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Accurate open-circuit voltage (OCV) is crucial for state of charge (SoC) estimation of
lithium-ion batteries and, hence has become a key factor to ensure the safety and
reliability of electric vehicles (EVs). In engineering, the incremental OCV (IO) testing
has been widely used for OCV calibrating. Based on this, the OCV is commonly
simplified by averaging the discharging and the charging OCVs, which essentially
ignores the influence of the major hysteresis (MH). By a series of experiments on the
LiNiMnCoO2 battery, this work first systematically investigated the influence of the MH
on SoC estimation via diverse current profiles tested at various ambient temperatures.
Besides, the recursive least square (RLS) and the particle filter (PF) algorithms were
introduced to estimate the battery parameters and the SoC, respectively. The results
report that, compared with the traditional simplified method, the discharging direction
and the charging direction of the MH can enhance the estimation accuracy of the
discharging process and the charging process of the battery at all the operating
conditions above, respectively. By the MH-based estimation method, the maximum
mean absolute estimation error can be reduced by about 70%.

Keywords: open-circuit voltage, state of charge, lithium-ion batteries, energy management, particle filter

INTRODUCTION

Currently, as the rapid development of EVs (Zhang et al., 2019), lithium-ion batteries have been
widely used as energy sources owing to their innate advantage (Ahmed et al., 2020). Since the
accurate predicted SoC is a crucial function of battery management systems (Xuan et al., 2020),
it plays a key role in ensuring the safety and reliability of EVs (Feng et al., 2020).

In the past, numerous battery models have been developed to carry out the prediction. Most of
them concentrate on the equivalent circuit models (ECMs) (Hu et al., 2012, 2018; Li X.-Y. et al.,
2019; Lai et al., 2020). This type of estimation method involves the development of the algorithms
for battery models’ parameters (Wang et al., 2015; Wei et al., 2016; Xia et al., 2018; Liu et al., 2019;
Zhou et al., 2020) and SoC estimations (Zhang et al., 2012; Feng et al., 2015; Dong et al., 2018; Zhou
et al., 2019; Wang and Chen, 2020) and the OCV modeling. For the former, various algorithms
have been combined in the past, among which the RLS-PF technique has been proved to be more
accurate than the RLS-EKF algorithm (Dong et al., 2018). Therefore, this work combines the RLS-
PF method for the estimation.
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The other significant challenge for SoC estimation is how to
catch a proper OCV model since it has always been embedded
in the output equation of the space-state equation to correct
SoC estimation errors. Research about OCV modeling can be
mainly divided into the online-identification based method and
the offline-test based method. Xiong et al. (2017) and Chen
et al. (2019) proposed a method that can establish the model
online, in which the OCV-SoC correlation was obtained through
the way of estimations. However, it occupies vast computing
resources of onboard microcontroller, which may increase the
risk of identification program failure.

The offline-test based method can be further clarified into
two groups, namely the model development and the OCV test
procedure selection. For the former method, various models have
been employed (Feng et al., 2014; Zhang et al., 2016; Ines et al.,
2017; Saha et al., 2020). All of these models have been reported
to be accurate enough in their specific scenarios. However,
these models’ adaptability to various ambient temperatures and
different dynamic loading conditions haven’t been verified. For
the method of the test procedure selection, as the methods that
are widely used in engineering, the low current OCV test, and
the IO test have been employed in the past (Wang et al., 2018).
Research in Yang et al. (2019) reported that the former method
can result in an enlarged estimation error compared with the
incremental OCV (IO) testing. Hence, relevant work in this paper
will be conducted around the IO testing.

Battery’s OCV during charging is always higher than that
during discharging even after a long rest period and the effect
is known as the hysteresis effect. The captured OCVs by the
discharging direction or the charging direction of different OCV
testings are defined as the MH. For the IO testing, the OCV
is commonly simplified by averaging the charging and the
discharging OCVs, which ignores the possible influence of the
MH on SoC estimation. From the perspective of engineering
practice, this work only investigates the influence of the MH of
the LiNiMnCoO2 battery on SoC estimation. In fact, it seems
that there have existed some relevant research that implies the
possible influence of the MH on the estimation. For example,
research in Pan et al. (2017) established the OCV model only
by fitting the discharging OCVs of the MH and achieved a
good estimation result based on the discharging dynamic loading
condition. In Zhu et al. (2019), the authors also just fitted the
OCV-SoC datasets acquired from the discharging direction of the
MH to establish the model. In Ceraolo et al. (2020), the authors
also catched the model by only using data from the discharging
direction of the MH to predict the SoC of the dynamic loading
condition. Similar research can also be found in Pattipati et al.
(2014) and Huang et al. (2019).

