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Biofuel production from microalgae non-food feedstock is a challenge for strengthening
Green energy nowadays. Reviewing the current technology, there is still reluctance in
investing towards the production of new algal strains that yield more oil and maximize
capital gains. In the current work, the microalgal feedstock selection problem is
investigated for increased lipid production and nano-catalytic conversion into clean
biofuel. For that purpose, a variety of Fuzzy Multi-Criteria Decision Making processes
and a multitude of Optimization criteria spanning to technological, environmental,
economic, and social aspects are used. The strains selected for the analysis are
Chlorella sp., Schizochytrium sp., Spirulina sp., and Nannochloropsis sp. The methods
applied are fuzzy analytic hierarchy process, FTOPSIS (fuzzy technique for the order of
preference to the ideal solution), and FCM (fuzzy cognitive mapping). Pairwise comparison
matrices were calculated using data from extensive literature review. All aforementioned
fuzzy logic methodologies are proven superior to their numeric equivalent under uncertain
factors that affect the decision making, such as cost, policy implications, and also
geographical and seasonal variation. A major finding is that the most dominant factor
in the strain selection is the high lipid content. Moreover, the results indicate that the
Chlorella Vulgaris microalgae is ranked as the best choice by the FTOPSIS method
followed by the Nannochloropsis strain, and Spirulina Platensis was found to be the last in
performance. The best and worst case scenario run with FCM experimentally verify this
choice indicating that Chlorella Vulgaris follows this trend of selection mostly with the
technological and the economic criteria for both the sigmoid and the hyperbolic tangent
deep-learning functions used.
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INTRODUCTION

Bioenergy and biofuel production in the framework of
sustainability has gained significant interest in recent years
and represents one of the main priorities in energy research.
Biofuel, especially, has proven to be the ultimate alternative for
green and renewable energy production, which drastically
reduces greenhouse emissions despite the high operating cost
and the technological process irregularities in the involved supply
chain (Chandel et al., 2018; Gardy et al., 2019). Due to renewable
biofuel potential for green recovery, biomass production has
recently attracted enormous attention worldwide for contributing
to climate change mitigation (Roussos et al., 2019). In this context,
biomass production is a non-toxic technology that creates renewable
energy utilizing established procedures specific to the desired biofuel
production (Sindhu et al., 2017). Lately, special interest has been
shown and directed to the microbial fuel cells, among which
microalgae in particular presents a promising environmental
adaptability in preserving nutrients and storing lipids that can be
extracted to provide a sustainable energy source. This can migitate
the gap between economic development and environmental
preservation (Nizami et al., 2017).

Microalgae is the primary third generation biofuel (non-food)
source that has been proved to be superior for biofuel production
among other conventional terrestrial crops in terms of cell
structure, growth rate, and photosynthetic yield (Viswanath
et al., 2010; Dutta, Daverey, and Lin 2014). Specifically,
microalgae are individual plant cells that can be cultivated
either in photo-bioreactors, or in specially constructed open
ponds or even in a hybrid combination of both systems
(usually raceway open ponds and closed photo-bioreactors).
They utilize CO2, micronutrients, and solar light to multiply
and produce raw microalgal biomass containing carbohydrates,
lipids, and proteins (Arora et al., 2019; Papapolymerou et al.,
2019; Zhang et al., 2020).

Cultivation of microalgae offers distinct advantages that
ensure process viability and sustainability as feedstock for
clean biofuel energy production (Chisti 2008; Li et al., 2008;
Singh and Gu 2010; Carmichael et al., 2017; Yadav et al., 2020).
The most important advantages include: 1) increased biomass
production capability, 2) minimal nutrient requirements, fewer
water needs and even possibility of using wastewaters containing
residual nutrients and also no requirements for herbicides or
pesticides, with expected environmental and economic gains, 3)
less land demand, thus avoiding competition with other land-
based crops also taking into account the potential for cultivation
in non-arable areas, and 4) resistance of several species to salinity
or even growth in marine environment with obvious benefits for
cultivation in coastal areas.

Especially, microalgal biomass is a renewable energy source
with its carbon content being totally derived from carbon dioxide
(CO2) and also with the perspective of fixing and recycling CO2

exhausts from fossil fuel burning, (e.g. from co-located
thermal power plants) in algal biomass production towards
CO2 bio-mitigation and global carbon emission reductions. In
the context of circular bio-economy, additional advantages
include: 1) a more efficient microalgal oil extraction ability, 2)

an increased biofuel biodegradability and non-toxicity, 3) the
possibility of co-generation of other products for use in food,
cosmetics and medical industry, 4) the potential for
exploitation of new by-products as crop fertilizers or food
additives, (e.g. the remaining algal biomass being rich-in
protein, carbohydrates and small quantities of non-
extractable lipids and micronutrients).

