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The rapid development of wind energy has brought a lot of uncertainty to the power
system. The accurate ultra-short-term wind power prediction is the key issue to ensure the
stable and economical operation of the power system. It is also the foundation of the
intraday and real-time electricity market. However, most researches use one prediction
model for all the scenarios which cannot take the time-variant and non-stationary property
of wind power time series into consideration. In this paper, a Markov regime switching
method is proposed to predict the ultra-short-term wind power of multiple wind farms. In
the regime switching model, the time series is divided into several regimes that represent
different hidden patterns and one specific prediction model can be designed for each
regime. The Toeplitz inverse covariance clustering (TICC) is utilized to divide the wind
power time series into several hidden regimes and each regime describes one special
spatiotemporal relationship among wind farms. To represent the operation state of the
wind farms, a graph autoencoder neural network is designed to transform the high-
dimensional measurement variable into a low-dimensional space which is more
appropriate for the TICC method. The spatiotemporal pattern evolution of wind power
time series can be described in the regime switching process. Markov chain Monte Carlo
(MCMC) is used to generate the time series of several possible regime numbers. The
Kullback-Leibler (KL) divergence criterion is used to determine the optimal number. Then,
the spatiotemporal graph convolutional network is adopted to predict the wind power for
each regime. Finally, our Markov regime switching method based on TICC is compared
with the classical one-state prediction model and other Markov regime switching models.
Tests on wind farms located in Northeast China verified the effectiveness of the proposed
method.
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INTRODUCTION

Wind energy has grown very fast recently, the new installed capacity of global onshore wind power in
2019 has reached 60.4 GW (Lee et al., 2020). With the large-scale integration of wind power, ultra-
short-term wind power prediction plays a significant role. It is not only crucial for the stable
operation of the power system but can provide useful information for the intraday and real-time
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electricity market. Therefore it is urgent to develop a prediction
system with high accuracy, especially for the regional wind farms.

There has been a lot of methods for ultra-short-term wind
power prediction. Those methods can be roughly divided into two
classes, namely the physical model method (Feng et al., 2010) and
the statistical learning method (Xue, et al., 2015). The physical
method is based on the detailed modeling of the atmosphere
movement. It can simulate the nonlinear characteristics of the
wind power time series but is time-consuming and its
performance is highly dependent on the accuracy and
complexity of the model (Peng, et al., 2016). The statistical
learning methods include the multivariate vector
autoregressive (VAR) method (Zhao, et al., 2018), Gaussian
process regression method (Kou, et al., 2013), machine
learning method (Demolli, et al., 2019), deep learning method
(Khodayar and Wang, 2018; Lai, et al., 2018) and hybrid method
(Duong, et al., 2013; Wang, et al., 2019). But most of them are
based on one state prediction, which means it uses one single
model for all the scenarios. However, the spatiotemporal
relationship of the wind farms is time variant due to the
change of the atmospheric condition, there are different kinds
of spatiotemporal pattern (Xiong et al., 2016). Therefore, it can be
more reasonable to use a different prediction model for different
time which shares a similar spatiotemporal pattern. In this way,
the deep learning method can be utilized more effectively.
Hamilton (1989) brought out the concept of regime switching
in the time series prediction. The effectiveness of the Markov
regime switching has been witnessed in many areas. Song et al.,
(2014) uses the Markov switching model to predict wind power.
Research (Hu et al., 2014) has brought out a G eneralized
Principal Component Analysis (GPCA) method to divide time
series into several parts and predict the wind speed using different
models. Xiong et al., (2019) adopts K-means for the clustering of
NWP and uses Support Vector Regression (SVR) for the
prediction of wind power in each cluster. There are even some
online learning methods such as Least Absolute Shrinkage and
Selection Operator (LASSO) (Messner and Pinson, 2019) and
Extreme Learning Machine (Park and Kim, 2017) which can
adjust the parameter in real-time to adapt to the pattern changes
of the wind system. Sun et al., (2020) also developed a
reinforcement learning method to choose the wind power
prediction model dynamically to adopt to the time-variant
wind process.

