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LixFePO4 orthophosphates and fluorite- and pyrochlore-type zirconate materials are

widely considered as functional compounds in energy storage devices, either as

electrode or solid state electrolyte. These ceramic materials show enhanced cation

exchange and anion conductivity properties that makes them attractive for various energy

applications. In this contribution we discuss thermodynamic properties of LixFePO4

and yttria-stabilized zirconia compounds, including formation enthalpies, stability, and

solubility limits. We found that at ambient conditions LixFePO4 has a large miscibility

gap, which is consistent with existing experimental evidence. We show that cubic

zirconia becomes stabilized with Y content of ∼8%, which is in line with experimental

observations. The computed activation energy of 0.92 eV and ionic conductivity for

oxygen diffusion in yttria-stabilized zirconia are also in line with the measured data, which

shows that atomistic modeling can be applied for accurate prediction of key materials

properties. We discuss these results with the existing simulation-based data on these

materials produced by our group over the last decade. Last, but not least, we discuss

similarities of the considered compounds in considering them as materials for energy

storage and radiation damage resistant matrices for immobilization of radionuclides.

Keywords: orthophosphates, atomistic simulations (ab-initio calculations), energy storage materials, ceramics,

thermodynamics, solid solution, solid-state electrolyte

1. INTRODUCTION

MPO4 orthophosphates, with M cations being transition metals, rare-earth elements or actinides,
are ceramic materials of interest in various research fields, including geochronology (Williams
et al., 2007), geothermometry (Andrehs andHeinrich, 1998;Mogilevsky, 2007), energy storage (Iyer
et al., 2006; Yamada et al., 2006; Dunn et al., 2015; Dong et al., 2017; Cerdas et al., 2018; Li et al.,
2018; Phan et al., 2019), and nuclear waste management (Ewing and Wang, 2002; Neumeier et al.,
2017a; Schlenz et al., 2018), to name but a few. Most of the potential applications come from high
durability (e.g., radiation damage resistance) of these materials (Neumeier et al., 2017a; Phan et al.,
2019). There exist large varieties of phosphate-based ceramics of different crystalline structures
(e.g., cheralite, apatites, olivine, kosnarite, see Iyer et al., 2006; Neumeier et al., 2017a; Phan et al.,
2019). The orthophosphates of interest for energy storage, FePO4 and LiFePO4, have olivine-type
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structure of orthorombic space group symmetry of Pnma in
which Fe exists in an octahedral environment (Iyer et al.,
2006; Maxisch and Ceder, 2006, see Figure 1 for visualization
of the structures). It consists of eight-fold coordinated Fe3+

cations, which become reduced to Fe2+ upon incorporation of Li.
Besides, there exist less stable FePO4 monoclinic, orthorombic,
and trigonal phases with Fe in tetrahedraly coordinated
crystallographic positions (Iyer et al., 2006; Yamada et al., 2006;
Dong et al., 2017). LiFePO4 materials are one of the best
known candidates for energy storage electrodes (Dunn et al.,
2015; Cerdas et al., 2018). These exhibit high theoretical energy
density of 170mAh/g and voltage of 3.5 V (Phan et al., 2019).
Because of this, these materials are considered for large scale
energy storage devices, including batteries for hybrid and electric
automobiles (Prosini et al., 2002; Dunn et al., 2015; Cerdas et al.,
2018). Intercalation of Li ions into FePO4 results in formation
of a solid solution between Li cations and vacant sites (Phan
et al., 2019). Depending on the sizes of mixing species, a solid
solution compounds could form a thermodynamically stable
solid solution or a compound with a mixture of two phases, each
rich in one of the cations (Kowalski and Li, 2016; Ji et al., 2019a).
The second case indicates formation of a temperature dependent
miscibility gap. The two endmember phases may be of the same
type, like in the case of LixFePO4, or different phases, like in the
monazite-xenotime system (Mogilevsky, 2007; Ji et al., 2019a).
The formation of miscibility gap is correlated with the maximum
solubility (Ji et al., 2019a). Such a temperature-dependent
maximum solubility offers opportunity to use such a system
as geothermometer (Andrehs and Heinrich, 1998; Mogilevsky,
2007). It is known from experiment that LixFePO4 solid solution
posses a wide miscibility gap at ambient temperature (Yamada
et al., 2006;Meethong et al., 2007; Li et al., 2018; Phan et al., 2019).
In particular, studies of Yamada et al. (2006) indicate relatively

FIGURE 1 | Structures of FePO4 (left) and LiFePO4 (right).

low Li solubility limits in LixFePO4 system at x = 0.05 and
0.89. The thermodynamics of such a system, however, although
has been modeled by CALPHAD method (Phan et al., 2019), has
not been modeled in details using ab initio atomistic modeling
methods and the results of various studies differ substantially
(Phan et al., 2019).

