
fenrg-09-666130 April 15, 2021 Time: 19:19 # 1

BRIEF RESEARCH REPORT
published: 21 April 2021

doi: 10.3389/fenrg.2021.666130

Edited by:
Liang Chen,

Nanjing University of Information
Science and Technology, China

Reviewed by:
Donglai Wang,

Shenyang Institute of Engineering,
China

Ruyi Dong,
Jilin Institute of Chemical Technology,

China
Shuaibing Lu,

Beijing University of Technology,
China

*Correspondence:
Lei Wang

752953593@qq.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 09 February 2021
Accepted: 24 February 2021

Published: 21 April 2021

Citation:
Wang L, Xu P, Qu Z, Bo X,

Dong Y, Zhang Z and Li Y (2021)
Coordinated Cyber-Attack Detection

Model of Cyber-Physical Power
System Based on the Operating State

Data Link.
Front. Energy Res. 9:666130.

doi: 10.3389/fenrg.2021.666130

Coordinated Cyber-Attack Detection
Model of Cyber-Physical Power
System Based on the Operating
State Data Link
Lei Wang1,2* , Pengcheng Xu3, Zhaoyang Qu1,2, Xiaoyong Bo1,2, Yunchang Dong1,2,
Zhenming Zhang1,2 and Yang Li1

1 School of Electrical Engineering, Northeast Electric Power University, Jilin, China, 2 Jilin Engineering Technology Research
Center of Intelligent Electric Power Big Data Processing, Jilin, China, 3 Siping Power Supply Company of State Grid Jilin
Electric Power Company Limited, Siping, China

Existing coordinated cyber-attack detection methods have low detection accuracy and
efficiency and poor generalization ability due to difficulties dealing with unbalanced
attack data samples, high data dimensionality, and noisy data sets. This paper proposes
a model for cyber and physical data fusion using a data link for detecting attacks on
a Cyber–Physical Power System (CPPS). The two-step principal component analysis
(PCA) is used for classifying the system’s operating status. An adaptive synthetic
sampling algorithm is used to reduce the imbalance in the categories’ samples. The
loss function is improved according to the feature intensity difference of the attack
event, and an integrated classifier is established using a classification algorithm based
on the cost-sensitive gradient boosting decision tree (CS-GBDT). The simulation results
show that the proposed method provides higher accuracy, recall, and F-Score than
comparable algorithms.

Keywords: cyber-physical power system, coordinated cyber-attack, cluster analysis, oversampling, gradient
boosting decision tree

INTRODUCTION

In recent years, a new type of coordinated cyber-physical attack has caused blackouts of the power
grid and disrupted power systems. The main reason is that the coordinated attack on the power
grid by hackers was not detected in time, and effective measures to prevent major accidents could
not be implemented at the optimum time (Haes Alhelou et al., 2019; Lai et al., 2019). In the 2015
attack on the Ukrainian power grid, the attack point was not the power infrastructure, and the 0-
day vulnerability was not used. Its attack cost is significantly lower than that of Stuxnet, Equation,
and other attacks, but it is also more effective (Zhang et al., 2016; Koopman et al., 2019). Therefore,
traditional security protection methods for power systems have their limitations, and it is urgent
to research detection and defense methods for coordinated attacks on the Cyber–Physical Power
System (CPPS) to identify attack types and intentions. It is crucial to establish a comprehensive
active defense system to ensure the security of power systems (Chen et al., 2011; Dai et al., 2019;
Wang X. et al., 2019).

Many scholars have investigated the detection and identification of coordinated attacks on the
CPPS. The coupling relationship between the cyber side and the physical side has been considered
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in several studies (Drayer and Routtenberg, 2019; Shen et al.,
2019), which focused on the fusion of the attack path on the
information side and the attack object on the physical side.
Xu and Abur (2017) combined a priori and a posteriori bad
data detection and proposed a new decomposition method to
solve the state estimation data corruption in cyber-attacks. Kurt
et al. (2018) and Basin et al. (2016) used a dynamic equation
of the measured variables with a joint transformation to detect
false data injection (FDI) attacks in real time to improve the
detection accuracy.