However, there still remain several open issues in the field.
Firstly, although some researchers used the discharging direction
of the MH for SoC estimation of the discharging dynamic loading
condition, fewer of them compared this MH-based OCV model
with the traditional simplified one in regard to the estimation
accuracy. Secondly, the possible influence of the discharging
direction of the MH on SoC estimation for various dynamic
loading conditions at different battery operating temperatures
have not been systematically investigated. Thirdly, fewer research

has considered the MH’s effect on the estimation from the
charging direction of the battery.

Focusing on systematically investigating the influence of
the MH of the LiNiMnCoO2 battery on estimation accuracy
and giving suggestions to the engineering field, this work
first systematically investigated the influence of the MH on
the SoC estimation accuracy via diverse current profiles from
both the charging and discharging directions of the battery at
various battery operating temperatures. On the other hand, all
the aforementioned profiles are tested from the high to the
low temperatures. Besides, the RLS and PF are employed for
the battery parameters and the SoC co-prediction. The results
show higher estimation accuracy and robustness of the MH-
based OCV model than that of the traditional simplified model.
Compared with the latter method, the former method can reduce
the ratio of SoC mean absolute estimation error by about 70%.

The rest of this paper is organized as follows. Section “Battery
Experiment” presents the details of the battery testings and the
established OCV models. Section “Battery Model” introduces the
battery model. The parameters and SoC co-predict algorithm
based on the RLS and the PF is introduced in section “RLS
and PF Based Model Parameter and SoC Co-predict Algorithm.”
Then, the influence of the MH on SoC estimation accuracy
are systematically investigated in section “Evaluation of the
Hysteresis Effects on SoC Estimation.” Finally, conclusions are
drawn in section “Conclusion.”

BATTERY EXPERIMENT

To conduct relevant works around the theme in this paper,
corresponding battery tests were designed in this section.

We considered a battery test platform as shown in Figure 1,
including a YKYTEC battery test machine with 16 independent
charging and discharging channels to charge and discharge the
tested battery cell, a thermal chamber to regulate the battery
testing temperatures, and a computer with the YKYTEC software
to set the battery testing conditions and record the testing data
(current, voltage and temperature).

The commercial LiNiMnCoO2 battery cell was tested on the
platform. The capacity, the nominal voltage, the charge cut-off
voltage, and the discharge cut-off voltage are 3.0 Ah, 3.6, 4.25,
and 2.5 V, respectively. The cell was tested by the characteristic
test procedure at 40, 22, and 0◦C. For the characteristic test,
the available capacity test was loaded on the battery cell to
calibrate the actual capacity, followed by the IO testing, followed
by discharging hybrid pulse power characteristic (HPPC) testing,
followed by the charging HPPC testing. Then, the dynamic stress
test (DST) and the urban dynamometer driving schedule (UDDS)
profiles were successively loaded on the tested cell to obtain
the responding terminal voltages. Current profiles can be found
in the later text.

In this section, the IO testing procedure is described. Firstly,
the cell was charged to 100% SoC with a current of 0.5◦C
under the constant current and constant voltage (CCCV) mode
(the charge cut-off current was 0.02◦C), and the cell was rested
for 2 h when the charging process was finished. Secondly, the
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FIGURE 1 | Battery test platform.

cell was discharged in every 10% SoC interval until the SoC
reached 10%. When each discharging interval was finished, the
cell was rested for 2 h. Then, the discharging process at every
5% SoC was implemented until the terminal voltage drops to the
discharge cut-off voltage, and the cell was also rested for 2 h after
each discharging interval was completed. During the discharging
process, the current was set to 0.5◦C, and the corresponding
SoC and terminal voltage (OCV) were recorded at the end of
each rest period. Thirdly, the cell was charged by the same
routine as the discharging process. The CCCV mode is applied
to the last charging SoC interval to fully charge the cell. Since
the polarization effects can exist up to several hours inside the
battery, the rest period of 2 h was set to eliminate the effects after
the current interruption.