Zirconium-based ceramics have been shown to posses
interesting ion-conduction characteristics (Diazguillen et al.,
2008; Mandal et al., 2008; Xia et al., 2010; Anithakumari
et al., 2016; Li and Kowalski, 2018), with yttria stabilized
zirconia being one of the fastest ionic conductors (Kilo et al.,
2003; Krishnamurthy et al., 2005b). It is thus used as solid
electrolyte in various energy storage devices (Zakaria et al.,
2020). The fast oxygen conduction properties are associated
with formation and distribution of vacant sites (in fluorite and
pyrochlore, Bukaemskiy et al., 2021) and interesting short- and
long-range ordering phenomena (Wuensch, 2000; Yamamura,
2003; Anithakumari et al., 2016; Drey et al., 2020; Kowalski,
2020; Bukaemskiy et al., 2021). For instance, certain pyrochlore
compounds exhibit high ionic conductivity (e.g., Eu2Zr2O7,
Yamamura, 2003) and form a stable, cation-disordered solid
phase (defect fluorite, Li et al., 2015). Such phases show
interesting short- and long-range ordering (Shamblin et al.,
2016; Drey et al., 2020; Kowalski, 2020; Bukaemskiy et al.,
2021), with distribution of vacancies determining the amplitude
of pre-exponential factor and efficiency of ionic conduction
(Bukaemskiy et al., 2021). For instance, Bukaemskiy et al.
(2021) demonstrated that the maximum of ionic conductivity
in YO1.5 − ZrO2 system occurs at x = 0.146 due to vacancy
avoidance phenomenon and related vacancy jump probability.
This correlates well with the existing ionic conductivity data
(Bukaemskiy et al., 2021). Cubic phase of zirconia (ZrO2)
becomes stabilized upon doping with tri-valent elements, e.g., Y

Frontiers in Energy Research | www.frontiersin.org 2 March 2021 | Volume 9 | Article 653542

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Kowalski et al. LixFePO4 Electrode and Zircon-Based Materials

(Li et al., 1994; Kilo et al., 2003; Krishnamurthy et al., 2005b) at
about 8% content of dopant. The formed solid solution shows
very high ionic conductivity that increases significantly with
dopant amount (Ioffe et al., 1978; Bukaemskiy et al., 2021). These
compounds are thus considered as solid electrolyte for energy
storage devices (Zakaria et al., 2020).

In the last two decades, atomistic modeling became a widely
used research technique in various research fields, including
energy materials (Chroneos et al., 2013; Jahn and Kowalski,
2014; Wu et al., 2019). We used it intensively over the
past decade for computation of, for instance, various physical
and chemical properties of orthophosphate- and zircon-based
ceramics (e.g., Kowalski et al., 2015; Ji et al., 2019a). This is
because steady advancements in high performance computing
and computational software, especially in ab initio methods-
based codes, allows nowadays for computation of complex
systems containing hundreds of atoms from first principles
(Jahn and Kowalski, 2014). Regarding ceramic compounds
considered here, computational studies have been used to deliver
information on: the structural (Rustad, 2012; Feng et al., 2013;
Blanca-Romero et al., 2014; Beridze et al., 2016; Huittinen
et al., 2017), the electronic structure (Tang and Holzwarth, 2003;
Blanca-Romero et al., 2014; Kowalski et al., 2017a; Lee et al.,
2017), the elastic (Wang et al., 2005; Feng et al., 2013; Ali
et al., 2016; Kowalski and Li, 2016; Ji et al., 2017a; Kowalski
et al., 2017b), the thermodynamic (Mogilevsky, 2007; Feng
et al., 2013; Li et al., 2014; Kowalski et al., 2015, 2016; Ji
et al., 2017b; Neumeier et al., 2017b; Eremin et al., 2019), the
thermochemical (Rustad, 2012; Beridze et al., 2016; Kowalski,
2020), the electrochemical (Krishnamurthy et al., 2005b; Lee
et al., 2017), and the radiation damage resistance (Kowalski
et al., 2016; Li et al., 2016; Ji et al., 2017c; Jolley et al., 2017)
parameters as well as materials at high-pressure (López-Solano
et al., 2010; Stavrou et al., 2012; Ali et al., 2016; Shein and
Shalaeva, 2016; Gomis et al., 2017). The relevant research activity
increases steadily worldwide, with most of the papers published
just recently. One important aspect is the correct calculations
of compounds with d- and f - elements that contain strongly
correlated electrons [e.g., Fe, Ni, lanthanides (Ln), actinides
(An)]. In a series of papers we have shown that standard
DFT approach often fails for such cases and these compounds
must be carefully computed, including proper accounting for
the correlation effects (Beridze and Kowalski, 2014; Blanca-
Romero et al., 2014; Kowalski et al., 2015; Li and Kowalski,
2018). These simulations must be performed with methods
beyond the standard DFT+U approach and include derivation
of the Hubbard U parameter and careful choice of projectors
for estimation of occupancy of d− and f− levels within the
DFT+U scheme (Maxisch and Ceder, 2006; Kvashnina et al.,
2018; Kick et al., 2019). In particular, we apply the linear response
method (Cococcioni and de Gironcoli, 2005) with Wannier
orbitals as representation of d or f states (Kvashnina et al., 2018)
and here we will demonstrate impact of these procedures on
the estimation of formation enthalpies and solubility limits of
LixFePO4 compound.