In summary, existing detection methods for cyber-attacks on
the CPPS have the following limitations: (1) the cyberspace and
the physical space are closely coupled and interact with each
other. An attack detection from the cyber side or the physical
side alone is not sufficient (Lin et al., 2016; Nath et al., 2019).
(2) Attack detection methods based on physical power grid data
ignore the impact of cyber network attacks on the performance of
smart grids. The effects of power grid failures and cyber-attacks
on the physical side are similar, and it is difficult to distinguish
them based on data characteristics (Liu et al., 2016; Huang and
Zhu, 2020). (3) A cyber-attack is characterized by unbalanced
attack samples, high data dimensionality, and noise, and data
with a long tail are common. Low detection accuracy of attacks
and low real-time detection efficiency are typical (Osanaiye et al.,
2018; Tian et al., 2019).

In this paper, the cyber-side alarm data and the physical-
side measurement data are merged to establish a cyber-physical
coupling state chain. A clustering method is designed to classify
and distinguish different operating states of the CPPS. An
oversampling algorithm is used to reduce the imbalance in the
operating states’ samples. Subsequently, a coordinated cyber-
attack detection algorithm based on the improved gradient
boosting decision tree (GBDT) is proposed. The algorithm
optimizes the cost-sensitive (CS) loss function, minimizing the
error associated with the small sample size of attack data and
providing high accuracy of attack detection and a high recall
rate and F1-score.

DETECTION MODEL FOR
COORDINATED CYBER-ATTACKS ON
THE CYBER–PHYSICAL POWER
SYSTEM

The framework of the coordinated cyber-attack detection model
is shown in Figure 1. The model exploits the data characteristics
in different states, such as normal operation, fault operation, and
coordinated attack of the CPPS. First, the data link of the cyber–
physical operation state is established according to the coupling
relationship. A clustering algorithm is used to classify the state
data link, and a feature set is obtained under different operating
conditions. Then, the adaptive synthetic sampling algorithm
(ADASYN) is used to balance the majority of the samples and
the minority of the samples in different state data sets. Finally,
new CS conditions are added using the GBDT’s CS loss function
to detect different coordinated cyber-attacks.

ESTABLISHMENT OF THE DATA LINK OF
THE CYBER–PHYSICAL OPERATING
STATE

Data Link of the Operating State of the
Physical Power Grid
The physical grid measurement data reflect the real-time
operating status of the grid under different working conditions.
The measurement data of each section of the grid reflect the
operating status at that moment. We do not consider the reasons
for changes in the grid state (caused by cyber-attacks or general
equipment failures); it can be described as a specific interval
1t(t1∼tn). According to the acquisition sequence, all state data
fragments Sp(ti) consisting of the physical grid operating data link
Qp(1t) are defined as follows:

Xp(ti) = {x1, x2, . . . ..xh}
Sp(ti) = {Xp1 ,Xp2 , . . .Xpm}

Qp(1t) = {Sp(t1), Sp(t2)..., Sp(tn)}
(1)

where Xp(ti) represents the h measured attributes obtained from
the physical-side device Xp at time ti, including the voltage,
current, phase angle, active power, and reactive power; Sp(ti)
represents all the measurement data collected by m devices on
the physical side at time ti.

Data Link of the Operating State of the
Cyber Network
The transmission delay and data packet loss rate typically reflect
the performance status of a cyber-network. When the control
signal or status information is lost during the transmission of
the data packet because it exceeds the allowable proportion,
the control of the device has been lost due to a network
attack (Davarikia and Barati, 2018; Wang Q. et al., 2019).
Three indicators (delay rate, packet loss rate, and threat degree)
are established to characterize the operating data link of
the cyber network.