According to (Nwokoagbara et al., 2015), the stages in
producing biofuels from microalgae are the following:

• microalgae strain selection and cultivation,
• harvesting,
• algal oil extraction via pretreatment (drying) and treatment

(fluid extraction) via various physicochemical processes,
and finally

• oil transformation to produce the desired type of biofuel.

For the conversion of microalgal biomass-derived oil feedstock
into biofuel by the catalytic transesterification reaction, alkalis
(KOH or NaOH) have been used as homogeneous catalysts
(Campbell 2008), while porous microspheres, (e.g., zirconia,
titania and alumina) have been used as heterogeneous ones
(Raehtz. 2009). At the boundary between them, nanocatalysts
with enhanced stability, catalytic activity, low cost, recyclability,
and reusability are increasingly being considered to provide new
pathways for efficient and environment-friendly biofuel
production. The latest achievements in nanomaterial design
for algal lipid transformation include a photochemically
synthetized SrTiO3 nanocatalyst (for microalgae Chlorella
vulgaris), a Fe2O3 nanocatalyst, a KOH-supported magnetic
alumina-ferric oxide nanocatalyst, and a poly-ethylen-glycol
encapsulated ZnOMn2+ nanocatalyst (for Nanochloropsis
oculata) (Banerjee et al., 2019; Kazemifard et al., 2019; Vinoth
Arul Raj et al., 2019; Aghilinategh, Barati, and Hamadanian 2020;
Safakish et al., 2020).

Generally, the overall process optimization includes very
complex research issues and involves diverse limitations in
components and system parameters, in order to establish a
viable large-scale microalgal oil production for biofuel
(Carmichael et al., 2017). In order to maximize the quantities
of biofuel generation, an optimization of microalgae cultivation
with improved productivity is a prerequisite, taking into
consideration the advancements in physicochemical
parameters, including temperature light irradiation, CO2

incoming feed etc., for enhancing microalgal biomass yield
(Gouveia 2011; N.; Hossain and Mahila, 2019). Moreover,
apart from the harvesting, processing, and fuel extraction
methodologies, according to (Viswanath et al., 2010), most
critical decisions are especially related to the microalgal strain
selection focusing on properties of critical significance such as: 1)
the growth rate of the plants, 2) the lipid content, 3) the fatty acid
profile, and 4) the ease of harvesting to make the technology one
that is worth advancing and which has the corresponding
economic impact to decisively contribute to the sustainability
of the process. Actually, some microalgae strains favor high
biomass production while others favor high lipid
concentration, thus it is important to select an appropriate
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algae strain with both high biomass and oil productivity, which
also can be grown at relatively low cost (Hossain et al., 2008; Yoo
et al., 2010). Moreover, genetic and metabolic engineering
approaches have lately been investigated for improving the
valuable lipid content in microalgae that are increasingly
considered as promising “cell factories” (Naghshbandi et al.,
2020).

Nevertheless, extended research has shown that already over
50,000 microalgae species have been recorded and around 30,000
of them have been studied. Furthermore, there is not any
classification of the already analyzed strains in terms of their
properties (both chemical, physical, and biological). Having the
aforementioned facts in mind, microalgal strain selection
becomes a critical and multi-various decision making problem
depending on a repertoire of criteria of diverse methodological
categories and uneven weight importance. To deal with the
microalgae strain selection problem using conventional
MCDM methodologies is not convenient due to the fact that
there is a multitude of decision making variables involved that are
of non-numeric nature. Furthermore, the participation of experts’
opinion in the process automatically initiates the mixing of
categorical properties having linguistic values. Additionally,
attacking the problem using a participatory modeling
methodology naturally inserts a variety of uncertainties related
to the strain selection, and again all subjectivities of experts in the
field can only be expressed using fuzzy linguistic variables as
opposed to regular numeric quantities (Zhao, Xu, and Ren 2019;
Lak Kamari et al., 2020). On the other hand, the involvement of
fuzzy linguistic variables when applying multi-criteria decision
making has shown to reveal the most influential criteria and
parameters that are associated with the uncertainties occurring.
So far, restricted information is reported in literature about the
application of fuzzy MCDM methodologies in the critical task of
the optimized selection of microalgae strains as feedstock for
biofuel, given their ample differences in physico-chemical and
biological properties that can strongly affect the overall
production process.