Then, the OCV-SoC datasets of the discharging process of the
testing were fitted by Eq. (1), followed by fitting the charging
datasets by the equation. Then, an averaging process of the
charging and discharging datasets and a fitting process according
to that equation were successively conducted. The current profile
of the IO testing for the battery tested at 22◦C is shown in
Figure 2A.

For the convenience of statements in the later text, we define
the OCV model established by the averaged OCV of the charging
OCV and the discharging OCV as model 1; the OCV model
predetermined by the charging process or the discharging process
as model 2.

OCV = α0 + α1SoC + α2SoC2
+ α3SoC3

+ α4SoC4

+α5SoC5
+ α6SoC6 (1)

where, αi (i = 0, 1,. . . , 6) are the parameters to fit the dataset
obtained by the IO testing.

Figures 2B–D show the established two types of models.
It can be observed that for the two models, there are similar
tendencies for the battery cell tested at 40 and 22◦C, but the model
obtained at a low temperature of 0◦C exhibits a large deviation
in both the low SoC sub-interval and the high SoC sub-interval.
Besides, it can be seen that the difference is small in the high
SoC sub-interval, and there exists an enlarged difference in the
low SoC sub-interval. The maximum OCV difference can highly

reach about 51 mV, which can inevitably result in a big bias
of SoC estimation.

BATTERY MODEL

The first-order RC battery model as shown in Figure 3 is
employed to simulate the nonlinear characteristics of the battery
cell here. It consists of a voltage source OCV, an ohmic
resistance R0, a polarization resistance Rp and a polarization
capacitance Cp. Ut is the terminal voltage, and Up represents the
polarization voltage.

The discretization form of the space-state equation of the
battery model can be expressed as Eq. (2).{

Upk = λUpk−1 + (1− λ)RpkIk, λ = exp( −1t
CpkRpk

)

Utk = OCVk − Upk − IkR0k
(2)

where 1t denotes the sampling time and equals 1 s in this study;
k is the discrete-time index.

RLS AND PF BASED MODEL
PARAMETER AND SoC CO-PREDICT
ALGORITHM

RLS Based Model Parameters
Identification
The terminal voltage can be expressed as Eqs. (3) and (4).

Utk = 8kθk (3)

Utk = (1− η1)OCVk + η1Utk−1 + η2Ik + η3Ik−1 (4)

We suppose that,

8k = [1,Utk−1, Ik, Ik−1] (5)

Hence, we can get Eq. (6).

θk = [(1− η1)OCVk, η1, η2, η3]
T (6)
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FIGURE 2 | IO testing current profile and results. (A) Current profile; (B) Model 1; (C) Model 2 (discharge); (D) Model 2 (charge).

The parameters of the first-order RC model can be expressed as
Eq. (7).

R0 =
η3 − η2

1+ η1
,Rp =

2(η3 + η1η2)

η2
1 − 1

,Cp =
−(1+ η1)

2

4(η3 + η1η2)
(7)

Equations (3)–(6) can be updated according to the iterative
computational procedure of the RLS as shown in Eq. (8):

Kk = Pk−18
T
k [8kPk−18

T
k + λ]−1,

θ̂k = θ̂k−1 + Kk[yk −8kθ̂k−1]

Pk = 1
λ
[E′ − Kk8k]Pk−1

(8)

where θ̂k represents the prediction of the parameter vector θk; Kk
and Pk are gain matrix and error covariance matrix, respectively,
λ is forgetting factor; E′ represents the identity matrix.

PF Based Battery State Estimation
The PF algorithm has been widely applied to simulate non-linear
systems without linearization. Hence, it is applied to estimate the
battery state here.

SoC can be defined as Eq. (9).

SoCk = SoCk−1 −
ηCIk−11t

Ca
(9)

where Ca denotes the current maximum available capacity of the
battery; ηC represents the Ah efficiency which refers to the total
discharge capacity divided by the total charge capacity.

The space-state equation of the nonlinear system can be
described as Eq. (10).{

Zk = f ′(Zk−1, uk−1)+W
′ ′

k−1 = AZk−1 + B+W
′ ′

k−1
yk = h′(Zk, uk)+ v

′ ′

k = DZk + E+ v
′ ′

k
(10)
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FIGURE 3 | The first-order RC battery model.

where Zk is the state vector of the system; W
′ ′

k−1 and v
′ ′

k
are the process noise and the measurement noise with the
covariance matrices Q

′

and R
′

, respectively; A, B, D, and E are
coefficients matrices.

