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Void fraction is one of the key parameters for gas-liquid study and detection of nuclear
power system state. Based on fully convolutional neural network (FCN) and high-speed
photography, an indirect void fraction measure approach for flow boiling condition in
narrow channels is developed in this paper. Deep learning technique is applied to extract
image features and can better realize the identification of gas and liquid phase in channels
of complicated flow pattern and high void fraction, and can obtain the instantaneous value
of void fraction for analyzing andmonitoring. This paper verified the FCNmethod with visual
boiling experiment data. Compared with the time-averaged experimental results calculated
by the energy conservation method and the empirical formula, the relative deviations are
within 11%, which verifies the reliability of this method. Moreover, the recognition results
show that the FCN method has promising improvement in the scope of application
compared with the traditional morphological method, and meanwhile saves the design
cost. In the future, it can be applied to void fraction measurement and flow state monitoring
of narrow channels under complex working conditions.

Keywords: boiling two-phase flow, narrow channel, void fraction measurement, deep learning, convolutional neural
network

INTRODUCTION

Gas-liquid two-phase flow reserves value for the research in fields of nuclear energy, petrochemical
industry, erospace and various industrial applications (Triplett et al., 1999). In the two-phase flow
study and engineering application, the cross sectional void fraction (or frequently abbreviated to void
fraction) which functions as one of the key parameters, has important significance for determining
the flow pattern, calculating the two-phase pressure drop and analyzing heat transfer characteristics
(Winkler et al., 2012). For conventional pipeline conditions, some common methods in experiments
include quick-closing valves (Srisomba et al., 2014), X-ray/γ-ray absorption (Zhao Y et al., 2016;
Jahangir et al., 2019), differential pressure (Jia et al., 2015) and capacitive method (Jaworek et al.,
2014). However, the data obtained by these commonmethods are mostly single-point values or time-
averaged results, and the instantaneous void fraction distribution of the full flow region can hardly be
obtained (Hong et al., 2011).

In recent years, an increasing number of mini-channel systems are applied for industrial
systems such as nuclear power plant heat exchangers and refrigerators due to large surface area/
volume ratio and high transfer efficiency of heat and mass (Kawahara et al., 2002). The narrow
rectangular channel is an important structure of these systems. The flow boiling phenomenon
tends to be more complicated in narrow channels than in normal pipelines, and direct
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measurement of void fraction is limited because of the geometry
size of the flow channel. Therefore, non-contact measurement
like high-speed photography can be applied and combined with
digital technology. Compared with other methods, the high-
speed photography method can observe the detailed behavior
of bubbles without disturbing the flow, and also be able to process
multiple images and extract the instantaneous void fraction
information in a short time (Fu and Liu, 2016; Zahid et al., 2020).

Many image-processing algorithms for flow field photography
have been proposed to figure out the characteristics of the gas-
liquid interface and obtain the two-phase distribution. Some
examples include edge detection, region filling and morphological
operation. Bröder and Sommerfeld (2007) use an edge detecting
Sobel filter and spline interpolation technique to determine the
contour of in-focus bubbles in rectangular channels, and the
bubble velocity is obtained by applying particle tracking
velocimetry (PTV). Lau et al. (2013) handle the overlapping/
clustering bubbles in bubbly flow with large void fractions by the
watershedding algorithm, and segment the groups into individual
bubble areas for analyzing. Karn et al. (2015) introduce a multi-
level image analysis approach for highly turbulent bubbly flows,
which uses H-Minima transform to binarize the image and
successfully extract the bubble information by morphological
operations. Pan et al. (2018) propose the two-step
morphological method and the combined use of
morphological opening and closing operations solves the
problem of bubble boundary recognition, which improves the
accuracy of void fraction measurement. However, these
traditional algorithms depend on the extraction process and
features designed by manual experience, which have certain
influence on the recognition rate and accuracy of the void
fraction. In addition, existing research mainly focuses on
unheated test sections, while in actual boiling conditions
bubbles grow and polymerize fiercely in the flow channel,
therefore the gas-liquid interface tends to be hardly
recognized. At the same time, in operating conditions with
high heating power, the void fraction increases and the phase
distribution changes drastically, which brings difficulties for the
traditional image processing methods based on edge detection
and mathematical morphology to achieve expected results.