1. The delay ratio (DR) is defined as follows:

Rdr (n) =

∑n
k=1

∣∣∣P′kPk − PT
∣∣∣

n
× 100% (2)

where n is the number of communication links transmitting data,
P′ is the number of data packet losses for link k, Pk is the number
of data packets sent by link k, and PT is the threshold of the packet
loss rate of link k.

1. The packet loss ratio (PR) indicator is defined as follows:

Rpr (m) =

∑m
l=1(T

send
l − Treceive

l )

m
× 100% (3)

where m is the number of devices that send information, Tl
send

is the sending time of data packet l, and Tl
receive is the receiving

time of data packet l.
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FIGURE 1 | Framework of the coordinated cyber-attack detection model for the Cyber–Physical Power System (CPPS). CS-GBDT, CS gradient boosting decision
tree; PCA, principal component analysis.

1. Threat degree Wth (ai,j). Assuming that n alarm events are
generated within the sampling time window 1t, the address
set of the information equipment is {IP1, IP2, . . .IPm}, and
ai,j indicates that IPi contains j alarm events. The intrusion
detection system (IDS) deployed in the power cyber network
indicates that the original threat degree is W. The threat
degree is redefined as follows to determine the impact of alarm
events on the attack risk of the entire system:

Wth=

∑ni
i=1

∣∣∣∣wij−
−
w
i

∣∣∣∣
ni

× 100% (4)

where wij is the threat degree of alarm events ai,j, wi is the average
value of the threat degrees of all alarm events in IPi, and ni is the
number of all alarm events in IPi.

The three performance indicators of the operating status of the
cyber network are used to establish the cyber system operating
data link Qc (1t) in the interval 1t(t1∼tn):

Yc(ti) = {Rdr, Rpr, Wth}

Sc(ti) = {Yc1, Yc2, . . .Yck}

Qc(1t) = {Sc(t1), Sc(t2), ..., Sc(tn)}

(5)

where Yc(ti) represents the Rdr , Rpr , and Wth obtained from the
cyber-side device Yc at time ti; Sc(ti) represents the status data
obtained from k devices on the cyber side at time ti.

Coupled Mapping of the Operating State
of the Cyber–Physical System
We use topological mapping to couple and map the data links
of the two heterogeneous networks to form a data link of
the cyber–physical operating state. The grid can be divided
into m areas according to the physical grid connectivity, and
each area has n transmission lines. It is assumed that a line
consists of k electrical components {X1, X2, . . ., Xk}, each line
is connected to n communication devices {Y1, Y2, . . ., Yn}, and
each communication device has a unique IP address {IP1, IP2,
. . ., IPn} in the cyber network. We sequentially connect each
electrical component number, line number, and connected area
in the data chain to create an index table linking the <connected
area number Area, line number Line, electrical component ID
number, and information component IP address>. The cyber
network operating data link Qc and the physical power grid
operating data link Qp in the interval are compared using the
index table, and the data are stored in the corresponding index.

The cyber network clock with a collection period of T is used,
and we set the sampling time window to ε = [T− αT′, T], where
α is the window size parameter. The larger the value, the longer
the collection period is. In the sampling time window ε, many
identical state events may occur in the cyber–physical coupling
state chain. Therefore, these repetitive events are filtered and
compressed to form the cyber–physical operating state data link,
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which is expressed as follows:

Q(ε) = {x1[Qp(t1),Qc(t1)], x2[Qp(t2),Qc(t2)], ...,

xn[Qp(tn),Qc(tn)]} (6)

COORDINATED CYBER-ATTACK
DETECTION MODEL OF THE
CYBER–PHYSICAL POWER SYSTEM

Operating State Clustering Based on the
Two-Step Principal Component Analysis
There are no labels for the different state categories in the original
cyber–physical operating state data link Q (ε). It is necessary to
distinguish the different state categories using cluster analysis.
In this paper, the two-step principal component analysis (PCA)
clustering algorithm is proposed. The PCA algorithm is used to
cluster, transform, and filter the correlated attributes to extract
linear uncorrelated attributes (Jian et al., 2004). The two-step
algorithm is used to cluster the attribute set; it reduces the
computational complexity and provides high clustering accuracy
(Dom et al., 2003; Northrup et al., 2004; Phelps et al., 2009). The
algorithm steps are as follows:

Input: cyber–physical operating state data link Q(ε) = {x1, x2,
. . ., xn}.