The primary aim/objective of the present novel research is to
systematically analyze and evaluate the potential of microalgae
strains for clean biofuel production. For that purpose, an
innovative holistic approach is proposed, which includes
participatory modeling and a robust repertoire of advanced
fuzzy logic-based multi-criteria processes/methodologies, namely
FAHP, FTOPSIS, and FCM, to address andminimize uncertainties
involved towards investing into microalgal potential plants
that use selected feedstock. Moreover, the optimization criteria
are classified into technological, environmental, social, and
economic ones.

With the involvement of experts in the field, the most
important parameters of the above four categories were
identified. Then, a simple questionnaire was given to local and
regional stakeholders of biofuel production industry, competent
authorities officials and local residents to provide feedback
relatively to the importance of each criterion used in relation
to strain type. The set of available answers was scaled using
intutionistic and linguistic values, thereby triggering the
participation of the fuzzy MCDM methodologies mentioned

above. The interoperability of the above criteria is not
generally helpful, as there may exist negative or converse
causalities between any two criteria elements. However, this is
the reason that, in participatory modeling, regional and local
stakeholders contribute on the creation, establishment and
refinement of these causalities (Kokkinos and Karayannis
2020). The opinion of stakeholders is obtained using either
surveys or focus groups. The answers acquired are treated
using the aforementioned procedures to evaluate candidate
decisional scenaria and/or to find near optimal solutions to
the optimization problem at hand.

The structure and major contents of this study are: i. in section
two, the methodologies are thoroughly presented with regard to
the fuzzy processes used for finding the best suitable microalgal
strain to produce biofuel. The criteria for the evaluation are taken
mostly by the literature and experts on the field. A detailed
description of the questionnaire used, the classification of
criteria and the feedback of the local and regional stakeholders
weighing and contemplating these criteria are also included; ii.
Section three calculates the criteria priorities in a decision matrix
for the case of FAHP, setting initially the hierarchy and the weight
fuzzy scale. Similar approach is shown for the case of FTOPSIS,
using triangular fuzzy membership functions. For the FCM case,
a steady-state analysis is presented separately for each strain case
scenario as well as best and worst case scenario of alternating the
involved criteria. Furthermore, the results, discussion, and
assessment are illustrated along with the overall procedure
application in specific locations in Greece; and finally iii. main
conclusions and future challenges of the problem under
consideration are presented.

METHODOLOGIES

Microalgal Biomass Cultivation for Biofuel
Production
Compliance With Ethical Principles
The present research methodology upholds high ethical
standards. In that sense, ethics approval was not required in
accordance with the local legislation and/or the institutional
requirements. Indeed neither animal subjects nor human
subjects/patients are involved. Moreover, identifiable personal
human data are not included in the social surveys performed for
the purpose of the study, which fully complied with the ethical
principles. Specifically, all participants were given all the
appropriate information regarding the aim and the content of
the survey and especially the confidentiality and the anonymity of
the participants, and finally they were asked whether they wanted
to participate. Thus all participants volunteered to provide their
opinions about the concepts of the study. At the same time,
participants were informed about any possible shortcomings of
the survey and particularly on the effort of the researchers to
totally avoid the introduction of any bias either via questioning of
certain scope or via the outcome statistics. Furthermore, the social
survey was not sponsored by any organization or private sector
business but it was solely aiming to record and assess the public
opinion and potential acceptance relative to the growth and/or
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the worthiness of producing Green energy through the use of
microalgal biomass renewable source and its processing into
clean biofuel.