The Convolutional Neural Network (CNN) algorithm is based
on data extraction and supervised learning. Compared to
traditional image recognition algorithms using artificially
designed features, the multi-layer network structure of CNN
can automatically extract different levels of features from
massive training data, which avoiding errors caused by
subjectivity and improving classification accuracy. In 2015,
Jonathan Long et al. proposed a new structure of CNN—Fully
Convolutional Network (FCN) (Long et al., 2015) applied for
image segmentation. FCN model changes the last layer of the
original CNN to a convolutional layer and adds upsampling
layers to achieve any size of input images and classify the
image pixel by pixel. In addition, FCN utilizes a variety of
mature network structures which have been trained well in
huge data set to initialize its network parameters, and reduces
its design costs. For the last several years, fully convolutional
networks have been widely used in various image segmentation

tasks, such as autonomous driving (Wu et al., 2017), medical
image (Ronneberger et al., 2015) and remote sensing (Maggiori
et al., 2016). In this paper, based on the visualized experiment of
two-phase boiling conditions in a narrow rectangular channel, a
measurement approach of void fraction in narrow channels is
proposed by setting up a fully convolutional neural network to
process images of high-speed photography, and the measure
results are verified with the experimental data calculated by
the energy conservation method.

EXPERIMENTAL DEVICES AND
PROCEDURES

In order to study the heat transfer characteristics of two-phase
flow in narrow channels and the influence of different parameters
on flow stability, the visualized flow boiling experiment system is
designed and shown in Figure 1. The main part is composed of
the test section, main pump, preheater, regulating valve, gas-
water separator, flowmeter, etc. The experimental medium is
purified deionized water. After preheating, the deionized water
flows out of the main pump and is heated by the preheater to
reach a preset degree of subcooling. Then it passes into the
vertical test section and bypass to start boiling. The upwards
two-phase mixture goes through the steam-water separator and
returns to the main pump which forms a closed loop. ADMAG
AXF electromagnetic flowmeters are adopted for flow
measurement and the measuring error is ±0.4%. The
temperature measuring applies T-type thermocouples with
class I accuracy of ±0.5°C. The test data is collected by NI PXI
equipment and the sampling frequency is 10 Hz. The range of
critical parameters in the experiments is listed in Table 1.

The schematic diagram of the test section is shown in Figure 2.
The narrow channel with a rectangular cross-section is composed
of two pieces of glass. The cross-sectional size is 30 × 1.5 mm, and
the length of the rectangular flow channel is 650 mm. A
transparent heating film is evenly coated on the outside of
each glass and the heating length is 550 mm. The test section
is insulated by a transparent plexiglass barrel arranged outside,
and the low-pressure nitrogen is filled into the gap between the
barrel and the test section before power on. The image acquisition
system beside the transparent test section applies an AOS
X-MOTION high-speed camera. The photo-frequency is set to
1,000 frames per second. The resolution of the captured image is
1,280 × 300.

IMAGE PROCESSING METHOD BASED ON
FULLY CONVOLUTIONAL NETWORK

Summary of the Algorithm
Figure 3 presents original experiment image samples of the flow
channel in boiling conditions. Its characteristics include: 1) The
gas phase occupies a large proportion of the flow channel, and on
occasion the bubbles can fill the cross section of the flow channel;
2) The flow pattern is mostly slug flow or churn flow, and the
boundary between gas and liquid phase is blurred at high flow
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velocity; 3) The void fraction changes drastically and the sizes of
bubbles/slugs in different working conditions and different time
are quite different. The above characteristics, which mean the
unevenness of the gas phase distribution in space and time, are
mainly caused by the narrow channel structure and heating
conditions. As a result, it is difficult for most traditional
recognition methods based on single scales or features (such
as edges, pixel thresholds and morphological structures) to obtain
stable and efficient results. In order to solve these problems, this
paper proposes a new image segmentation algorithm of FCN
method based on deep learning technology. It can extract
information from pixel level to abstract semantic concepts
through multi-layer convolution operations. It also uses up-
sampling layers and multi-scale fusion technology to further

