyperparameters, the optimal hyperparameters
are difficult to determine. Hyperparameter optimization methods
include the gray wolf optimizer method (Long et al., 2018), butterfly
optimization algorithm (Long et al., 2021; Long et al., 2021), and grid
search method. We input the obtained low-dimensional feature set
into the cost-sensitive extreme random forest classifier optimized by

the grid optimization method to realize automatic fault identification
of wind turbines. Four key parameters (nnode,M, CFN and CFP) of the
CS-ERT classifier are selected through a grid searchmethod using 10-
fold cross-validation. To simplify the experimental process, CFN is
regarded as 1. The variation range of the parameterCFP is [0, 200]. As
shown in Table 5, the results of the cost parameters of the CS-ERT
model are optimized for each dataset.

Comparison Among Different Methods
In this subsection, comparative studies among different methods
are performed to verify the efficacy and superiority of the
proposed algorithm. According to the procedure mentioned in
Experimental Results and Analysis , different features are
extracted to form four feature sets of four faults, and then
these feature sets are input to the model to identify wind
turbine generator faults. To evaluate the effectiveness of the
CS-ERT fault detection method, three points should be
emphasized. First, nonredundant features with strong
correlation are selected via the HSICLasso method to reduce
the feature dimensionality. Then, the parameters of different
classifiers are selected based on grid optimization for each
dataset. Finally, the experiment compares RF (Hsu et al., 2020;
Jia et al., 2018) with XGBoost (Zhang et al., 2018), ERT (Janssens
et al., 2016), CS-EDT (base classifier for CS-ERT), MetaCost (Kim
et al., 2012), AdaCost (Yin et al., 2013), CSForest (Siers and Islam,
2015), and CS-ERT. To eliminate the contingency of the
experiment, all methods use the 10-fold cross-validation
method. During performance analysis, MDR, gMean, AMD
and Time are used to evaluate the performance of the model.

TABLE 3 | HSICLasso feature selection results.

Feature Tag HSICLasso feature selection score

Data 1 Data 2 Data 3 Data 4

Generator winding temperature W AW 0.009782277 0.017599536 0.0615362 0.025937422
Generator winding temperature V AU 0.66801703 0.00001453 0.10023695 0.010824516
Generator bearing temperature B BA 0.033899892 0.2168639 0.022490485 0.36818618
Generator cooling air temperature BB 0.024351638 0.075802557 0.000024650 0.166879070
Gearbox shaft 1 temperature AL 0.063766375 0.069782838 0.037703969 0.052285645
Gearbox shaft 2 temperature AM 0.017679539 0.062894136 0.029099241 0.14716054
Gearbox inlet oil temperature AN 0.017236305 0.018463224 0.13771559 0.061054502
30 s average wind speed V 0.0052472115 0.00007895 0.35092705 0.0000784
Wind direction H 0.011375366 0.00005421 0.076073088 0.0004825
Yaw deviation AJ 0.047915235 0.11275150 0.0000251 0.0000854
Gearbox oil temperature AO 0.0065203002 0.004965703 0.027400982 0.0001254
Nacelle temperature BE 0.000003215 0.000695982 0.0027198601 0.10510261
Nacelle outdoor temperature BD 0.022269854 0.00000234 0.0000154 0.026983585

The features corresponding to the bold values are selected for model construction.

TABLE 4 | Dataset description.

Dataset Original feature number Feature number after
feature selection

Number of samples Sample imbalance

Data 1 213 8 5,354 18.83
Data 2 213 8 3,554 24.48
Data 3 213 8 3,568 12.31
Data 4 213 8 3,585 8.98

TABLE 5 | Optimization of the cost parameters of CS-ERT for 4 datasets.

Dataset CFP CFN CTP CTN

Data 1 1 50 0 0
Data 2 1 74 0 0
Data 3 1 43 0 0
Data 4 1 40 0 0
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FIGURE 6 | Comparison of AMC for the eight algorithms on the four datasets.

FIGURE 7 | Comparison of gMean for the eight algorithms on the four datasets.

FIGURE 5 | Comparison of MDR for the eight algorithms on the four datasets.
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A higher gMean and lower MDR, AMC, and Time indicate better
performance of the fault detection method.

Figures 5, 6 represent the diagnosis results of different fault
detection methods for the four faults of the wind turbine generator.
As observed in Figures 5, 6, the MDR (average MDR is 0.45%) and
AMC (average AMC is 0.41%) of the proposed method are much
lower than those of other fault detection methods in the four fault
types. We can also see that the missing detection rate and average
misclassification cost of traditional fault detection methods are
higher than those based on cost-sensitive fault detectionmethods.
The MDR and AMC of ERT, RF and XGBoost methods are all
greater than 20 and 10%. Moreover, missing detection rate and
AMCs below 20 and 10%, respectively, are attained by the cost-
sensitive methods. This means that cost-sensitive fault detection
methods give a higher misclassification cost to minority classes
when dealing with imbalanced data than traditional methods
(ERT, RF, XGBoost). Furthermore, it helps reduce the false
negative rate and average misclassification cost of fault
detection methods. Namely, the superiority of the cost-
sensitive method is confirmed through experimental analysis.