The wind power sequence hidden regime discovery is closely
related to the time series subsection. Lavielle and Lebarbier (2001)
brings out a change-point detection model to segment the time
series based on MCMC. However, when dividing the time series,
the spatiotemporal correlation is not considered and the optimal
dividing number is also not discussed. The Probabilistic Graph
Model (PGM) is a classical method to describe the correlation
among variables and has been used to describe the spatiotemporal
relationship of energy time series (Wytock and Kolter, 2013).
Based on that, Hallac et al., (2017) has provided a subsequence
clustering method for multivariate time series called Toeplitz
Inverse Covariance-based Clustering (TICC) to discover the
hidden regimes in temporal data. It can characterize the
interdependencies between different observations in a typical

subsequence of that cluster by defining a correlation network
of multivariate time series. The proposed TICC method has been
tested in an automobile dataset to discover the different driving
behavior such as slowing down, turning, and speeding up. Liu
et al., (2020) also used the sparse inverse covariance matrix to
divide the wind direction pattern for the wind speed prediction.
But there are a lot of hyper-parameters which are needed to be
determined in the method such as the regime number. Besides
when the observation variable is large, the performance of the
TICC method is not stable due to the inverse calculation of the
covariance matrix. In the traditional TICC method, the BIC
criterion is used to determine the best value cluster number.
However, this kind of method is more closely related to the model
complexity rather than the distribution of the data. In some
research (Jiang et al., 2013), Bayesian posterior probability is used
to determine the regime number of the Markov switching model.
In some cases, KL divergence is used to select the best model
(Smith et al., 2006).

Inspired by those researches, we design an ultra-short-term
wind power prediction framework that consists of four sub-
modules. In the first module, we design a graph autoencoder
that can reduce the dimension of historical wind power, NWP
data, and future wind power into a lower dimension which is
suitable for the TICC method. In the second module, the state of
the wind farm cluster is determined by the dimension reduction
result and the regime division result is worked out according to
the TICC method. KL divergence between the original
distribution and the distribution after the division is calculated
to determine the optimal regime number. The third module is
making use of the dimension reduction results to predict the next
regime and the fourth module is using the corresponding model
of the regime for the wind power prediction.

The main contributions of this paper are summarized as
follows.

(1) We propose a dimension reduction method for the state
representation based on the graph autoencoder which is easy
to be implemented and can preserve the spatiotemporal
relationship of the wind farms in the reduced dimension.

(2) We adopt the TICC method for the time series segmentation
which can consider the spatiotemporal relationship to find
the most meaningful subsection of time series compared to
other clustering methods.

(3) We also employ the KL divergence criterion to determine the
optimal value of cluster number Np. The spatiotemporal
graph convolutional network for wind power prediction is
used for each segmentation and the prediction results are
verified on wind farms located in Northeast China. It can
reduce normalized root mean square error (RMSE) in the
fourth hour by nearly 0.5% compared to other Markov
regime switching models.

The rest of this paper is organized as follows. Ultra-Short-
Term Wind Power Prediction Framework introduces the ultra-
short-term wind power prediction framework. Toeplitz Inverse
Covariance Matrix for Time Series Clustering presents the
algorithms to solve Toeplitz Inverse Covariance-based
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Clustering for the wind farm time series clustering and uses graph
autoencoder network for the dimension reduction of wind farm
states. Optimal Regime Number Calculation Based on MCMC
describes the MCMC method to generate time series under
different regime numbers and uses the KL divergence to
determine the optimal clustering number. The Regime
Transition Prediction in Markov Switching Method describes
the Markov switching mechanism of the prediction method.
Case Study conducts a comprehensive case study to verify the
effectiveness of this method.

ULTRA-SHORT-TERM WIND POWER
PREDICTION FRAMEWORK

The Markov Regime Switching Model
Wind farm cluster power prediction is a multi-variable time series
prediction problem. The most likely output in the next H time
steps should be predicted according to the wind power
observation in the previous M time steps and NWP data of
length N . The prediction method is the modeling of the chaotic
wind system and can be described as follows.

yt � f (xt), (1)

yt � [Pt+1, . . . , Pt+H], (2)

xt � [Pt−M+1, . . . , Pt ,Vt+1, . . . ,Vt+N], (3)

where Pt−M+1, . . . , Pt , Vt+1, . . . ,Vt+N , and Pt+1, . . . , Pt+H are the
historical wind power, NWP windspeed and predicted wind
power respectively. xt is the input of the prediction model and

yt is the output of the model. However, for such a complex chaotic
system, using one function to model may cause more error.
Therefore, the Markov regime switching model is brought out
as follows.

yt � ∑K

i�1μifi(xt), (4)

μi � { 0, xt ∈ θi
1, xt ∉ θi

. (5)

In the Markov regime switching model, the class of the input
variable xt is judged and the parameter μi � 1 only when xt
belongs to the corresponding class θi. K is the number of regimes
in the Markov switching model. In fact, it is the piecewise
approximation of the complex chaotic system.