Taking dynamic electrical characteristics in Eqs. (2) and (9)
into consideration, we define Eq. (11),

Zk =
(
SoCk,Upk

)T (11)

Hence, parameters in Eq. (15) can be expressed as Eq. (17).

A =
(

1, 0
0, λ

)
,B =

(
−Ik
Ca
(1− λ)Rpk−1Ik−1

)
,

D =
(
g(SOCk)

SOCk
,−1

)
,E = (−IkRk)

(12)

We substitute Zk,A,B,D,E into iterative computational formula
based on the particle filter, then Upk and SoCk can be solved
in real-time. The iterative computational procedure of PF is
shown as follows.

For k = 0,
Step 1: initialization,
Generate m particles of initial state vector randomly through

standardized normal distribution, i.e., Ẑ+0,j(j = 1, 2, ...,m), and
define state and measurement noise covariance Q

′

0,R
′

0 .
For k = 1, 2,. . . ,∞,
Step 2: state vector prior estimate,

Ẑ−k,j = AẐ+k−1,j + B+W′′k−1 (13)

Step 3: measurement update,

yk,j = DẐ−k,j + E+ v′′k (14)

Step 4: solve the likelihood probability density of prior state,

qj = exp

(
−(Utk − yk,j)2

2R0

)
(15)

Step 5: normalize the likelihood probability density,

qj = qj

/ m∑
j=1

qj (16)

Step 6: resampling based on the likelihood probability density,
Generate posterior particles Ẑ+k,j based on

multinomial resampling.
Step 7: output the state posterior estimate,

E(Zk|yk) =
1
m

m∑
j=1

Ẑ+k,j (17)

EVALUATION OF THE HYSTERESIS
EFFECTS ON SoC ESTIMATION

In this section, the effects of the MH on the estimation
performance are systematically evaluated via different current
profiles at high temperature (40◦C), room temperature (22◦C),
and low temperature (0◦C) from both the discharging direction
and the charging direction of the battery.

Evaluation by Discharging Current
Profiles
Discharging current profiles used in this section can be found
in Figures 4A–C show different kinds of dynamic loading
conditions which are commonly used in EVs. Details of these
profiles can be found in the engineering technical manual of
EVs named “Freedom CAR Battery Test Manual for Power-
Assist Hybrid Electric Vehicles” and “PNGV Battery Test Manual
Partnership for a New Generation of Vehicles.” As can be seen
from Figure 4D, the constant current discharging (CCD) profile
is also set to evaluate the performances of the above OCV
models in the steady discharging condition of the battery. The
discharging C-rate is set to 1◦C.

It is of significance to acquire accurate battery parameters for
precise SoC estimation. Take parameters identification results of
the battery cell tested at room temperature (22◦C) via the DST
dynamic loading profile as an example, the identified results are
shown in Figure 5.

Figures 5A–C show the identified R0, Rp, Cp, respectively.
From the results, it can be observed that the four parameters
are all time-varied and SoC-depended. These parameters jitter
irregularly as the discharge time or SoC varies. Figure 5D
represents the comparison result of the measured Ut with the
estimated one. It can be seen that the former is very close to the
latter. The maximum estimate error is about 15mV.

Evaluation Under the DST Dynamic Load Profile
In this section, the two types of OCV models are first evaluated
by the DST dynamic load condition at three battery operating
temperatures, and the results are shown in Figure 6.

Figures 6A,B describe the estimated SoCs and their
corresponding errors at 40◦C, respectively. It can be observed
that model 1 performs better than model 2. The maximum
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FIGURE 4 | Discharging current profiles. (A) DST; (B) UDDS; (C) HPPC; (D) CCD.

absolute error (MAXE) of model 2 is 5.3%, while that of model 1 is
just 3.39%. It is clear that the model with the discharging MH can
provide higher prediction accuracy than the traditional method.

Figures 6C,D compare the two models from the aspect of
estimated SoCs and estimation errors at 22◦C, respectively. We
can see that the estimated SoC by model 1 is closer to the
true value than that by model 2 in most SoC sub-intervals. The
MAXEs of estimation by model 2 and model 1 are 2.50 and 1.15%,
respectively, which proves the effectiveness of model 1.

Similarly, Figures 6E,F show estimated SoCs and the
corresponding estimation errors of the two models at 0◦C. The
MAXE of estimation based on model 2 represents 8.81%, while
model 1 can further drop the index to 7.86%, which still illustrates
the better prediction performance of the MH-based model than
that of model 2.