optimize the results and achieve higher segmentation accuracy.
At the same time, we enhance the adaptability of the FCN
algorithm by automatically learning various features from a
large amount of data at different times, which makes it
suitable for identifying complex gas-liquid images in narrow
channels.

In this paper, FCN algorithm is utilized to extract the gas phase
part in Figure 3, and realize the segmentation of gas and liquid.
The flow channel part of the original captured image (the input of
the FCN network) can be defined as C:

CW×H � {C(1),C(2),C(3),/,C(i)}, i � K (1)

Where K is the number of the experimental image set, and C(i) is
the ith single-frame image (RGB) of size W ×H. The output
pixel-level segmentation results are defined as G ：

GW×H � {G(1),G(2),G(3), . . . ,G(i)}, i� K (2)

The output of the FCN are binary images of the same size
W ×H, in which pixels value of one mean to gas phase and
value of 0 mean to liquid phase. Then the results are applied for
calculating the void fraction of the narrow channel. The
flowchart of the image-processing algorithm is shown in
Figure 4.

FIGURE 1 | Schematic diagram of the test loop.

TABLE 1 | The range of primary experimental parameters.

Parameters Units Experimental range

Inlet subcooling °C 4−17
Inlet mass flow rate kg/(s·m2) 160−432
Heat flux density kW/m2 6−18.2
Outlet vapor quantity % 0−1.8

TABLE 2 | Typical experiment conditions.

Condition number Flow rate [L·h-1] Heat flux [kW·m-2] Inlet subcooling [°C] Inlet resistance [kPa]

1 52.78 18.33 7 2.5
2 56.24 15.03 6.2 14.9
3 56.24 15.09 5 18.4
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Methods of the Fully Convolutional Network
Model
Figure 5 is an overall schematic diagram of the structure of FCN
model established in this paper. As shown in the figure, the FCN
model is mainly composed of two parts. The left part in the box is
called convolution (downsampling) part, which ismainly composed
of convolutional layers and pooling layers to extract various features
of the input image. The right box is called deconvolution
(upsampling) part, which is mainly composed of deconvolution

layers and a classification layer. It is used to restore the original
image size from the high-dimensional featuremap and identify each
pixel. The methods used in these two parts are introduced below.

Convolution (Downsampling) Part
This paper applies VGG-Net 16 (Simonyan and Zisserman, 2014)
as the basic neural network for extracting features, and sets up a
new model on this basis to save training and calculation costs.
The first half of the established FCN model retains the structure
and initial parameters of the original VGG network before the
fully connected (fc) layer. Five groups of 13 convolutional layers
of increasing size is applied to extract different scales of the
features by training 3 × 3 convolution kernels and performing
convolution operations:

c(i, j) � (X · W)(i,j) � ∑
m

∑
n

x(i +m, j + n)w(m, n) (3)

Among them, X represents the input image transferred into two-
dimensional matrix, W represents the convolution kernel, which

FIGURE 2 | Schematic diagram of the test section.

FIGURE 3 | Samples of original high-speed photography images.

FIGURE 4 | Flowchart of the image-processing algorithm.
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is the core parameter of the training and learning of the
convolution network; c(i, j) is the output of the convolution
operation at the position (i, j) of the image matrix, also known as
feature mapping. m, n are sizes of the convolution kernel and in
this paper m � n � 3. After extracting features through each
convolutional layer, a non-linear output is achieved via a layer
of RELU activation function.