Wind Farm Cluster Ultra-Short-Term Wind
Power Prediction Framework
We present a comprehensive ultra-short-term wind power
prediction framework which consists of four modules. The
framework is shown in Figure 1.

First, we develop a state dimension reduction method for the
future wind power, historical wind power and NWP information
based on the graph autoencoder neural network. Second,
according to the state embedding result, we use a probabilistic
graph model based method to cluster the operation state of the
wind farms which can consider the spatiotemporal relationship
among wind farms. We also use the KL divergence andMCMC to
determine the number of regimes. Third, for each regime, we use

FIGURE 1 | The framework of ultra-short-term wind power prediction.

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 6387973

Fan et al., Ultra-Short-Term Wind Power Prediction of High Accuracy

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


a spatiotemporal graphmodel to predict the wind power and each
model has different weights. Fourth, by utilizing the state
dimension reduction and regime division result, we can
predict the next state and select the corresponding
prediction model.

TOEPLITZ INVERSE COVARIANCE MATRIX
FOR TIME SERIES CLUSTERING

Problem Formulation and Description
When predicting the wind power, the observation of a wind farm
is not only correlated with observations before, but also correlated
with observations of adjacent wind farms. So, we can have a
formulation as follows. For a time series of T sequential
observations,

Xorig � [x1, x2, x3, . . . , xT], (6)

where x1 is the first multivariate observation. In order to classify
this measurement intoK groups, we not only consider the current
observation xt ∈ Rn, but also the historical observation of time
window whose length is w. This time series segment Xi ∈ Rnw

contains measurements xt−w+1, xt−w+2, . . . , xt . In this way,
adjacent time series fragments can belong to the same class as
much as possible.

In the TICC method, a block Toeplitz matrix to represent the
cluster i is constructed. Each Θi is a nw × nw matrix and can be
described as follows (Hallac et al., 2017).

Θi �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A(0) (A(1))T (A(2))T / (A(1))T
A(1) A(0) (A(1))T 1 «
A(2) A(1) 1 1 «
« 1 1 (A(1))T (A(2))T
« 1 1 A(0) (A(1))T
A(w−1) / / A(1) A(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where, A(0), A(1), . . ., A(w−1) ∈ Rn×n and for each sub-block A(0)
represents the temporal correlation. So A(0)

ij represents the
correlation between wind farm i and wind farm j at time t.
For the MRF of each cluster, A(0) represents the correlation
matrix between the vertexes in each layer. For example, A(1)

ij
represents the correlation of wind farm i at time t and wind farm j
at time t − 1.A(2)

ij represents the correlation of wind farm i at time
t and wind farm j at time t − 2 The block Toeplitz structure of the
inverse covariance matrix means that we make a time-invariant
assumption within the time length of w (generally, the length of
the time window w is required to be much shorter than sequence
length L), so that the connection between each layer will exist. We
make this assumption because we are looking for a unique
structural regime to divide each group. We think that each
group belongs to a specific regime and they also maintain a
same specific structure in the whole time series.

In the TICC method, each subsection is assumed to be subject
to multivariate gaussian distribution and can be represented by
Markov Random Field (MRF) Θi. According to the probabilistic
graphical model, when the subsection is subjected to multivariate

Gaussian distribution, it can be represented by a gaussian inverse
covariance matrix Θi ∈ Rnw×nw. Θi is a crucial parameter in the
TICCmodel because it not only represents a kind of wind pattern,
but is also a regime in theMarkov switching model. It can provide
a more interpretable representation for the cluster results and the
sparsity of inverse covariances is also a kind of way to prevent
over-fitting. According to the definition, our goal is to solve the K
gaussian inverse covariance matrix Θ � Θ1,Θ2, . . . ,ΘK by
allocating the T observations into K cluster. The specific
process can be realized by solving the optimization problem as
follows (Hallac et al., 2017).