Participatory Modeling Process and Proposed
Decision-Making Logical Architecture
The participatory modeling approach can be utilized to create the
causal loop from all involved stakeholders to integrate: 1)
microalgal cultivation methodologies, 2) social and environmental
aspects and 3) economic aspects to introduce a comprehensive
scheme of promoting specific strains that maximize profit. The
goal is to understand the limitations and the extensions of the
problemwhile at the same time, the stakeholders can discover all the
drivers and factors that participate on this issue (Suprun et al., 2018).
The work of Salim et al. (2019) identified the barriers, the drivers,
and the enablers concerning the development and the management
of renewable energy production plants. They also identified all
criteria to initiate such development. Specifically for the case of
microalgal cultivation for biofuel production, the strain selection is a
multifaceted and complex problem involving various conflicting
criteria. The multitude of interlinked factors affecting the process
makes the strain selection a MCDM problem. According to
(Wohlfahrt et al., 2019), there is a necessity to focus on criteria
that improve the biomass transformation which corresponds to
biofuel improvement with regard to sustainability. For that reason,
we need to review the factors of critical significance in relation to bio-
economy systems and how these systems interact, the level of their
heterogeneity, the bending and flexibility of stakeholders’ strategies,
the panoramic view of all spatiotemporal scales for the microalgal
cultivation as well as other exogenous parameters such as the energy
price market, the climate and various regional regulations and
bylaws. The work of (Köhler. 2019) indicates the most important
directions for sustainable innovation in terms of sustainability and
biofuel production via evolutionary economics and technological
innovation using agent based models that represent the neo-
Schumpeterian ideas in terms of sustainable energy transitions.
Towards the same lines of research, the work of Wang et al.
(2019) assessed mostly the socioeconomic aspects in the
production of aviation biofuel for the case of Brazil. This work
provides a variety of scenarios illustrating the technological
coefficients of the MCDM model. However, the above research
works represent only a small sample of the available research directly
related to the assessment of the multi-criteria problem of sustainable
biofuel production. The survey of Hossard and Chopin. (2019)
shows that there at least ∼2000 research articles up until 2019 that
tackle the problem of sustainable biofuel production involvingmulti-
criteria issues such as change, scale, pollution, biodiversity, practices,
and terms on biophysical/regulatory conditions.

According to (Bekirogullari et al., 2020; Juan et al., 2020;
Markou. 2020; Sung et al., 2020), the most popular systems for
microalgal cultivation are summarized as follows:

• Outdoor cultivation systemswhich are open water repository
systems (ponds, lakes etc.) that enable microalgae to treat
nitrogen and phosphorus in the wastewater.

• Indoor cultivation such as large cultivation bags and tubular
photobioreactors suitable for microalgae cultivation

independently from the weather conditions avoiding
contamination.

• Hybrid photobioreactor systems which use photobioreactors
initially and then open systems to increase the biomass
production.

• Microalgal biofilm systems that mostly deal with microalgal
cultivation in wastewater, and

• Systems of microalgae cultivation in beads of alginate that
trap algal cells in wastewater management plants.

To the best of our knowledge, the most relevant research that
relates all categories of criteria to biomass and biofuel production
belongs to (Bueyuektahtakin and Cobuloglu. 2014). The
combination of the above literature with the surveying of a
broad expert body gave us the following Table 1 of candidate
criteria clustered into the four categories. Out of these criteria,
according to (Viswanath et al., 2010) the most important
technological criteria are the growth rate, the fatty acid profile,
the ease of harvesting but above all the lipid content.

The abovementioned criteria are used to determine their fuzzy
weights each in their specific category. For that reason four types
of simple questionnaires were distributed to experts as well as to
the competent authorities’ officials and other relevant
stakeholders. The scaling on the answer choices was done
using seven fuzzy linguistic values spanning from highly
unimportant to highly important levels. The set of the
methodologies used in the determination of the most
important strains is shown in the following Figure 1 and it
works as a logical architecture of the overall participatory
modeling approach. More specifically, we first apply FAHP
and FTOPSIS to calculate the pairwise comparison matrices of
the criteria at hand. Four such matrices were computed, one for
each category of criteria. This allowed us to do scenario analysis
(steady state, worst and best case) for each one of aforementioned
categories of criteria to evaluate their relative significance and
importance.

Fuzzy Sets Theory and FAHP Method
Fuzzy sets were introduced by (Zadeh. 1965). Fuzzy sets
differentiate from other set types because they contain
elements that present a degree of membership i.e., making it
possible to represent the imprecision level in non-numeric
variables. Fuzzy relations are a generalization of L-Relations
(Burgin and Kuznetsov. 1992) and they assign a membership
grade in each set entity as a mapped value between 0 and 1. By
permiting gradual assessment of the membership of set elements,
fuzzy theory suceeds to provide significant results in fuzzy
linguistics (Cock et al., 2000), in decision making (Kokkinos
et al., 2019; Wang and Peng. 2020) and in clustering (Ullah et al.,
2020).

The AHP method was introduced by (Saaty, 1987) to provide
ratio scaling and since then, it has become the de facto tool to
perform MCDM. The method however is applied only for
problems of crisp numeric variables. To overcome the
problem, FAHP was introduced by (Chang, 1996). FAHP
calculates the relative importance between any pair of criteria
in a hierarchy setup for a specific problem. The method uses
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triangular fuzzy numbers (TFNs) and a pairwise comparison to
compute the fuzzy evaluation matrix. The TFNs are defined by
the triplet (l, m, u) where (l ≤m≤ u) and their corresponding

memebrship function is depicted in the following equation
whereas the visual representation is shown in Figure 2.