The average MDR and average AMC of CS-EDT are 23.54 and
8.07%, respectively. The performance of CS-ERT is obviously
better than that of CS-EDT, which proves the necessity and
advantage of adopting the ensemble algorithm. In addition,
Figures 5. 6 show that the average MDR and average AMC of
the CS-ERT method are 0.45 and 0.41%, respectively, on the four
types of faults of wind turbine generators. The average MDRs of
other cost-sensitive methods—namely, MetaCost, AdaCost and
CSForest—are 11.67, 15.18, and 9.14%, respectively, and the
average AMCs are 6.24, 6.37, and 3.97%, respectively. The
results demonstrate the efficacy and benefits of the CS-ERT
classifier. The HSICLasso feature extraction method is proved to
effectively reduce the impact of weakly correlated features and
redundant features on model performance. This proves the
superiority of the proposed method for fault detection on wind
turbine generators.

To further analyze the effectiveness of the proposed method,
gMean is used as an indicator to evaluate the performance of the

above fault detectionmethod. The experimental results are shown
in Figure 7. The gMean value is composed of the missing
detection rate and the false alarm rate. It is mostly used for
model performance evaluation when addressing imbalanced data
and can effectively evaluate the performance of the model. The
experimental results show that the average gMean of the
proposed method is 99.68%, which is higher than the gMean
value of the other 7 methods (70.48, 70.83, 73.15, 83.36, 93.53,
92.06, and 93.92%). This shows that while the method improves
the failure detection rate, it also maintains a high false alarm rate.
There are several reasons that could explain this: First, compared
with the standard ERT algorithm, CS-ERT considers the cost of
misclassification to improve the detection accuracy of fault
classes. Then, compared with CSForest, the proposed method
uses complete features for training and can make more reliable
decisions. In addition, it reduces the interference of weakly
correlated features and improves model performance.
Therefore, we can conclude that the proposed method
achieves the best classification performance in this experiment.

In wind turbine generator fault detection, the running time of
the model is also an important index. How to meet both high
fault detection performance and short running time has always
been a research hotspot (Barrios Aguilar et al., 2020; Falehi,
2020).The objective function of CS-ERT only focuses on fault
detection performance compared to the multiple objective
optimization approach. The advantage of the running time is
reflected in its unique structure. The above methods are used to
process the generator fault dataset and record its running time.
The result is shown in Figure 8. Each method sets
hyperparameters with the goal of optimal performance. The
average calculation time of the CS-ERTmethod is 0.646 s, which
is shorter than the calculation times of MetaCost, AdaCost and
CSForest (1.941, 1.787, and 3.425 s, respectively). The running
time on the 4 datasets is better than those of these three
algorithms. The reason for this result is that CS-ERT
randomly selects a value for each feature, reducing one level
of looping in the model. The average computation time of CS-
EDT is 0.21 s, which is lower than that of the CS-ERT algorithm,

FIGURE 8 | Comparison of the running time for the eight algorithms on the four datasets.
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which verifies that the ensemble algorithm increases the
computational complexity while improving the model
performance. The average calculation times of the XGBoost,
RF and ERT methods are 0.141, 0.036, and 0.021 s, respectively.
Although the calculation speed of traditional algorithms is
faster, they do not consider the cost of misclassification. This
leads to a low failure detection rate, which seriously affects the
economic benefits of the wind turbine.

In summary, the CS-ERT-based wind turbine generator fault
detection method has the performance of low MDR, low AMC
and high gMean in four kinds of generator faults. Compared with
MetaCost, AdaCost and CSForest, the proposed method has a
faster calculation advantage.

CONCLUSION

A generator is one of the energy conversion components of a
doubly fed wind turbine. The long time operation results in the
generator fault data are far less than the normal data. To deal with
this problem, we proposed a novel method (CS-ERT) for wind
turbine generator fault detection with imbalanced data in this
paper. First, the HSICLasso feature selection method is used to
select strongly correlated non-redundant features to form feature
subsets to reduce the dimension of the dataset. Then, the fault
detection model of doubly-fed wind turbine generators based on
CS-ERT is established. Finally, the feature subset is used as the
input of the model, and the working state of the generator is taken
as the output of the model to detect the actual working condition
of the generator. A practical application of a wind farm in Shandong,
China, verified the effectiveness of CS-ERT. The results showed that
the CS-ERT method outperformed other fault detection methods
(XGBoost, RF, ERT, CS-EDT, MetaCost, AdaCost and CSForest) in
MDR, AMC and gMean. The MDR of the proposed method is over
30% higher than that of ERT. The gMean of CS-ERT is more than
15% higher than that of CS-EDT, proving the advantages of the
ensemble algorithm. Compared with MetaCost, AdaCost and
CSForest, the proposed method has better computational speed
and fault detection performance. The proposed method has good
fault detection performance for wind turbine generators. We believe
that CS-ERT is applicable not only to wind turbine generator fault
detection but also to other large-scale industrial fault detection
applications. However, the proposed method has some constraints
in the detection of hybrid faults and the optimization of
hyperparameters, and is sensitive to the SCADA data quality. In
future work, we can further study the following:

• There are many hyperparameters in CS-ERT. It is difficult to
obtain a global optimal solution by tuning these
hyperparameters. The optimization algorithm is

combined with the CS-ERT algorithm to achieve the
optimal parameters of the adaptive search model.

• For multiple fault problems, we can extend the CS-ERT
algorithm from binary classification to multi-classification
in the future.

• A data-driven approach applies to low noise data. Poor
quality data in SCADA systems will inevitably affect the
performance of the model. In the future, we need to further
consider the cleaning method for poor quality data and the
impact of noise on the model.
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