In addition to the MAXE, the mean absolute error (MAE)
and the root mean square error (RMSE) are also employed to
evaluate the models’ performances as shown in Table 1. For the
three battery operating temperatures, the MAXE, the MAE, and
the RMSE can be reduced by about 26, 29, and 28% by model 1 on
average compared with model 2, respectively. Besides, the ratio of
SoC estimation reduction by the model 1 in terms of the MAXE
and the MAE at three temperatures can highly reach about 54 and

51% at the battery operating temperature of 22◦C, respectively.
Hence, we can conclude that the MH-based model is superior to
the simplified model under the DST dynamic loading condition
at all three ambient temperatures.

Evaluation Under the UDDS Dynamic Load Profile
In this section, the UDDS dynamic loading profile is employed
to conduct the evaluations. Figure 7 compares the estimation
results of model 1 and model 2. Overall, for all the three testing
temperatures, the estimated SoCs and the true values nearly
overlap in the high SoC sub-interval, while the difference of
estimations based on these two models enlarges in the remaining
SoC range. Figure 7B shows the advantage of model 1 at 40◦C,
and it can control the MAXE within 3.62%, while that of model
2 highly reaches 6.07%. At 22◦C, the MAXE of model 1 and
model 2 are 3.96 and 5.79%, respectively, as shown in Figure 7D.
Besides, we can see from Figure 7F that when the battery testing
temperature drops to 0◦C, the index of the above two models are
7.42 and 8.31%, respectively.

Like cases in Table 1, another two types of statistical indices
are shown in Table 2. Obviously, model 1 can outperform
model 2 for all three indices. As a result, for the three battery
testing temperatures, the MAXE, the MAE, and the RMSE can
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FIGURE 5 | Parameter identification results. (A) R0; (B) Rp; (C) Cp; (D) comparison of the estimated Ut with the measured one.

be reduced by about 26, 27, and 27% by model 1 on average,
respectively. The ratio of the MAXE and the MAE reduction can
highly reach 41 and 34% at the high temperature.

Therefore, the conclusion can be drawn that the MH-based
model can exhibit better accuracy and robustness than the
traditional one at various battery operating testing temperatures
under the UDDS dynamic loading condition.

Evaluation Under the HPPC Dynamic Load Profile
To evaluate the two kinds of models by more dynamic
loading conditions, the HPPC dynamic loading condition is also
employed in this section.

Figure 8 plots the estimation results at three temperatures.
Figures 8A,B describe the estimated SoCs and estimation

errors at 40◦C, respectively. It can be observed that model
1 can acquire more accurate SoC than model 2. The MAXE
of the estimation by model 2 is 7.82%, while that by model
1 is only 3.76%.

At 22◦C, the MAXE of estimation by model 1 and model 2 are
1.11 and 4.79%, respectively, as shown in Figure 8D. For the low
testing temperature, the index of model 1 and model 2 represent
4.15 and 6.84%, respectively, as described in Figure 8F.

Table 3 shows the estimation errors and analysis results for
the HPPC dynamic loading condition at three temperatures. We
can conclude that, compared with model 2, model 1 can further
reduce the MAXE, the MAE, and the RMSE by about 54, 53, and
53% on average, respectively. Moreover, the ratio of estimation
reduction of the MAXE can highly reach about 77% at room
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FIGURE 6 | Estimation results based on model 1 and model 2 at three temperatures via the DST. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.

temperature, and that of the MAE can reach about 70% at the
low operating temperature.

Evaluation Under the Constant Current Discharge
Profile
As stated in the above three sections, the estimation accuracy
advantage of the MH-based model has exhibited via the DST,
the UDDS, and the HPPC dynamic loading conditions at three
ambient temperatures. In this section, the two types of models

will be further evaluated by the steady discharging condition as
shown in Figure 4D.