VGG-Net 16 has a large number of convolutional kernels, and
after the convolution operation the output data is large and
the dimensionality is high. Therefore, a pooling layer
(downsampling) is added after each group of convolution-
activation layers to compress the image and reduce the
difficulty of the subsequent calculation. Pooling layer can also
extract the spatial details of the features to realize the spatial
invariance (such as translation and rotation) and stability of
image recognition. In this work, 2 × 2 maximum pooling
layers are applied as:

f (i, j) � max( c2i−1,2j−1 c2i−1,2j
c2i,2j−1 c2i,2j

) (4)

Where f (i, j) is the output of the pooling operation at the position
(i, j) of the image matrix, and c is the output matrix of the
convolution-activation layer.

Deconvolution (Upsampling) Part
Due to pooling operations, the output image matrix (high-
dimensional feature map) sampled by the convolution network
is 1/32 of the original image size. To resize the classification
results to the original, the three fully connected layers of VGG-
Net are removed and five upsampling (deconvolution) layers are
added after the convolution layers. Upsampling is the transpose
of convolving and the specific process of upsampling in the model
is shown in Figure 6 and compared with convolution and
pooling. The output size can be calculated by the formula:

Oout � (Oin − 1) × s − 2p + k + Op (5)

where Oout and Oin are the size of input and output, s is the
moving step size（stride）of the convolution kernel, p is the

padding size of filling the surroundings while convolving, k is the
size of the convolution kernel and Op is the number of edge
expansion rows for upsampling result to adjust its size.

The result of upsampling directly from the high-dimensional
feature map to the original image size only contains the overall
information and reveals too rough. Therefore, this paper also
utilizes a multi-scale refining structure (Cen and Jung, 2018)
commonly used in existing research, which is to add the output of
the first 4 pooling layers to the upsampling layers in sequence in
order to integrate local information with the overall spatial
architecture. Figure 7 shows that by adding the features at
different scales from the downsampling layers, the output
images tend to have more details and the recognition accuracy
is improved.

In practical training, odd-sized images are fairly common. The
convolution and pooling operation of odd-sized images in
program will round down and the upsampling process cannot
guarantee that the final output size is strictly consistent with the
original. Most existing research solve this problem by resizing the
input image to constant even size or dividing into parts and
importing by batches, which may affect the subsequent
calculation accuracy of void fraction in this paper. To solve
this problem, an additional judging operation for input size is
added before each upsampling layer, and padding (edge
expansion) operation is added for odd-sized pictures to ensure
the invariance of the input size. After upsampling, the
classification of the image is completed through the
classifier layer.

Network Training Settings
In this paper, the neural network training adopts the traditional
back propagation algorithm, and its core idea is to obtain the
partial derivative of the loss function of the samples, so as to
adjust the weight and bias of the network operation layers
(convolutional and upsampling layers in FCN model) along
the gradient descent direction to minimize the loss function.

Loss function. Since it is a binary classification problem (gas
and water), the cross entropy formula is used for the loss function:

FIGURE 5 | Schematic diagram of the network structure in this paper.
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L(R,G) � − 1
N

∑N
i�1

[gi · log(gi) + (1 − gi) · log(1 − gi] (6)

where R and G are respectively the training input samples and
labels (ideal segmentation results), N is the total number of input
pixels, gi and gi are the label result values and their occurrence
probabilities (calculated by the network layers).

Training optimizer. In training process, the FCN model
applies the VGG-16 network pre-training value as the initial
value, and optimizing the network by the Stochastic Gradient
Descent (SGD) optimizer with momentum. SGD optimizer can

quickly find the direction of gradient descent and converge to
the global minimum through multiple iterations. Momentum
can make convergence faster to avoid staying in the local
extreme value area for a long time, and suppress the
oscillation to increase the calculation stability. Calculation
formula can be written as:

vt � γ · vt−1 + ∇f (wt), wt+1 � wt − αvt (7)

wherew is the network’s weight of layers, ∇f (w) is the gradient of
the loss function, v represents first order momentum, α is the
learning rate (lr) which affects the rate of convergence, γ is the

FIGURE 6 | Schematic diagram and visualization samples of three basic operation in FCN network of this paper. (A) Convolution. (B) Maximum pooling. (C)
Upsampling (deconvolution).