argmin
Θ ∈ Γ,P

∑K

i�1[‖λ+Θi1‖ + ∑
Xi ∈ Pi

( − ll(Xt ,Θi) + βXt−1 ∉ θi)]. (8)

This problem is called Toeplitz inverse covariance-based
clustering (TICC) problem (Hallac et al., 2017). Where, Γ is
the set of symmetric Toeplitz matrix Θi. λ+Θi1 is the l1 norm of
Hadamard product between λ and sparse inverse covariance
matrix. Besides, ll(Xt ,Θi) is the log-likelihood. Xt is the
sample from cluster i. In formulation Eq. 8, β is a parameters
of time continuity, Xt−1 ∉ θi is a function of time continuity. The
computation method of ll(Xt ,Θi) is in Eq. 9.

ll(Xt ,Θi) � −1
2
(Xt − μi)TΘi(Xt − μi) + log detΘi−

n
2
log(2π), (9)

where μi is the empirical mean of cluster i. There are two
regularized parameters in the TICC optimization problem: λ
which are used to represent the sparsity of each group’s
Markov random field and β, the penalty function of
smoothness to motivate the adjacent time series segments to
come from the same class. Even λ is a matrix of nw × nw
dimension, we fix all the values on a single constant and
reduce the search space to one parameter. In practical
application, the value of λ is 11e-3 and β is 350.

The objective function Eq. 8 in the TICC method is a hybrid
combination and continuous optimization problem. There are
two groups of variables, namely, the clustering group P and the
inverse covariance matrix Θ. The coupling of the two variables
makes the problem highly nonconvex. Therefore, there is no
feasible way to find the global optimal solution. TICC algorithm
divides the clustering of time series segments into two
subproblems. The first one is to allocate each point to a
different group by using a dynamic programming method.
The second one is to learn the parameters of Markov random
fields in each group by using a graphic lasso method. Then the
alternating direction method of multipliers (ADMM) is used to
solve the graphic lasso (Boyd et al., 2011). Finally, the expectation
maximization (EM) algorithm is used to solve the two above
problems alternatively. The details of the algorithms can refer to
the work by Hallac et al., (2017).

But it should be noted that Xt is a continuous fragment
xt−w+1, xt−w+2, . . . , xt and is a vector of dimension nw. Toeplitz
matrix assumes that every cluster has a time-invariant structure
and the length of time windoww is usually not set to be very large.
Because larger time window w will make the parameters of
Toeplitz matrix grows at the rate of square and disobey the
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time-invariant assumption. Besides, according to the definition of
xt in Eq. 3, the temporal relationship is already considered.
Empirically, w is set as three in the following test. But
another parameter, the cluster number K is very important,
because it determines there are how many regimes. The
method to determine the best value of cluster number K
will be discussed in Optimal Regime Number Calculation
Based on MCMC.

Operation State Representation of Wind
Farm Cluster
Wind farm cluster usually contains 10–20 wind farms and the
variables that can be obtained include historical wind power and
NWP information. Therefore, according to Eq. 3, xt ∈ Rn is a high
dimension vector. For example, suppose the current time is t,
training data which is very important for the ultra-short time
wind power prediction includes historical wind power data Pt0−40,
Pt0−39, . . ., Pt0 and future NWP wind speed data Vt0, Vt0+1, . . .,
Vt0+20. The NWP wind speed usually contains wind speed from
four different altitudes. For 20 wind farms in a region, the
dimension of measurement data at t can reach 2,400. In the
TICC method, the dimension of Toeplitz matrix is 2400 · w, it is
obviously unacceptable and unnecessary in the correlation
analysis. Therefore, it is significant to use the dimension
reduction method for the computation.

There are a lot of dimension reduction methods such as
principal component analysis (PCA) and nonlinear manifold
learning methods. However, PCA is a kind of linear process
and cannot reflect the nonlinear characteristic of the data. Even
manifold learning can learn about the nonlinear feature of the
data, it is time-consuming especially when the data set is large. It
is not suitable for online application. Besides, we also want to
preserve the spatiotemporal relationship in the dimension
reduction process. Autoencoder is a kind of neural network
which is convenient for dimension reduction and online
application. The feature and information in the original data
can be preserved in the dimension reduction results according to
the different designs of neural networks in the autoencoder
(Goodfellow et al., 2016). Therefore, we can use the graph
autoencoder method for dimension reduction and the process
is represented as follows.