Output: D = {xi, Ci}, where Ci is the operating state of the
clusters C = {C1, C2, . . ., Ck}.

Step 1: Feature selection for clustering. The PCA algorithm
is used to map n attributes in the data link to m dimension
(m< n). The correlated attributes are filtered using an orthogonal
transformation to obtain m-dimensional new features, A = {A1,
A2, . . .Am}. The centralizing mean xi = xi −

1
n
∑n

i=1 xi is used
to derive the covariance matrix XXT , whose eigenvalues and
eigenvectors are obtained. The data link set Q’(ε) is obtained after
dimensionality reduction.

Step 2: Calculate the number of category clusters in the
operating state. After the traversal process, the clustering feature
(CF tree) growth in the balanced iterative reducing and clustering
using hierarchies (BIRCH) algorithm is applied to the data link
set Q’(ε). The data points in the data set are evaluated one by one
to collect all data points in the dense area while generating the
CF tree. The log-likelihood distance d(Cs,Ct) = ζs + ζt − ζ<s,t>
between the two clusters is used to create many small subclusters.
The Bayes information criterion (BIC) is used to calculate the
number of possible division schemes for the state category.

Step 3: Determine the number of categories CJ in the Q’(ε).
The agglomerative hierarchical clustering (AHC) method is used
to merge the subclusters one by one, and the desired number of
clusters is reached according to the R(k) between the two clusters.

R(k) =
dmin(Ck)

dmin(Ck+1)
(7)

where Ck and Ck+1 is a partition scheme with k or k+1 cluster
numbers; dmin(Ck+1) and dmin(Ck) is the distance between the
two smallest clusters in the scheme.

Step 4: Label the sample data in each operating state cluster.
The data points in each cluster are determined; the data points
xi in the state data link set Q’(ε) are regarded as single-point
clusters according to the clustering results CJ . The logarithm
similarity between xi and each cluster in CJ is determined. Given
the distance d{{xi}, CJ}, xi is placed into the nearest cluster, and
labels are generated for each operating state category C = {C1,
C2,..., Ck}.

Algorithm to Reduce the Imbalance of
the Operating State Classes
A coordinated cyber-attack event of the CPPS has a small
probability and high risk. In the data link Q(ε), normal operation
data account for the largest proportion, whereas the proportion
of attack data is relatively small, resulting in unbalanced data.
Therefore, the ADASYN algorithm is used to deal with the
imbalance of the operating state classes (Qu et al., 2018; Wang
et al., 2020). Balanced data distribution is obtained by adaptive
synthetic oversampling. Different minority samples are given
different weights to generate different numbers of samples. The
algorithm process is as follows:

Input:D = {xi, Ci}, where xi is the cyber–physical operating
state data link Q (ε) , Ci is the class label. α is the imbalance
threshold, Ck is a minority class, and Cl is the majority class.

Output: Balanced data set D′.
Step 1: Calculate the class imbalance, where

Imbalance = Lagre num(Cl)
Small num(Ck)

. Calculate the number of samples
to be synthesized based on the degree of imbalance
G =

(
Lagre num(Cl)− Small num(Ck)

)
× β, β ∈ [0, 1].

Step 2: Calculate the proportion of the majority class in
the K-nearest neighbors (KNNs). ri = 1i/K, where 1i is the
number of samples of the majority class in the KNN.

Step 3: Calculate the majority class surrounding each minority
sample.