In this contribution we provide an overview of the recent
atomistic modeling activities on the orthophosphates and

zirconates, focusing on the information that have been delivered
by atomistic modeling activities at Forschungszentrum Jülich
and that allowed on many occasions for better characterization
of these materials, including long-term thermodynamic
stability, thermochemical parameters, and thermal conductivity.
Besides such overview, we present results of computation of
thermochemical and thermodynamic parameters of LixFePO4

solid solution, with focus on the formation of miscibility gap in
this system, as well as simulation of yttria-stabilized zirconia with
focus on prediction the phase stability and ionic conductivity in
this class of materials. We especially highlight a cross-linking,
interdisciplinary character of our research, from which the
general science community could highly benefit.

2. COMPUTATIONAL APPROACH

In all ab initio1 calculations discussed here we used a density
functional theory (DFT)-based quantum chemistry approach
and calculations were performed with Quantum-ESPRESSO
simulation package (Giannozzi et al., 2009). We applied the
PBEsol exchange-correlation functional (Perdew et al., 2008),
the ultrasoft pseudopotentials to represent the core electrons
of the atoms (Vanderbilt, 1990) and the plane-wave energy
cutoff of 50 Ryd. The PBEsol functional is specifically selected
because it correctly reproduces slowly varying electron density
limit and results in good structural parameters of solids (Perdew
et al., 2008). This is important for consideration of, for instance,
thermodynamics of solid solutions (Li et al., 2014; Kowalski and
Li, 2016; Ji et al., 2019a). Following our broad experience on
computation of lanthanide orthophosphates and zirconates (e.g.,
Blanca-Romero et al., 2014; Li et al., 2015; Beridze et al., 2016)
we applied the self-consistent DFT+U approach. The DFT+U
calculations were performed with the Hubbard U parameter
values computed from first principles using the linear response
method of Cococcioni and de Gironcoli (2005). In order to
apply realistic projectors for occupations of d orbitals of Fe we
used Poor Man Wannier scheme implemented in Quantum-
ESPRESSO. This computational setup was extensively tested by
us in several studies and, among others, proved to give very
good results for orthophosphates and zirconates (Blanca-Romero
et al., 2014; Beridze et al., 2016; Finkeldei et al., 2017). The
activation barriers were computed using Nudged Elastic Band
(NEB) method implemented in Quantum-ESPRESSO, with 10
images and climbing image procedure to compute the transition
state. The exponential pre-factors were computed with the aid of
transition state theory (Moynihan et al., 1982) and probability of
vacancy migration derived by Bukaemskiy et al. (2021), so that
the ionic conductivity, σ , is estimated using the modified here
formula of Moynihan et al. (1982):

σ = [15.354x(1− 2x)

(

1− 3x

1− 2x

)2

]n(Ze)2/(6kbT)ν0d
2

exp(−Ea/(kbTNa)), (1)

1In this contribution we call DFT methods an ab initio approach as the exchange-
correlation functionals utilized in our studies were designed based on pure-
theoretical considerations.
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TABLE 1 | The computed Hubbard U parameters for Fe in Fe2O3, FePO4 and

LiFePO4 compounds.

Compound Redox state of Fe Hubbard U parameter

Fe2O3 Fe(III) 3.9

FePO4 Fe(III) 3.8

LiFePO4 Fe(II) 3.3

Values are reported in eV.

where Ze is the charge of the carrier, kb is the Boltzmann constant,
Na is Avogadro number, d is the distance of the jump, Ea is the
activation barrier, T is the temperature and ν0 is the attempt
frequency. The first part in the square bracket reflects the vacancy
migration probability contribution to the pre-exponential factor
derived by Bukaemskiy et al. (2021). The attempt frequency ν0
was estimated from the computation of phonon spectra of the
initial (IS) and transition states (TS), as

ν0 =

∏3N−3
i νi,IS

∏3N−4
i νi,TS

. (2)

The computation of LixFePO4 phases were performedwith 2x2x1
supercells (96 atoms for FePO4 and 112 atoms for LiFePO4

phases) using the 2x2x2 k-point grid. The oxides were computed
as: Fe2O3 (Pnmm symmetry, with supercell containing 30 atoms
and 4x6x2 k-point grid), hexagonal P2O5 as is in Blanca-Romero
et al. (2014) and Y2O3 as cubic oxide. Themagnetic arrangements
in iron phases were computed using the models of Whittingham
et al. (2005) and Lee et al. (2017).

The Hubbard U parameters computed with the linear
response method are listed in Table 1. As in our previous studies
(Beridze and Kowalski, 2014; Beridze et al., 2016; Kvashnina et al.,
2018; Sun et al., 2020) we see strong dependence on the Fe redox
state, with the U parameter for Fe(III) being∼0.5 eV larger than
for Fe(II). This is well-consistent with previous studies of FePO4

and LiFePO4 phases by Maxisch and Ceder (2006), who obtained
4.9 and 3.7 eV for both phases (taken as effective value, Ueff =

U − J), respectively.

3. RESULTS AND DISCUSSION

3.1. Structural Data
The first test of a computational method is its ability to reproduce
themeasured lattice parameters of the computed crystalline solid.
The lattice parameters of considered materials were measured
by different studies and are well-known. These are collected in
Table 2 and compared to the computed data.