FIGURE 7 | The visualization and comparison of upsampling layers’ results after refining of different scales. (A) Visualized results: (1)The original input image; (2)
upsampling result directly from the high-dimensional featuremap; (3) upsampling result adding features of pooling layers 3 and 4; (4) upsampling result adding features of
pooling layers 1–4. (B) Schematic diagram of multi-scale refining structure. The yellow part in the image represents the recognition result of gas phase.
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momentum factor to control the influence of the momentum
which the t − 1 moment has on t moment.

Performance evaluation. In performance evaluation of the
FCN model, we use pixel accuracy (PA) and mean intersection of
union (MIoU) of foreground to measure segmentation accuracy.
PA means the proportion of correctly marked pixels to total
pixels. MIoU calculates the mean ratio of intersection between
segmentation result and ground truth mask to the union of them.
In the binary classification problem in this article, PA and MIoU
can be calculated with the following formula:

PA � G1,1

G
� G1,1

G0,0 + G0,1 + G1,1 + G1,0

MIoU � 1
2
( G1,1

G0,1 + G1,1 + G1,0
+ G0,0

G0,1 + G0,0 + G1,0
) (8)

where Gi,j means the number of pixels that belong to class i and
are predicted to be class j. Class 0 refers to liquid phase
(background) and class 1 refers to gas phase. As defined, the
values of PA and MIoU are between 0 and 1. The closer the value
is up to one means the recognition effect is closer to the ground
truth, and the accuracy of the model is higher. Establishment of
training set. The training set used in the training network mainly
adopts the method of Pan et al. (2018), which is based on the
traditional image method of two-step morphology to process the
experimental images of narrow channels, and then manually
selects 1,500 binarized images with clear bubble morphology
and high accuracy as training samples. We partition the
samples into training set (85%) and test set (15%).
Considering the training cost and accuracy, the images are cut
and the flow channel part are selected. To avoid overfitting and
increase the stability of the model, further strategy like data
augmentation is used in the training, images receive both
horizontal and vertical flip and added to the training set.

Training environment and configuration. This paper
employs the deep learning framework Pytorch for network
construction and training. The experimental hardware
environment is AMD 4800H CPU, 16 GB memory, NVIDIA
RTX2060 graphics card for GPU acceleration.

CALCULATION RESULTS AND
VERIFICATION

Experimental Data Set
The data set used in the experiment in this paper comes from the
images collected by the visual narrow channel flow boiling
experiment system of Tsinghua University. Each working
condition point records 13,800 pictures (1,000 frames per
second and the acquisition time is 13.8 s). Three typical
conditions are chosen and the operating parameters are shown
in Table 2.

Results and Analysis
Figure 8 shows the train loss of the network and MIoU of the test
set under different learning rates and momentum factors. From
the picture, we can see the learning rate less affects the training

process, while higher momentum can effectively improve
computing stability. By comparing the results, we choose
learning rate � 0.01 and momentum factor � 0.9. After 33,500
iterations, the train loss basically converges, and the average PA
and MIoU of the test set reach 0.991 (99.1%) and 0.982 (98.2%)
respectively, which can meet the requirements for convergence
speed and training accuracy, and reduce computational
oscillation. Then the FCN model established in this paper is
applied for the experimental data set and part of the processing
results are shown in Figure 9, achieving recognition of the gas
phase in the image under the conditions of different void fraction
and different flow patterns. It can be seen that the method has
basically identified the gas phase’s morphology, especially in the
slug flow (Figure 9 a1 and a2) and churn flow (Figure 9 a3
and a4) of high void fraction. This verifies the portability and
reliability of this method for different working conditions and
flow patterns in boiling experiments.