Figure 9 shows the estimation results of the two models via the
CCD at 40◦C. As shown in Figure 9B, the SoC estimate by model
1 is closer to the true value than that by model 2. The MAXE of
model 1 and model 2 are 2.2 and 3.5%, respectively. At the room
temperature, as plotted in Figure 9D, the index of the two models
are 1.8 and 4.2%, respectively. For 0◦C, they are 1.9 and 3.9%,
respectively, as shown in Figure 9F.
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TABLE 1 | Estimate errors and analysis results for the DST dynamic loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0339 0.0115 0.0786 0.0413 –

2 0.0530 0.0250 0.0881 0.0554 25.5%

MAE 1 0.0176 0.0049 0.0414 0.0213 –

2 0.0265 0.0101 0.0530 0.0299 28.8%

RMSE 1 0.0201 0.0054 0.0469 0.0241 –

2 0.0300 0.0124 0.0571 0.0332 27.5%

FIGURE 7 | Estimation results based on model 1 and model 2 at three temperatures via the UDDS. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.
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TABLE 2 | Estimate errors and analysis results for the UDDS dynamic loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0362 0.0396 0.0742 0.0500 –

2 0.0607 0.0579 0.0831 0.0673 25.7%

MAE 1 0.0185 0.0220 0.0477 0.0294 –

2 0.0279 0.0327 0.0594 0.0400 26.5%

RMSE 1 0.0211 0.0236 0.0499 0.0315 –

2 0.0318 0.0351 0.0619 0.0429 26.6%

FIGURE 8 | Estimation results based on model 1 and model 2 at three temperatures via the HPPC. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.
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TABLE 3 | Estimate errors and analysis results for the HPPC dynamic loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0376 0.0111 0.0415 0.0301 –

2 0.0782 0.0479 0.0684 0.0648 53.5%

MAE 1 0.0156 0.0042 0.0139 0.0112 –

2 0.0320 0.0141 0.0251 0.0237 52.7%

RMSE 1 0.0177 0.0049 0.0165 0.0130 –

2 0.0377 0.0172 0.0288 0.0279 53.4%

FIGURE 9 | Estimation results based on model 1 and model 2 at three temperatures via the CCD. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.
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The estimation error and the statistic results are listed in
Table 4. From the table, we can see that model 1 outperforms
model 2 for all three indices. As a result, the MAXE, the MAE,
and the RMSE can be reduced by about 50, 48, and 48% by model
1 on average, respectively. The ratio of estimation reduction of
the MAXE can highly reach 59% at room temperature, and that
of the MAE can reach about 60% at 0◦C.

Through a systematical comparison of the estimation accuracy
of the two OCV testing methods, we can conclude that the MH-
based model can exhibit better accuracy and robustness than
the simplified model under various current load profiles at high
temperature, room temperature, and low temperature.

Evaluation by Pulse Current Profiles
Dominated by Charging
Most of the previous research concentrate on the discharging
dynamic loading condition (Li W.-H. et al., 2019; Wang et al.,
2019; Yu et al., 2019), fewer of them noted the charging process
of the battery. There is no denying the fact that, studying the
influence of the MH on SoC estimation for the charging process
of the battery is also important.

In this section, the influence of the MH on the estimation
will be further evaluated from the charging direction of the
LiNiMnCoO2 battery. To conduct the investigation, two current
profiles were set as shown in Figure 10. Among them, the

constant current and constant voltage charging (CCCVC) profile
is used to charge the batteries of EVs in practice as shown in
Figure 10A. The charging current was set to 0.5◦C.

Besides, to simulate the dynamic charging condition, the
reversed HPPC current profile from the discharging direction
to the charging direction of the battery was set as shown
in Figure 10B. This current profile will be called RHPPC
in the later text.

Evaluation Under the Constant Current Charge Profile
Figure 11 shows the estimation results based on model 1 and
model 2 at three temperatures via the CCCVC. Overall, the OCV
model with hysteresis can exhibit consistent estimation accuracy
advantages at all three temperatures. At 40◦C, the MAXE of
model 1 and model 2 are 5.17 and 7.81%, respectively, as shown
in Figure 11B. From Figure 11D, we can see that the index for
the two above models represents 3.09 and 4.49%, respectively. For
battery operating temperature of 0◦C, they are 5.88 and 9.72%,
respectively, as can be seen from Figure 11E.