Our previous studies showed that the structural parameters
of lanthanide-orthophosphates are very sensitive to the applied
computational method, especially to the exchange-correlation
functional (Blanca-Romero et al., 2014). A correct treatment
of strongly correlated 4f electrons also plays an important
role in those cases. Here, with our computational setup we
got much better fit to the measured data than Maxisch
and Ceder (2006), who applied the PBE exchange-correlation

TABLE 2 | The computed and measured lattice parameters of Fe2O3, FePO4,

LiFePO4 and cubic zirconia compounds.

Compound a b c Vol. Meth. References

Fe2O3 5.06 5.06 13.79 305.66 DFT+U This study

Fe2O3 4.95 4.95 13.69 291.35 DFT This study

Fe2O3 5.03 5.03 13.74 301.76 Exp. Finger and Hazen, 1980

FePO4 9.92 5.82 4.83 278.91 DFT+U This study

FePO4 9.90 5.84 4.83 279.66 DFT This study

FePO4 9.94 5.93 4.88 288.06 DFT Maxisch and Ceder, 2006

FePO4 9.96 5.88 4.86 297.05 DFT+U Maxisch and Ceder, 2006

FePO4 9.78 5.56 4.68 254.63 DFT Jin et al., 2013

FePO4 9.81 5.79 4.78 271.70 Exp. Zhu et al., 2014

FePO4 9.82 5.79 4.79 272.36 Exp. Padhi et al., 1997

LiFePO4 10.34 6.02 4.71 292.75 DFT+U This study

LiFePO4 10.24 5.98 4.68 287.11 DFT This study

LiFePO4 10.39 6.04 4.73 297.05 DFT Maxisch and Ceder, 2006

LiFePO4 10.45 6.05 4.74 299.54 DFT Maxisch and Ceder, 2006

LiFePO4 10.06 5.84 4.71 276.43 DFT Jin et al., 2013

LiFePO4 10.33 6.00 4.69 291.02 Exp. Zhu et al., 2014

LiFePO4 10.23 6.00 4.69 288.12 Exp. García-Moreno et al., 2001

ZrO2 5.07 130.32 DFT This study

ZrO2 5.04 128.02 DFT Zhao and Vanderbilt, 2002

ZrO2 5.11 133.43 DFT Krishnamurthy et al., 2005b

ZrO2 5.13 135.36 Exp. Ploc, 1981

ZrO2 5.09 131.87 Exp. Zhao and Vanderbilt, 2002

Y− ZrO2 (8%) 5.18 138.99 DFT This study

Y− ZrO2 (8%) 5.14 135.96 Exp. Krogstad et al., 2011

Y− ZrO2 (8%) 5.14 135.80 Exp. Pomfret et al., 2005

functional that tends to overestimate lattice parameters and
volumes, which is also evident in the data collected in Table 2.
Blanca-Romero et al. (2014) performed extensive tests of the
capability of different DFT-based approaches to reproduce the
measured lattice parameters and bond-distances of monazite-
type lanthanide-orthophosphates. In that paper, we found that
the standard DFT method with explicitly computed 4f electrons
overestimates the lattice parameters and bond-lengths by up
to 3%, which is consistent with previous studies (Wang et al.,
2005; Rustad, 2012). A very good match to the experimental
values of structural parameters was achieved applying the
parameter free DFT+U method, with the PBEsol exchange-
correlation functional (Perdew et al., 2008) and the Hubbard
U parameters derived ab initio. An improved description of
structures by the PBEsol exchange-correlation functional is an
important property of that functional. It recovers the known
solution for slowly varying electron densities and with that it
improves the description of structural parameters over widely
used GGA functionals such as PBE (see discussion by Perdew
et al., 2008). It is evident also for zirconate-based materials.
In our past studies of Nd2−xZr2+xO7+x/2 compound, with the
PBEsol exchange-correlation functional we got perfect match to
the lattice parameter in case of the pyrochlore phase (Finkeldei
et al., 2017).
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TABLE 3 | The computed projected total number of d electrons per Fe atom in

Fe2O3, FePO4 and LiFePO4 compounds using the DFT+U approach with atomic

orbitals and Wannier functions as projectors.

Compound Redox state DFT+U DFT+U+Wannier Expected

Fe2O3 Fe(III) 6.29 5.00 5.0

FePO4 Fe(III) 6.16 5.00 5.0

LiFePO4 Fe(II) 6.48 5.99 6.0

In the most recent contribution we computed the MUO4

compounds with M = Ni, Fe, Co, Cd, and found that only
by using the correct projectors for estimation of occupation
of d orbitals, e.g., Wannier functions, we could reproduce
experimentally seen structural distortions (Murphy et al., 2021).
The problem arises from the fact that with the standard DFT+U
approach, when using atomic orbitals as projectors, the total
occupancy of the d or f states of interest is much higher than the
actual one (Kick et al., 2019; Murphy et al., 2021). As illustrated
in Table 3, in our case it gives ∼1.3 excess electrons for Fe(III)
and∼0.5 for Fe(II). This is cured when usingWannier orbitals as
projectors. Unfortunately, the forces and cell optimizations with
this scheme are not yet implemented in Quantum-ESPRESSO
or any equivalent codes, so we could not perform geometry
optimization with such a more realistic approach.