As shown in Figure 10, the method in this paper is compared
the traditional edge detection/filling algorithm and the two-step
morphological method of Pan et al. (2018). It can be seen that in
working condition A of low void fraction, the results of FCN
method and the traditional algorithm are not much different, and
both can identify bubbles with clear boundaries and regular
shapes. The FCN method has a relatively better recognition
effect on small bubbles. In working condition B and C where
the void fraction is high, the traditional algorithm will overfill the
gap between the bubble and the vapor slug, resulting in the
unrecognizable gas phase areas and may detect an excessively
high void fraction value. The designedmorphological method can
better extract the characteristics of local irregular bubbles, but it
requires manual setting of parameters. When the pixel value of
the picture changes greatly and the threshold parameters cannot
be matched, a large block of recognition defects may occur like
Figure 10C. The method in this paper also has some local
recognition defects inside and between the bubbles, but it
basically realizes the recognition of bubble shape. It also has
better applicability for different flow patterns to improve the
overall recognition accuracy, and does not require manual
adjustment of parameters, which saves design costs.

The void fraction at the outlet of the flow channel is of
significance to the calculation of the two-phase model and
determining the flow pattern. After the gas-liquid recognition
results are obtained by the method in this paper, the numerical
matrixH(i, j) (size � M × N) near the outlet is extracted from the
output binary image. The following formula is for calculating the
void fraction of the outlet in narrow channels:

α � ∑M
i−1 ∑N

j−1 H(i, j)
M × N

(9)

The time-dependent change of the void fraction (0–2.5 s)
obtained by the method in this paper is shown in Figure 11.
It can be seen that due to the small size of the narrow channel, the
bubble develops more rapidly after its generation, which cause the
outlet void fraction extremely fluctuates with time. In condition 1,
the flow channel is mainly dominated by annular flow, a large
section of gas column is accompanied by intermittent liquid film
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oscillation, and the proportion of outlet void fraction alternately
changes with a period of about 0.2s. Operating condition two and
three have lower heat flux density than condition 1, and are
dominated mainly by slug flow and churn flow. So we can observe
from Figure 11 that intermittent steam generation phenomenon
occurs, resulting in a rapid and regular decrease and rise of the
void fraction.., which is consistent with the high speed
photography images at the corresponding time.

For further verifying the accuracy of the neural network
recognition results, we use the theoretical method to calculate
the time-averaged void fraction under experimental conditions
and compare it with the average value obtained by the method in
this paper. The formula of energy conservation method for
calculating the mass quality of the gas at the outlet of the
narrow channel is shown in the following:

x �
P(1−k)

M − hl,out + hl,in

hv,out − hl,out
(10)

where x is the mass quality of the gas, P is the heating power, k is the
heat loss ratio, M is the mass flow rate, h is the enthalpy value, the
subscript l indicates the liquid phase, v indicates the gas phase, the

subscript in means the inlet of the test section while the out means
the outlet. In calculating the heat loss ratio k, the influence of the
parameters is analyzed and it is found that the mass flow causes less
change, indicating that the internal flow has little effect on the heat
dissipation. In addition, it is natural convection in a limited space
outside the test section, and the heat transfer conditions are basically
constant. Therefore, the two-phase heat dissipation loss ratio can be
derived by fitting the heat dissipation data of single-phase flow:

lgk � ( − 0.03338 + 2 × 10− 4 ΔT − 3 × 10− 6G)q − 6 × 10− 4 ΔT2

−0.00362ΔT − 5 × 10− 5G + 0.19232 (11)

In this formula, ΔT is the degree of subcooling (°C), G is the inlet
mass flow rate (kg/s), and q is the heat flux density (kW/m2).

So far, numerous of empirical, semiempirical and analytical
two-phase flow void fraction correlations have been developed,
and according to many review literatures these formulas can be
mainly divided into slip ratio model, Lockhart-Martinelli
parameter based model, drift flux model, KαH model, etc.
(Vijayan et al., 2000; Dalkilic et al., 2009) According to Huang
et al. (2013), the slip ratio model which essentially specify an
empirical equation for the slip ratio S is more suitable for narrow

FIGURE 8 | The influence of training parameters on the training process and test set accuracy. (A) Different learning rate (momentum factor � 0.9). (B) Different
momentum factor (learning rate � 0.01): (1) Changes of the train loss. (2) Changes of the mean iou of the test set.
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channels with relatively low outlet mass quality. Therefore,
according to the survey, three commonly used calculation
models of void fraction are selected as shown in Table 3.