∧
ri=

ri∑samll num(Ck)
i=1 ri

(8)

Step 4: Calculate the number of samples that need to be generated
for each minority sample Ck.

gi=
∧
ri×G (9)

Step 5: Select a minority sample among k neighbors around
each minority sample and synthesize using Eq. (10). Repeat
the synthesis gi times until the desired number of synthesized
samples is obtained.

si = Xi + (Xzi − Xi)× η (10)

where si is the composite sample, Xi is the i-th sample in the
minority sample, Xi ∈ [0, 1], Xzi is a randomly selected minority
sample among the KNNs of Xi.

Repeat the synthesis until the desired number of synthesized
samples in Eq. (5) has been obtained.

Frontiers in Energy Research | www.frontiersin.org 4 April 2021 | Volume 9 | Article 666130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-666130 April 15, 2021 Time: 19:19 # 5

Wang et al. Coordinated Cyber-Attack Detection

Classification Algorithm of Coordinated
Cyber-Attacks Based on Cost-Sensitive
Gradient Boosting Decision Tree
The purpose of attack detection is to minimize the harm to
the power grid caused by the attack. The harm caused by
misinterpreting an attack as a normal event is far greater than that
caused by misinterpreting a normal event as an attack (Huang
et al., 2018). We propose using the CS function to improve the
GBDT (Sakhnovich, 2011; Liao et al., 2016). The CS loss function
replaces the standard cost loss function to prevent attack event
misclassification. The improved CS loss function is defined as
follows:

Loss
(
C, f(x)

)
=−

K∑
k=1

wkCk log
(
pk(x)

)
(11)

where K is the class of all attacks, Ck is the sample of the k-th
attack, and pk(x) is the probability of the k-th attack, wk is the CS
function, it can be divided into two costs, i.e., the missed detection
cost w(−,+)(1− p(x)), p(x) ≥ w−

w++w− and the misdetection cost
w(+,−)p(x), p(x) < w−

w++w− .

Coordinated cyber-attack detection is a multi-classification
task. A total ofK types of attacks are assumed. The sample x in the
cyber–physical operating state set is obtained, and the CS-GBDT
algorithm is used to determine which class the x sample belongs
to. The specific steps of the algorithm are as follows:

Input: Balanced data set
D′ = {(x1,C1), (x2,C2), ..., (xN,CN)}, loss function Loss
(Ck, fk(x)), and the number of classifiers M.

Output: A strong learner for attack classification F(x).
Step 1: Initialize fk0(x) = 0, the number of categories classified

k = 1,2,. . .K.
Step 2: Starting from t = 1 to t = M, there are M iterations in

total, repeating steps 3 through 6, at last building M classifiers.
Step 3: The one-hot code for each class yi is generated. We

calculate the probability of sending the k-th attack sample pk(x).

pk(x) =
efk(x)∑K
l=1 efl(x)

(12)

Step 4: Start from k = 1 to k = K, repeating steps 5 through
6, we generate K different CART classification trees f 1(x),
f 2(x),. . .f K(x).

Step5: Calculate the negative gradient of each class in the m
class and obtain the negative gradient error of the i-th sample
corresponding to category k in the t-th iteration:

rki = Cki − pk(x) = −

[
∂Loss

(
Ck, fk(x)

)
∂fk(x)

]
, i = 1, 2, ...,N

(13)
where N is the number of sample data.

We use the estimated residual {(x1, rk1),. . .(xN , rkN))} as an
input to calculate the leaf node area of the m-th decision tree:

Cmkj =
K−1
K

∑
xi∈Rmkj

rki∑
xi∈Rmkj

|Cki| (1− |Cki|)
(14)

where Rmkj is the leaf node region Rmj of the m-th tree. K is the
number of categories.

Step 6: Update the classifier fmk(x).

fmk(x) = fk,m−1(x)+
J∑

j=1

CmkjI, x ∈ Rmkj (15)

where J is the number of leaf nodes per tree.
Step 7: Build final classification tree with high accuracy used

for attack detection.