3.2. Formation Enthalpies
The formation enthalpies from oxides for series of lanthanide
orthophosphates have been measured by Ushakov et al. (2001)
and of FePO4 and LiFePO4 by Iyer et al. (2006). Rustad (2012)
noticed that there is a systematic offset between the computed
and measured values for LnPO4 of ∼40 kJ/mol, with the
computed enthalpies being less exothermic. Blanca-Romero et al.
(2014) have shown that this offset is present also in the DFT+U
calculations and is to a large extent Ln-cation independent,
which rules out the 4f electrons correlations as a contributing
factor. They attributed this to the overestimation of P-O bond
lengths, and thus volumes, of the LnPO4 and P2O5 compounds.
Beridze et al. (2016) have found an identical offset for xenotime
phase. When a constant shift of ∼30 kJ/mol is applied to the
computed formation enthalpies, the measured values are nicely
reproduced. The computed formation enthalpies for FePO4

and LiFePO4 compounds are reported in Table 4. It is evident
that DFT heavily underestimates the values (taking absolute
values) by 40–100 kJ/mol. This is significantly improved with
the DFT+U approach with an error of 20 kJ/mol. Best result,
however, is obtained with the DFT+U method when Wanner
functions are used as projectors of Fe d states occupations.
In this scheme, the computed formation enthalpies are within
10 kJ/mol. Accurate prediction of formation enthalpies are
crucial for correct estimate of thermodynamic parameters of solid
solution, including solubilities (section 3.4).

The most stable phase of ZrO2 is monoclinic. However, upon
doping with tri-valent elements it undergoes phase transition
to cubic phase, with possible triclinic phase as an intermediate.
The experimental evidence shows transition to that phase at

TABLE 4 | The computed here with different methods and measured (Iyer et al.,

2006) formation enthalpies from oxides of FePO4 and LiFePO4 compounds.

Compound DFT DFT+U DFT+U (Wannier projectors) Exp

FePO4 −80 −104 −123 −113

LiFePO4 −52 −177 −153 −152

The energies are reported in kJ/mol.

∼8% of YO1.5 (Lee et al., 2003; Götsch et al., 2016; Ahamer
et al., 2017). In Figure 2, we show the results of computation of
formation enthalpies for the three phases of ZrO2 (monoclinic,
tetragonal, and cubic). The results are plotted together with the
experimental data of Lee et al. (2003). The computed values
show clearly that at ∼ 8% content of Y the enthalpy of cubic
phase becomes the lowest and that phase most stable, which
is well consistent with the aforementioned experimental data.
Moreover, the computed formation enthalpy as a function of Y
content is well consistent with the measured values. Also the
computed enthalpy difference between monoclinic and cubic
phases of ∼14 kJ/mol is well consistent with the previous
measurements and estimates (ranging from 6 to 22 kJ/mol, with
the best measured value of 10 kJ/mol, Lee et al., 2003).

3.3. Elastic, Thermodynamic, and Thermal
Conductivity Parameters
Besides formation enthalpies, our previous studies show
good ability of atomistic modeling to predict the elastic,
thermodynamic, and thermal parameters of considered systems.
Li et al. (2014), Kowalski and Li (2016), and Kowalski
et al. (2017b) computed the elastic parameters of series of
lanthanide orthophosphates and obtained good agreements with
the available experimental data. With these computed data they
provided good estimates of parameters that are key for modeling
of solid solutions within these compounds. Maxisch and Ceder
(2006) computed elastic parameters of FePO4 and LiFePO4

compounds, which we will use for estimates of thermodynamic
parameters of solid solutions in LixFePO4 system (section 3.4).
In the follow-up studies of lanthanide phosphate we computed
heat capacities for series of these compounds and explained
the quasirandom-like behavior of heat capacity along lanthanide
series by the lanthanide cation-dependent contribution from
thermal excitation of 4f electrons (Schottky effect, Kowalski et al.,
2015, 2017b; Ji et al., 2017a). Ji et al. (2019b) computed thermal
conductivity for series of lanthanide phosphates and were able
to derive accurate information on phonon mean free path in
these systems. These studies demonstrate that with appropriate
computational setup, accurate information on various physical
parameters can be delivered by atomistic simulations and
materials effectively screened for desired physical characteristics.
This has been used by us to deliver crucial information on
orthophosphate-based ceramics for immobilization of actinides
(Huittinen et al., 2017, 2018; Ji et al., 2019a).

Besides computing orthophosphate-type ceramics, we derived
various parameters for fluorite- and pyrochlore-type compounds.
Among those, with atomistic modeling we computed defect
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FIGURE 2 | The computed formation enthalpies of YO1.5 − ZrO2 system. The lines represent results for monoclinic (dashed green), trigonal (dot-dashed red), and

cubic (solid black) phases. The data comes from Lee et al. (2003).

formation energies (Li et al., 2015; Li and Kowalski, 2018),
barriers for oxygen diffusion (Li and Kowalski, 2018; Bukaemskiy
et al., 2021), structural parameters (Finkeldei et al., 2017,
2020; Bukaemskiy et al., 2021), formation enthalpies (Finkeldei
et al., 2017; Kowalski, 2020), and properties of doped systems
(Finkeldei et al., 2017, 2020). Interestingly, we found that ability
of a material to effectively conduct oxygen is also responsible
for enhanced radiation damage resistance of selective pyrochlore
compounds and stability of defect pyrochlore (defect fluorite)
phase (Li et al., 2015; Li and Kowalski, 2018). In addition,
Li and Kowalski (2018) have shown that the formation of
split vacancy state for pyrochlore lanthanide-zirconates with
lanthanide cations after Eu is responsible for the maximum ionic
conductivity of Eu2Zr2O7 pyrochlore (Yamamura, 2003).