The void fraction calculated by our FCN method is
instantaneous and the data is time-averaged for comparing
with the theoretical results：

FIGURE 9 | Image processing results of different flow patterns. (A) Input images. (B) Output binarized images (A1, A2: slug flow with bubbles; A3, A4: churn flow).

FIGURE 10 | Comparison of FCN model results in this paper with traditional algorithms (A) Condition A of low void fraction (B,C) Condition B and C of high void
fraction. (1) Input experimental pictures; (2) Traditional edge detection/filling algorithm; (3) Two-step morphological method; (4) FCN method.
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α � ∑K
i�1 αi

K
(12)

Where α is the time-averaged result of the FCN model, αi is the
instantaneous void fraction of the corresponding images in
experimental data set, and K is the number of the experimental
image set. The comparison results are listed in Figure 12. It shows
that the relative deviation between the method in this paper and
various empirical models is within ±11%, which illustrates the
accuracy of the FCN model proposed in this paper. In addition,
the neural network method uses the tensor operation method based
on the pre-training weights, and the processing speed has also been
improved. After further optimizing the network, it can be applied to
real-time monitoring and online void fraction identification.

CONCLUSION

In this paper, a void fraction measurement method based on fully
convolutional neural network (FCN) is proposed for the visualization
system of the narrow channel two-phase flow boiling experiment. It
can identify and extract gas phase from the flow images captured by a
high-speed camera, and calculate the void fraction at different
locations of the channel. The conclusion is summarized as follow:

(1) Introducing the FCNmethod based on deep supervised learning
and data extraction into the gas-liquid two-phase recognition.
FCN can extract information automatically from pixel level to
abstract semantic concepts through multi-layer convolution
operations. It also uses up-sampling layers and multi-scale
fusion technology to further optimize the results. The method
reduces the cost of manual design algorithm, and has extensive
value for the gas-liquid identification of two-phase flow.

(2) Aiming at problems such as blurring of the gas-liquid interface
and dramatic changes in the instantaneous void fraction when
in high vapor quality of the narrow channel, the network
structure has been adjusted to adapt specific problems. In
the working conditions of different void fraction and flow
patterns, FCN method realizes better recognition of the gas
phase in images, and also realizes the measurement of the
transient void fraction in the entire flow channel, which
improves the generality of the gas-liquid recognition algorithm.

(3) The void fraction at the outlet of the flow channel is extracted
and comparedwith the numerical results obtained by the energy
conservation method and empirical formulas. The deviation
between two methods is within ±11%, which verified the
reliability of the FCN method. In the future, this method can
be applied to real-time void fraction measurement and flow
channel monitoring in complex conditions of narrow channels.
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FIGURE 11 | Change of the outlet void fraction with time of different
working conditions (0∼4 s).

TABLE 3 | The vapor quality-void fraction conversion model selected in this paper.

Number Authors Vapor quality-void fraction
conversion model

1 Zivi (1964)
α � [1 + (1−x

x )(ρv
ρl
)S]− 1

,S � 0.2+0.8⎡⎣ρl
ρv
+0.2(1−x)/x

1+0.2(1− x)/x⎤⎦
1/3

2 Smith (1969)
α � [1 + (1−x

x )(ρv
ρl
)S]− 1

,S � 0.4+0.6⎡⎣ρl
ρv
+0.4(1−x)/x

1+0.4(1− x)/x⎤⎦
1/2

3 Chisholm
(1973) α � [1 + (1−x

x )(ρv
ρl
)S]− 1

,S �
���������
1 − x + xρl

ρv

√

FIGURE 12 | Comparison results of the void fraction calculated by the
method in this paper and the empirical formulas.
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