SP � hp(Pt−M+1, . . . , Pt), (10)

SV � hV(Vt+1, . . . ,Vt+N ), (11)

Sf � hf (Pt+1, . . . , Pt+H), (12)

where hp, hV , and hf are the graph autoencoder for the historical
wind power, NWP windspeed and future wind power
respectively. SP, SV , and Sf are the dimension reduction
results. The autoencoder can also reconstruct the original data
from the dimension reduction results.

P̂t−M+1, . . . , P̂t � h−1p (SP), (13)

V̂ t+1, . . . , V̂ t+N � h−1V (SV ), (14)

P̂t+1, . . . , P̂t+H � h−1f (Sf ), (15)

where P̂t−M+1, . . . , P̂t , V̂ t+1, . . . , V̂ t+N , and P̂t+1, . . . , P̂t+H are the
reconstructed historical wind power, NWP information and
future wind power respectively. The loss function of the graph
autoencoder is the difference between the original data and the
reconstructed data which is called the reconstructed error.

J(W, b) �
�������������
1
m
∑m

i�1(x̂ − x)2
√

, (16)

where the x is the input the graph autoencoder and x̂ is the
reconstructed data. In this case, x can be historical wind power
Pt−M+1, . . . , Pt , NWP information Vt+1, . . . ,Vt+N and future wind
power Pt+1, . . . , Pt+H . The training process of the graph
autoencoder is minimizing the reconstructed error. The
architechture of the graph autoencoder is in Figure 2.

In this case, we designed three graph autoencoders with the
same architecture for historical wind power, NWP windspeed
and future wind power respectively. But the reduced
dimension D is a very important value in graph
autoencoder. It should be noted that, the wind power is
proportional to the cubic wind speed (Duong, et al., 2014;
Duong, et al., 2015). According to previous research (Fan,
et al., 2020), the cubic wind speed can represent the tendency
of the wind power more precisely. Therefore, the cubic NWP
windspeed is used as the input in this model rather than NWP
windspeed. We can get its value according to the reconstructed
error of the graph autoencoder. When the reconstructed error
is reduced into a satisfying value or the increase in the reduced
dimension can hardly decrease the reconstructed error, the
reduced dimension can be determined. The dimension
reduction results are used as the input of TICC to replace
the original measurement data which can make the regime
division easier to be implemented.

OPTIMAL REGIME NUMBER
CALCULATION BASED ON MCMC

Kullback-Leibler Divergence Criterion
KL divergence is also called relative entropy. If there are two
separate distributions P(x) and Q(x) for the same random
variable x, we can use KL divergence to measure the difference
between the two distributions. In machine learning, P is often
used to represent the real distribution of samples and Q is used to
represent the distribution generated by the model. Then KL
divergence can be used to calculate the difference between the
two distributions, that is, the loss value.

DKL(p����q) � ∑n

i�1(xi)log(p(xi)q(xi)). (17)

It can be seen from the formula that the more similar the
distribution of P is to that ofQ, the smaller the divergence value is.
But in a general calculation, the divergence value of the arbitrary
distribution is difficult to calculate, so Gaussian distribution is
often used for the approximate solution. The KL divergence of
two high dimensional Gaussian distributions can be calculated by
the following formula (Murphy, 2012).
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DKL(p����q) � 1
2
log

|Σ2|
|Σ1| − n + tr(Σ−1

2 Σ1) + (u2 − u1)TΣ−1
2 (u2 − u1),

(18)

where Σ1 and Σ2 are the covariance matrix of P and Q. Therefore,
when measuring the distribution difference between two datasets,
we can first use high-dimensional Gaussian distribution to fit and
then use the above formula to calculate the distance.

Model Selection Based on Markov Chain
Monte Carlo Simulation
In the TICC method, each regime is an n dimension Gaussian
distribution and the covariance of each regime is given. First, we
solve the different mean values and variance of each regime. The
transition probability of each regime can also be worked out.
Then, the MCMC sampling method is used to generate a new n
dimension time series. For each step in the MCMC sampling, we
determine the regime according to the transition probability and
sample the specific value of wind power according to the
parameter of the fitted n dimension Gaussian distribution.
Next, the mean value and variance of the new Gaussian
distribution according to the generated time series can be
solved, and the KL divergence is used to calculate the
difference between the original data and the generated data.
The schematic diagram is in Figure 3.