3.4. Solid Solutions and Solubility
Formation and thermodynamic stability of solid solutions
is a topic of studies in various research fields, including
battery research (Meethong et al., 2007; Li et al., 2018; Phan
et al., 2019). In the past we published a series of studies on
lanthanide phosphate ceramic-type solid solutions in the context
of geothermometry and nuclear waste management (Li et al.,
2014; Kowalski and Li, 2016; Hirsch et al., 2017; Kowalski et al.,
2017b; Neumeier et al., 2017b; Ji et al., 2019a). This is because
the information gained allows for the assessment of long term

stability of ceramic nuclear waste forms against phase separation.
It was shown experimentally (Popa et al., 2007; Li et al., 2018;
Phan et al., 2019) and by ab initio simulations (Li et al., 2014;
Kowalski and Li, 2016) that single phase orthophosphate-based
solid solutions are highly regular. The excess enthalpy of mixing,
HE, of a A1−xBxPO4 mixed cation compound could be described
by a simple equation (Popa et al., 2007):

HE = Wx(1− x), (3)

where W is a Margules interaction parameters (Prieto, 2009). A
solid solution is stable against formation of a miscibility gap if
W < 2RT, where R is the gas constant. It has been demonstrated
experimentally (Yamada et al., 2006; Li et al., 2018; Phan et al.,
2019) that LixFePO4 solid solution has a wide miscibility gap, for
x between 0.05 and 0.89 at room temperature. However, there is a
problem with derivation of consistent model for thermodynamic
parameters of mixing for this system, including mixing enthalpy
or Margules interaction parameters (Phan et al., 2019). It is
thus of great interest to characterize W parameter for LixFePO4

system using the computational methods that were proven by us
for lanthanide phosphates (Kowalski and Li, 2016; Ji et al., 2019a).

The first systematic ab initio calculations ofW parameters for
monazite-type, orthophosphate solid solutions were performed
by Li et al. (2014). In follow-up studies (Kowalski and Li, 2016),

Frontiers in Energy Research | www.frontiersin.org 6 March 2021 | Volume 9 | Article 653542

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Kowalski et al. LixFePO4 Electrode and Zircon-Based Materials

we explained the quadratic dependence of W parameter on the
difference in molar volumes of endmembers (1V) by a strain
energy-based model, in which

W =
E

6V
(1V)2, (4)

where E is the Young’s modulus and V is the volume. These
studies show that 1V is an important parameter that determines
the value of W parameter. Considering the elastic properties of
both endmember phases, this equation can be also written as
(Kowalski and Li, 2016):

W =
2GABB

(3BB + 4GA)V
(1V)2, (5)

where GA is the shear modulus of the doped phase and BB is the
bulk modulus of the dopant phase. The Young’s, shear and bulk
moduli of FePO4 and LiFePO4 phases as computed by Maxisch
and Ceder (2006) are given in Table 5. The values of Margules
interaction parameter computed with the Equations (4) and (5)
are also reported. These values are too low and would result in
thermodynamically stable solid solution at all Li content (such
forms at room temperature for W < 5 kJ/mol, Li et al., 2014),
which is inconsistent with experimental data of Yamada et al.
(2006).

For lanthanide orthophosphates, Neumeier et al. (2017b)
compared the derived ab initio W parameters with the
calorimetric measurements of La1−xLnxPO4 (Ln = Eu, Gd) solid
solutions. The measured values are smaller than the computed
ones. The reason for this discrepancy is the difference in the
value of measured and computed 1V . When Neumeier et al.
(2017b) used the measured 1V values and rescaled the ab initio
computed values according to Equation (4) as:

W =

(

1Vexp

1Vcomp.

)2

Wcomputed, (6)

they obtained a good match to the measured values. However,
in our estimate we used the experimental volumes (Table 2)
and any such a correction would require significant error in
one of the reported volumes. In order to obtain the Margules
interaction parameters that are consistent with the measured
solubilities (Yamada et al., 2006, see below), instead of the
reported 1V = 20Å3 between the two endmember phases it

TABLE 5 | The computed by Maxisch and Ceder (2006) with the DFT+U method

Young’s (E), shear (G) and bulk moduli (B) for FePO4 and LiFePO4 compounds.

The values are given in GPa.

Compound E G B W (4) W
(5)
1,2 Ws

1,2

FePO4 125.0 51.4 73.6 4.6 4.4 8.0

LiFePO4 123.9 48.4 93.9 4.6 3.8 6.4

W (4), W
(5)
1,2, and Ws

1,2 are the Margules interaction parameters estimated from Equations

(4), (5), and solubility data of Yamada et al. (2006) (with Equations 7 and 8), respectively.

should be 1V = 26Å3. Our computed volumes, however, give
even smaller difference of 1V = 14Å3 (Table 2).