Fmk(x)=
M∑

m=1

J∑
j=1

CmkjI, x ∈ Rmkj (16)

EXPERIMENTAL ANALYSIS

Experimental Environment and Data
We simulate the different fault states of the physical power grid
caused by cyber-attacks on the IEEE39-bus system in the RT-LAB
and OPNET co-simulation environment. We collect the DR, PR,
and threat information at different times on the cyber side. The
voltage, current, impedance, and other data are collected on the
physical side. The 10 data sets are obtained. Each set contains 56
attributes, and the cumulative number of records is about 50,000,
including five types of operating states in the CPPS, as follows:

(1) Normal operating state (S1): there is no network attack
on the cyber side, and the power grid on the physical side is
operating normally. (2) Distributed denial of service (DDOS)
attack state (S2): the data in the communication system are
blocked by a DDOS attack, affecting the normal operation of the
power system, measurement acquisition, and control commands.
(3) Data injection attack state (S3): malicious data injection
into physical power grid disguised as a normal fault, resulting
in the operator mistakenly assuming a short-circuit fault. (4)
Protection device parameter tampering attack state (S4): the
attacker tampers with the distance parameter of the protection
device, causing a failure of the protection device to disconnect
the fault area. (5) Fault operation state (S5): the physical power
grid has a single-phase, two-phase, or short-circuit fault.

Results of the Operating State
Classification of the Cyber–Physical
Power System
The data set 1 with 4,966 records is selected in the experiment.
After implementing the two-step PCA clustering algorithm, the
number of outliers is 89, and there are five operating states,
as shown in Figure 2A. Cluster-3 (S2) has the largest number
of records (1,325). The clustering superiority is 0.93, and the
clustering importance is 0.85, accounting for 29.3% of the
records. The smallest cluster is Cluster-4 (S5), with 59 records,
accounting for 1.3% of all records. The clustering superiority is
0.97, and the clustering importance is 0.93. Clustering superiority
is a measure of cluster separation (−1∼0.2 poor| 0.2∼0.5
medium| 0.5∼1 good), and clustering importance is a measure
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Clustering results of five states
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FIGURE 2 | Clustering results of five states (A), Current amplitude under DDOS attack (B), Current amplitude under fault data injection attack (C), Current amplitude
under fault state (D), Current amplitude under parameter tampering attack (E), Performance comparison (F).

of cluster cohesion (0∼0.2 poor| 0.2∼0.6 medium| 0.6∼1 good)
(Nair and Narendran, 1997).

According to the negative sequence current and zero sequence
current amplitude of each cluster in the experiment, the curves

of the three attack states and the fault state are obtained,
as shown in Figures 2B–E. Cluster-2 is significantly different
from the other four states, while Cluster-4 and Cluster-5
have high similarities. The reason is that Cluster-2 is an

Frontiers in Energy Research | www.frontiersin.org 6 April 2021 | Volume 9 | Article 666130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-666130 April 15, 2021 Time: 19:19 # 7

Wang et al. Coordinated Cyber-Attack Detection

attack that causes network blocking and delay, which is
significantly different from the other types of data tampering
attacks. Cluster-3 and Cluster-5 are physical power grid failures

caused by information tampering attacks. These states are
similar to the changes occurring in the Cluster-4 power
grid normal fault.

FIGURE 3 | Data set before balancing (A), Data set after balancing (B).

FIGURE 4 | Attack detection receiver operating characteristic (ROC) curve (A), Precision-Recall curve (B), Confusion matrix (C), and Performance comparison (D).
AUC, area under the ROC curve; CS-GBDT, CS gradient boosting decision tree; KNN, K-nearest neighbors; SVM, support vector machine.

Frontiers in Energy Research | www.frontiersin.org 7 April 2021 | Volume 9 | Article 666130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-666130 April 15, 2021 Time: 19:19 # 8

Wang et al. Coordinated Cyber-Attack Detection

The adjusted Rand index (ARI) is used to measure the
accuracy of the clustering results; ARI ∈ [−1, 1], the closer the
value is to 1, the better the clustering performance is. The index
is calculated as follows:

ARI =
RI − E(RI)

max(RI)− E(RI)
(17)

where RI is the Rand coefficient, and E(RI) is the expected
value of each class.