Besides, from Table 5, we can observe that both the MAE and
the RMSE of the estimation are reduced by the MH-based model.
For the three battery operating temperatures, the MAXE, the
MAE, and the RMSE can be reduced by about 36, 42, and 40% by
model 1 on average compared with model 2, respectively. Besides,
the ratio of estimation error reduction by the model 1 in terms of

TABLE 4 | Estimate errors and analysis results for the CCD loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0218 0.0170 0.0193 0.0194 –

2 0.0350 0.0419 0.0386 0.0385 49.6%

MAE 1 0.0112 0.0056 0.0076 0.0081 –

2 0.0150 0.0127 0.0188 0.0155 47.7%

RMSE 1 0.0122 0.0065 0.0089 0.0092 –

2 0.0173 0.0155 0.0205 0.0178 48.3%

FIGURE 10 | Charging current profiles. (A) CCCVD; (B) RHPPC.
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FIGURE 11 | Estimation results based on model 1 and model 2 at three temperatures via the CCCVC. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.

TABLE 5 | Estimate errors and analysis results for the CCD loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0517 0.0309 0.0588 0.0471 –

2 0.0781 0.0449 0.0972 0.0734 35.8%

MAE 1 0.0338 0.0200 0.0339 0.0292 –

2 0.0520 0.0349 0.0644 0.0504 42.1%

RMSE 1 0.0366 0.0214 0.0389 0.0323 –

2 0.0559 0.0357 0.0693 0.0536 39.7%
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FIGURE 12 | Estimation results based on model 1 and model 2 at three temperatures via the RHPPC. (A) Estimated SoCs at 40◦C; (B) estimation errors at 40◦C;
(C) estimated SoCs at 22◦C; (D) estimation errors at 22◦C; (E) estimated SoCs at 0◦C; (F) estimation errors at 0◦C.

TABLE 6 | Estimate errors and analysis results for the CCD loading condition.

Statistical indices OCV model Temperature (◦C) Average indices value of
three temperatures

Ratio of error reduction by model 1

40 22 0

MAXE 1 0.0491 0.0171 0.0952 0.0538 –

2 0.0762 0.0427 0.1481 0.0890 39.6%

MAE 1 0.0200 0.0069 0.0169 0.0146 –

2 0.0337 0.0183 0.0475 0.0332 56.0%

RMSE 1 0.0239 0.0082 0.0234 0.0185 –

2 0.0382 0.0224 0.0534 0.0380 51.3%
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the MAXE and the MAE at three temperatures can highly reach
about 40 and 47% at the battery operating temperature of 0◦C,
respectively. Hence, we can conclude that the model with the
hysteresis is superior to the simplified model under the CCCVC
current profile at all three temperatures.

Evaluation Under the Pulse Current Charge Profile
To evaluate the influence of the charging direction of the MH
on the estimation under a harsh condition, the RHPPC charging
pulses current profile in Figure 10B are employed in this section.

Figure 12 plots the estimation results of the two models at
three temperatures. Figures 12A,B describe the estimated SoCs
and estimation errors at 40◦C, respectively. It can be observed
that model 1 can acquire more accurate SoC than model 2. The
MAXE of the estimation by model 2 is 7.62%, while that by model
1 is only 4.91%.

At 22◦C, the MAXE of estimation by model 1 and model 2 are
1.71 and 4.27%, respectively, as shown in Figure 12D. For the low
testing temperature, the index of model 1 and model 2 represent
9.52 and 14.81%, respectively, as described in Figure 12F.

Table 6 shows the estimation errors and analysis results for
the RHPPC dynamic loading condition at three temperatures. We
can conclude that, compared with model 2, model 1 can further
reduce the MAXE, the MAE, and the RMSE by about 40, 56, and
51% on average, respectively. Moreover, the ratio of estimation
reduction of the MAXE can highly reach about 60% at room
temperature, and that of the MAE can reach about 62%.

CONCLUSION

OCV plays a key role in correcting the state of charge estimation
bias and, thus can ensure the safety and reliability of EVs. At
present, the OCV model is commonly catched by averaging the

charging and the discharging OCVs, which ignores the influence
of the major hysteresis (MH) on SoC estimation. Some research
seems to have shown the possible influence of the discharging
MH on SoC estimation at specific scenarios. Inspired by this
phenomenon, this work systematically investigated the influence
of the MH of the LiNiMnCoO2 battery on the estimation by
diverse current profiles at various battery operating temperatures.
The RLS and the PF techniques are combined for parameters and
SoC estimations simultaneously.

The results reported the positive influence of the MH from
both the charging and the discharging directions of the battery
on enhancing the SoC estimation accuracy and robustness
under various current profiles at different ambient temperatures.
Compared with the traditional simplified method, the ratio of the
mean absolute estimation error reduction by the MH-based OCV
model can highly reach about 70%.
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