We can choose different regime numbers for the TICC
clustering and use the MCMC to generate data set. Then the
KL distance of the original data set and the generated data set is
calculated. According to the curve between KL distance vs. the
regime number and some domain knowledge such as the size of
the training data and the maneuverability in engineering, we can
determine the optimal regime number.

THE REGIME TRANSITION PREDICTION IN
MARKOV SWITCHING METHOD
The State Transition of Wind Power
Prediction
According to Eqs 4, the corresponding model is chosen for the
specific regime. But there is a concern that we don’t know what the
regime is in the prediction process. Therefore, we need to design a
prediction model to choose the corresponding model according to
the dimension reduction results of historical wind power and NWP
information. The prediction process is in Figure 4.

We can see from the figure that there are two prediction
models in the Markov switching model actually. The main model
is used to predict the wind power in the next 4 h and the auxiliary
model can predict the regime in the next 4 h and choose the
approximate main prediction model.

The Prediction Models for the Regime
Transition and Wind Power
In this case, we use the ELM as the auxiliary model for the regime
transition prediction. ELM is a kind of fast learning algorithm

which is suitable for the real-time regime estimation (Huang
et al., 2006). For the single hidden layer neural network, ELM can
initialize the input weight and bias randomly and get the
corresponding output weight. For a single hidden layer neural
network, there areM arbitrary samples S and their labels v, where
S ∈ RM×2D, v ∈ RM×1. For a single hidden layer neural network
with L hidden layer node, it can be represented as

∑L
i�1

βiσ(Wi · Sj + bi) � vi, j � 1, . . . ,M. (19)

where βi,Wi, and bi are the parameter of the ELM. σ is the kernel
activation function and we use Gaussian kernel here. The input of
the ELM is the dimension reduction results of the historical wind
power and NWP information. The output is the label of the
regime which is used to select the corresponding spatiotemporal
graph convolutional wind power prediction model. The objective
of the auxiliary model is maximizing the prediction accuracy of
the regime class. In this case, vi is the regime class and is a integer
from 1 to K . In practice, vi should be transformed into a K
dimension one hot encoding vector μ in the Markov switching
model (Pedregosa, et al., 2011).

For the main prediction model, a spatiotemporal graph
convolutional network named M2GSNet is used for the wind
power prediction (Fan, et al., 2020). The performance of
M2GSNet has been verified in the practical engineering, so we
use it as the main model for wind power prediction here. The
input of the M2GSNet is the historical wind power and cubic
NWP windspeed. The output is the predicted wind power of each
wind farm and the sum of the wind power is the wind power of
the wind farm cluster.

CASE STUDY

Data Description and Test Environment
The data of wind farm clusters located in Northeast China are
used for the case study. The whole capacity of the wind farm
cluster is 2854.31M and the location of those wind farms is in
Figure 5. The wind power and NWP data are used for the
analysis. NWP data include wind speed from four different
altitudes (170 m wind speed, 100 m wind speed, 30 m wind
speed, 10 m wind speed). The training set containing 13,000
samples (from 2019-01-01 08:15:00 A.M. to 2019-05-16 06:00:00
P.M.), validate set containing 2,000 samples (from 2019-01-01 08:
15:00 A.M. to 2019-05-16 06:00:00 P.M.) and testing set
containing 1,000 samples (from 2019-01-01 08:15:00 A.M. to
2019-05-16 06:00:00 P.M.). The sampling interval is 15 min. The
proposed method is tested on Linux server Cluster (CPU: Intel
Xeon (R) CPU E5-2650 v4 @ 2.10 GHz, GPU: NVIDIA Tesla
P100) and deep learning framework Pytorch (1.4.0).

The output of ultra-short-term wind power prediction is the
wind power of this region which is the sum of every wind farm.
The adjacent matrix which will be used in the autoencoder and
spatiotemporal graph convolutional wind power prediction
network is very important for the spatial-temporal dependency
modeling. The wind farms are located in a region and the spatial
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dispersion is mostly reflected by the distance among wind farms.
Therefore, we use the Gaussian kernel threshold distance
function to define the adjacent matrix.