Four typical clustering algorithms are selected for
performance comparison, i.e., K-means, density-based spatial
clustering of applications with noise (DBSCAN), clustering using
representatives (CURE), and BIRCH. In the experiment, the
sample size of the test data set is randomly selected and ranges
from 5 to 100% of the data set. The ARI values of the different
algorithms are shown in Figure 2F. As the proportion of the test
data set increases, the ARI increases significantly. The accuracy
of the proposed two-step PCA method is 97% for a sample size of
100%, demonstrating the excellent performance of this method.
The K-means algorithm has the lowest ARI values.

Result of Balancing the Operation State
Classes
The number of samples in the operating state classes in 10 data
sets before implementing the algorithm is shown in Figure 3A.
The number of samples is imbalanced in the different operating
states. The largest number of records (143,766) occurs in the
S3 state, and the fewest number (3,080) is observed in the S5
state. The maximum class imbalance is 3.77. There are multiple
minority and majority categories in the joint data set, showing
multi-category imbalance.

The ADASYN algorithm is used to oversample the categories
whose number is less than the threshold. We set the maximum
imbalance threshold to 1.2. The results in the 10 data sets are
shown in Figure 3B. The proportion of records in each dataset
is close to 20%. The ADASYN algorithm uses local screening and
sampling to reduce the influence of data imbalance on the false
alarm rate of coordinated cyber-attack detection.

Performance Verification of the
Coordinated Cyber-Attack Detection in
the Cyber–Physical Power System
The balanced data set is divided into a training set (70% samples)
and a test set (30% samples). The model loss parameters are
set according to the improved CS loss function. There are 130
integrated base classifiers, and the depth of each independent tree
(max_depth) is seven.

The receiver operating characteristic (ROC) curve obtained by
classifying the test data set is shown in Figure 4A. The curves
of the five categories are close to the (0,1) position, and the
average area under the ROC curve (AUC) is 0.982. This result
shows that the attack detection model has a low false alarm rate
and high accuracy.

The precision-recall curve obtained by classifying the test data
set is shown in Figure 4B. The precision-recall curve are all
close to the (1,1) position, indicating that the attack detection

model has high recall and accuracy, even when the ratio of
positive and negative samples is large. Therefore, the proposed
attack detection model has a high classification accuracy for
unbalanced data.

The confusion matrix of the attack detection results is shown
in Figure 4C. The detection accuracy for the DDOS blocking
attack (S2) is 98%, that of the data injection attack (S3) is 96%,
that of the protection device parameter tampering attack (S4)
is 97%, that of the normal operation (S1) is 99%, and that
of the fault operation (S5) is 98%. These results demonstrate
that the proposed coordinated cyber-attack detection model
accurately detects coordinated attack events on the network and
distinguishes attack states from the fault operation state, with a
maximum false-positive rate of only 4%.

Finally, the proposed model is compared with typical
classification algorithms, including the KNN, Xgboost, Random
Forest, Adaboost, and support vector machine (SVM). The
overall accuracy, average recall, average precision, and average
F1-score of the algorithms are shown in Figure 4D. The recall
and precision of the CS-GBDT algorithm are higher than
97%. The algorithm performance is stable, and it provides
better performance for detecting various attack events than
comparable algorithms.

CONCLUSION

In this paper, a cyber–physical operating state data link was
established using data fusion mapping. The two-step PCA
clustering algorithm is proposed for accurate labeling of the
different operating states of the network. A coordinated cyber-
attack classifier based on the CS-GBDT was established that
considers the imbalance of the attack status categories and the
cost sensitivity of the attack event. The algorithm can detect
attacks on the CPPS and distinguish different attack types. The
proposed model has a low false alarm rate and high accuracy for
attack detection. It is suitable for the detection of coordinated
cyber-attack events with unbalanced attack sample data and high
data dimensionality.
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