The experimental maximum solubilities of Yamada et al.
(2006) show slightly asymmetric solid solution with maximum
solubility of Li in FePO4 of x1 = 0.05 and content/depletion
of Li in LiFePO4 of x2 = 0.89. Such an offset between both
solubilities is consistent with the prediction of Equation (5). With
these measured solubilities, the Margules interaction parameters
can be derived. The maximum solubilities x1 and x2 at the
two ends of slightly asymmetric solid solution or the relevant
Margules interaction parameters W1 and W2 can be derived
by solving self-consistently two equations (Mogilevsky, 2007; Ji
et al., 2019a):

W1(1− x1)
2 + RT ln(x1/(1− x2)) = W2x

2
2, (7)

W2(1− x2)
2 + RT ln(x2/(1− x1)) = W1x

2
1. (8)

These equations realize chemical equilibrium between Li
(equilibrium concentration of x1 in FePO4) and Li-vacancy
(equilibrium concentration of x2 in LiFePO4) in FePO4 (first
equation) and LixFePO4 (second equation) phases, respectively,
and are derived by equality of the respected chemical potentials
(Mogilevsky, 2007). The self-consistent solution of Equations (7)
and (8) can be easily done in a numerical way. The resulted
Margules interaction parameters for LixFePO4 solid solution
obtained taking the measured solubilities as an input (Yamada
et al., 2006) and assuming room temperature are given in
Table 5. The derived W1 = 8.0 kJ/mol and W2 = 6.4 kJ/mol
would result in an excess mixing enthalpy, HE of 1.7 kJ/mol
at x = 0.6 [computed as HE = (W1(1 − x) + W2x)x(1 −

x), Li et al., 2014], which is in perfect agreement with the
experimental measurements (∼2.5±1.0 kJ/mol, Stevens et al.,
2006; Phan et al., 2019). Interestingly, the same values can
be derived from Equation (5) and elastic moduli reported in
Table 5, assuming 1V = 26Å3. We note that such an offset is
plausible because we consider a solid solution between Li cation
and a vacant site, while the considered models were designed
strictly for mixing of two cation species. We also attempted
direct computation of Margules interaction parameter by ab
initio methods. We obtained values between 13 and 28 kJ/mol,
depending on the computational approach. However, we notice
that such a small value of energy (enthalpy) is very sensitive to
the computational setup, and can not be derived here precisely
because of the inability of computing forces with the Wannier
projectors scheme (see section 3.2). Other studies also result
in large spread of predicted values (Figure 2 in Phan et al.,
2019) and indicate sensitivity of this parameter to other effects,
including the electronic entropy of Fe in different redox state in
the LixFePO4 solid solution (Zhou et al., 2006).

In Figure 3, we plot the free energy of mixing at room
temperature, using the Margules interaction parameters
extracted form the maximum solubilities measurements of
Yamada et al. (2006). With the horizontal line we indicate the
widths of wide miscibility and spinodal gaps. This information
is important for understanding of charging relationships in the
LixFePO4 system (Phan et al., 2019).
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FIGURE 3 | The mixing free energy for LixFePO4 solid solution computed at room temperature, T, as GE = [W1(1− x)+W2x]x(1− x)+ RT [x ln x + (1− x) ln(1− x)] (Li

et al., 2014), assuming configurational entropy of ideal mixing and neglecting other entropy contributions. R is the gas constant. W1 and W2 Margules interaction

parameters are these from last column of Table 5. The miscibility and spinodal gaps are indicated by minima and inflection points marked with blue circles.

FIGURE 4 | The structure of yttria-stabilized zirconia (YO1.5 − ZrO2 system) with indication of the oxygen diffusion mechanism along possible Zr-Zr (A) and Y-Zr (B)

edges.

3.5. Ionic Conductivity
Because of high ionic conductivity, yttria-stabilized zirconia (see
Figure 4 for the structure) is commonly used as solid state
electrolyte. Its ionic conduction properties have been investigated

in many studies, including experimental (Strickler and Carlson,
1964, 1965; Ioffe et al., 1978; Li et al., 1994; Lee et al., 2001, 2003;
Kilo et al., 2003; Zhang et al., 2007) as well as theoretical and
atomistic modeling approaches (Kilo et al., 2003; Krishnamurthy
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et al., 2005b; Sizov et al., 2014; Bukaemskiy et al., 2021). The
conductivity is usually described using Arrhenius-type equation
(Ioffe et al., 1978; Ahamer et al., 2017) and the ionic conductivity
can be written in the following simple form:

σT = σ0 exp

(

−Ea

kbT

)

(9)

TABLE 6 | The computed here and previously published data on Ea for ionic

conductivity in Y-stabilized zirconia.