Ai,j �
⎧⎪⎪⎨⎪⎪⎩ e

dist(i,j)2
std2 , if dist(i, j)≤ ε

0, otherwise
, (20)

where dist(i, j) is the geographical distance between wind farm i
and wind farm j. std is the standard deviation of the distance
among n wind farms. ε is the threshold and we use half of the
mean distance as the threshold. Here we set the value of ε as 0.6.
When the distance of wind farm i and wind farm j is smaller than
the ε, we assess there is no connection between them. The wind
power and cubic wind speed have different units, so
normalization is used to reduce the effect of different units.

x � xm − xmin

xmax − xmin
. (21)

The root mean square error (RMSE) and mean absolute error
(MAE) is selected to assess the performance of the model on the
testing set.

RMSE �
��������������
1
ns
∑ns

i�1(xti − x̂ti)2
√

, (22)

MAE � 1
ns
∑ns

i�1|xti − x̂ti|, (23)

where xti, x̂ti are the normalized true value and normalized
predicted value in prediction scenario i at prediction time step
t. ns is the number of samples in the test set. The wind power of
the past 10 h and the cubic NWP windspeed of the next 5 h are
used for wind power prediction (Fan, et al., 2020). The structure
in Figure 2 is also used for the dimension reduction of historical
wind power, cubic NWPwindspeed and future wind power. Since
the time range of ultra-short-term wind power prediction is the
next 4 h, the length of historical wind power is 40 time steps in
this dimension reduction model. The NWP sample including
20 time steps and the future wind power includes 16 time steps.

Since it is impossible to do the grid search on the whole
parameter space, the hyper-parameters are determined according
to the grid search combined with human experience. The hyper-
parameters of the spatiotemporal model used for wind power
prediction are the same in the reference paper (Fan, et al., 2020).

FIGURE 2 | The architecture of graph autoencoder.

FIGURE 3 | Kl distance calculation based on MCMC.
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Therefore, the iteration epoch of model for wind power
prediction is 200 and the training batch size is 256. The
optimizer is Adadelta and the learning rate is 0.1. The five-
fold cross-validation is used for verification. In the dimension
reduction model, the learning rate for dimension reduction
model is chosen from the set (0.01, 0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.35, and 0.4) and the hidden state for the graph
convolutional network is chosen from the set (10, 20, 30, 40,
50, 60, 70, 80, 90, and 100). The reconstruction error of the graph
autoencoder are used to determine the optimal value. Finally, the
optimizer in the graph autoencoder is Adadelta and the learning
rate is 0.05. The hidden state in the graph autoencoder is 60. The

FIGURE 4 | The regime transition of wind power prediction.

FIGURE 5 | The location of the wind farms.
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hyper parameter of the TICC state division method is λ and β. By
refer to related research (Hallac et al., 2017), they were chosen by
hand. The principal is to make the TICCmethodmore likely to be
convergent. Finally, the λ is 11e-3 and β is 350. In the auxiliary
model ELM for regime transition prediction, the main hyper-
parameter is the hidden state. It is selected from the set (10, 20, 30,
40, 50, 60, 70, and 80). The selection rule is maximizing the
regime prediction accuracy and the value in the final model is 30.

Dimension Reduction of Wind Farm Cluster
State
Before using the TICC method for the state division, we should
reduce the dimension of the wind farm cluster. We use the graph
autoencoder to reduce the dimension of historical wind power,
NWP and future wind power separately. After that, we concatenate
the dimension reduction results as the input of the TICC method.
To determine the reduced dimension, the reconstruction error is
computed to determine the appropriate dimension in Figure 6.

From this figure, when the dimension is reduced to 10, the
reconstruction error can decrease to an acceptable level.
Therefore, we concatenate three 10 dimension vector to
represent the state of the wind farm cluster.

Regime Discovery Based on TICC
Through the observation of dimension reduction results, it can
be found that the operation state of the wind farm is indeed
divided into several segments in a period of time, so it is
reasonable to use the clustering method to deal with them
separately. The KL value of different regime numbers by TICC
is as follows.

We can see from Table 1 that with the increase of the regime
number, the KL divergence is reducing. It is understandable
since the more the state number, the more meticulous that the
model can describe the statistical distribution feature of the
data and the KL divergence is smaller. But the regime number
shouldn’t be too large because it will make the prediction
model too complex. So it is significant to choose the
appropriate regime number. We choose the first local
minimum of the KL divergence and regime number curve
as the regime number. In this case, we divide the time series of
the wind farms into three regimes. Because if too many regimes
are divided, there are only a few samples in some regimes. It is
not adequate to train the prediction model which may lead to
the underfitting of the model. According to the divided results,
each regime can use the prediction model of the current regime
separately. We also visualize the divided regime of the validate
set when the regime number is 3 and 4. The sum wind power of
the wind farms divided by different regimes is also marked by a
different color. The results are as follows.

From Figure 7, we can see that when the wind power time
series of the wind farm cluster are divided into three regimes, the
states of the wind farms are reasonably represented. But when the
time series is divided into more regimes, there are only a few
samples in some types which is not convenient for the model

FIGURE 6 | The construction error of different dimension.

TABLE 1 | The KL value of different regime number (10̂6).

Regime
number

2 3 4 5 6 7 8 9 10

KL 3.40 2.98 3.09 3.03 2.54 2.36 2.26 2.41 1.78
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training. We also visualized the sparse inverse covariance matrix
which stands for different regimes to illustrate this.

In the heatmaps, the sparse inverse covariance matrix is a
90 * 90 matrix because the dimension of the concatenated

dimension reduction vector is 30 and w is set to three
according to the description in 3.1. The first array of
Figure 8 is the heatmaps of the full sparse inverse
covariance matrix and the second array is a 30 * 30

FIGURE 7 | The wind power time series regime division.

FIGURE 8 | The patterns of sparse inverse covariance matrix estimated by TICC
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submatrix from the upper left corner of the inverse covariance
matrix which is also represented as A(0). We can notice that
there is a distinct difference among the three regimes.

The Prediction Results of TICC Method
Graph convolutional network is a kind of method which can take
consideration of the spatial-temporal relationship of the wind
farms. Based on this idea, the historical wind power data and
future numerical weather forecast wind speed data of wind farms
are used to predict the power of wind farm cluster for next 4 h.
The results of a single state model and the Markov switching
prediction method are compared, as shown in the figure below.

In Figure 9, the RMSE of a single model, TICC method when
the regime is known and TICC method when the regime is
unknown in the fourth hour is 8.10, 7.24, and 6.95% respectively.
We can see that the prediction results of the multi-model are
better than the prediction results of the single prediction model.
We also compare the prediction results of known category and
unknown category since in the realistic situation, the state of the
wind farm is unknown and we should use the ELM algorithm for
the prediction which will lead to some errors. The accuracy of the
ELM to predict the regime is 87.63%. But the results in Figure 9
show that even there are some errors in the regime prediction
model, the RMSE of the multi-model is smaller than the single-
state model.

The Comparison of Different Regime
Division Methods
There are other related regime division methods for wind power
prediction. So we compare our method with the other methods
(Hu et al., 2014; Xiong et al., 2016). The wind power on the test set
is as follows.

As we can see from Figure 10, by using the proposed regime
division method, the prediction accuracy of the wind power can
be improved compared to other methods especially on the
maximum and minimum point of the wind power. We also
compute the statistical results on the testing data set. The results
are as follows in Table 2.

According to the results in Table 2, we can see that the
prediction model by the TICC regime division method
performs better than other models.

CONCLUSION

In this paper, an ultra-short-term wind power prediction method
is proposed based on the Markov regime switching model. We
cluster the operation states of the wind farms according to the
historical wind power, historical NWP information and future
wind power. The following conclusions can be reached.

(1) The operation state of the wind farms is a high dimension
vector. But it can be represented by a much lower dimension
vector due to the graph autoencoder. It can avoid the
dimension disaster problem in the pattern division part.

(2) The operation state of the wind farms can be divided into
several regimes. By reasonable regime division and designing
a prediction model separately for each regime, the prediction
accuracy can be increased.

(3) The TICC method can consider the spatiotemporal
relationship of the wind farm operation state. Therefore,
the prediction accuracy of TICC is much higher than the
other regime division methods which don’ take consider the
spatiotemporal relationship.

FIGURE 9 | The prediction results of TICC method.
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