Compound Ea (eV) References

comp. Zr-Y edge 0.92 This study

comp. Zr-Zr edge 0.43 This study

comp. Zr-Y edge 1.29 Krishnamurthy et al., 2005b

comp. Zr-Zr edge 0.58 Krishnamurthy et al., 2005b

exp 0.99–1.02 Kilo et al., 2003

exp, two barriers 0.6; 1.1–1.2 Ahamer et al., 2017

exp 0.91–1.19 Gong et al., 2002

exp 0.89–1.09 Ikeda et al., 1985

exp 0.9–1.0 Lee et al., 2001

exp 0.93–1.15 Liu et al., 2016

exp 0.8–1.3 Strickler and Carlson, 1964

exp 0.85–1.14 Zhang et al., 2007

where σ0 is the pre-exponential factor and Ea is the activation
energy. In Table 6, we report the available experimental and
computed data on Ea together with the results of our simulations.
We note that molecular dynamics simulations could be also used
for simulation of ionic diffusion, but for systems with activation
barriers close to ∼1 eV such a method requires long simulation
times (e.g., 10 ns as applied by Sizov et al., 2014). Such simulation
times are beyond the capability of ab initio molecular dynamics
methods (capable of simulations at ps time scales) and could
be performed only with less accurate description of interatomic
interactions by simple interatomic potentials, like in studies of
Sizov et al. (2014).

The computed activation energy of 0.92 eV is well-consistent
with the measured values as well as with some previous
theoretical predictions. Here, following the studies of Ahamer
et al. (2017) and Guan et al. (2020) we assume diffusion along
Y-Zr edge as a diffusion rate determining step. Interestingly,
the activation barrier for transition along Zr-Zr edge is twice
smaller as the one for transition along Y-Zr edge, which is
in line with previous findings (Krishnamurthy et al., 2005b).
The diffusion paths along these two edges are depicted in
Figure 4. In the performed simulations with Eu as dopant, the
activation barrier is comparable (0.97 eV). This is consistent
with previous studies showing similar effects of other tri-
valent cations on stabilization of cubic zirconia and its ionic

FIGURE 5 | The computed (lines) ionic conductivity in YO1.5 − ZrO2 system. The data (black filled circles) come from Strickler and Carlson (1964) and Liu et al. (2016).
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conductivity (Krishnamurthy et al., 2005a). With the derived
activation barrier we also computed the attempt frequency, ν0,
using the transition state theory (Equation 2). We obtained
value of 2.37 · 1012 s−1. With the computed activation energy
and the attempt frequency, using Equation (1) we derived
temperature and Y-content dependent ionic conductivity. The
results are plotted in Figure 5 against the experimental data. Our
model matches the measured values reasonably well, including
temperature and Y content dependence. This is in great part
due to inclusion of vacancy migration probability as estimated
by Bukaemskiy et al. (2021) (see Equation 1). This shows that
atomistic modeling and appropriate theoretical consideration
can deliver accurate prediction for ionic conductivity in solid
state electrolyte candidate materials. Nevertheless, as discussed
by Ahamer et al. (2017) and Guan et al. (2020), the oxygen
diffusion in yttria-stabilized zirconia is a complex process, which
details, however, could be revealed by combination of computed
and measured data.

4. CONCLUSIONS

In this contribution we presented an overview of our decade-
long atomistic modeling contribution to the research on
orthophosphates and zirconates type ceramics. We discussed
the atomistic modeling derivation of structural, thermodynamic,
and diffusion properties that are of importance for application
of these materials as compounds in energy storage devices.
In particular, we discussed the importance of the application
of parameter free DFT+U approach and selection of realistic
projector functions for counting the occupations of strongly
correlated d and f orbitals for the Hubbard model-based
DFT+U scheme. Only with this approach we were able to
correctly reproduce the measured formation enthalpies of FePO4

and LiFePO4 phases. The consideration of the thermodynamic
properties of LixFePO4 solid solutions indicates a system with
a wide miscibility gap, which values and slight asymmetry
are qualitatively consistent with the existing experimental data.
Based on the measured solubility data we derived set of Margules
interaction parameters that describe this solid solution. The
resulting excess free energy of mixing shows wide miscibility
and spinodal gaps at room temperature. We also discussed our
studies of zirconium-based ceramics. In particular, we derived
the stability diagram of yttrium-doped zirconia, showing that
it stabilizes in cubic phase at Y content of ∼8%, well in line

with the experimental measurements. The computed formation
enthalpies along YO1.5 − ZrO2 solid solution are also well
consistent with the measured data. With the computation of
transition state and application of vacancy distribution model
we were able to derive activation energies and temperature-
dependent ionic conductivities for oxygen diffusion in this
material, that are well-consistent with the measured data. This
shows the power of carefully set up atomistic modeling for
computation of various properties of ceramic materials as
compounds for energy storage devices.

We discussed various successfully studies of application of
atomistic modeling to prediction of a set of physical and chemical
properties of orthophosphates and zirconates. In most cases,
the best results have been obtained by a joint computational
and experimental approach, or at least by extensive testing and
comparison to the available experimental data. Application of
a reliable, state-of-the-art ab initio approach is also a crucial
factor contributing to this success. With the steady increase
in the availability of computational power we expect that
atomistic modeling research will be applied to tackle even more
complex problems, such as kinetically driven dissolution or
corrosion processes, and for effective screening of materials for
energy applications.
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