μ(x) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x − l
m − l

, l ≤ x ≤m,

u − x
u −m

, m≤ x ≤ u,

0, otherwise.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
According to Altintas et al. (2020), the method performs a

pairwise comparison between any two criteria translated from
linguistic values to TFNs based on a nine-integer scale
mapping which is depicted in Table 2. Intermediate
numbers in the numeric scale get an analogous
comproming in the triangular fuzzy scale. Additionally, the
following set of algebraic operations is defined by Kahraman
et al. (2003); Noorul Haq and Kannan. (2006); Chamodrakasv
et al. (2010); and Chan et al. (2008) to calculate the pairwise
comparison between criteria. The operations shown (apart
from the representation of a TFN) are the following in this
order: inverse of a fuzzy number, addition of two numbers,

TABLE 1 | Candidate Criteria for Microalgae Cultivation to optimize biofuel production. Courtesy from (Nwokoagbara, et al., 2015).

ID Technological ID Environmental ID Economic ID Social

T1 Energy content EN1 Land/waterbody use EC1 Microalgae (raw material) cost S1 Competition for food
T2 Energy efficiency EN2 Water quality requirement EC2 Investment cost S2 Technological development
T3 Ease of harvesting EN3 Biodiversity and aquatic life EC3 Cost of cultivation or nutrients S3 Sustainable development
T4 Primary energy ratio EN4 CO2 sequestration ability EC4 Cost of harvesting S4 Social acceptability
T5 Biomass content EN5 Cultivation methods EC5 Co-utilization S5 Job creation
T6 Oil content EN6 Pollution EC6 Robustness S6 Social benefits
T7 Lipid content EN7 Chemical usage EC7 Storage cost
T8 Fatty acid profile EN8 Light intensity EC8 Transportation cost
T9 Growth rate EN9 Resistance to contamination EC9 Payback period
T10 Reliability EN10 Particles emission
T11 Safety EN11 Impact on ecosystems
T12 Availability of nutrients EN12 Visual impact

FIGURE 1 | The logical architecture of the participatory modeling approach.

FIGURE 2 | The presentation of a triangular fuzzy number.
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subtraction, multiplication, inner product, and summation of
a set of fuzzy numbers respectively.

~M � (l,m, u),( ~M)− 1 � (l,m, u)− 1 � (1
u’
,
1
m’
,
1
l
),

~M1⊕ ~M2 � (l1,m1, u1)⊕(l2,m2, u2) � (l1 + l2,m1 +m2, u1 + u2),
~M1 − ~M2 � (l1,m1, u1) − (l2,m2, u2)

� (l1 − l2,m1 −m2, u1 − u2),
~M1⊗ ~M2 � (l1,m1, u1)⊗(l2,m2, u2) � (l1l2,m1m2, u1u2),∏n

i�1
~Mi � ⎛⎝∏n

i�1
l,∏n

i�1
m,∏n

i�1
u⎞⎠,

∑n
i�1

~Mi � ⎛⎝∑n
i�1

l,∑n
i�1

m,∑n
i�1

u⎞⎠.
Assuming a set of n-criteria then the corresponding

comparison matrix is given in the form:

~Mij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ~M11

~M12 / ~M1n
~M21

~M22 . . . ~M2n

«
~Mn1

«
~Mn2

. . .

. . .
«
~Mnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ l11m11u11 l12m12u12 / l1nm1nu1n

l21m21u21 l22m22u22 . . . l2nm2nu2n
«

ln1mn1un1

«
ln2mn2un2

. . .

. . .
«

lnnmnnunn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for

i � 1 . . . n,
j � 1 . . . n.

Furthermore, the geometric mean is also needed to convert
back the triangular fuzzy numers into crisp numeric and this
operation is defined as:

~Fi � ~R⊗ ~Gi � ⎛⎜⎜⎜⎜⎜⎜⎜⎝∑n
i�1

n

������∏n
j�1

~Mij

√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎠− 1

⊗
n

������∏n
j�1

~Mij

√√
.

Note that in the previous equation ~Gi denotes the fuzzy
geometric mean of the criterion Ci, R corresponds to the
reciprocal of the sum of the geometric mean of fuzzy
comparison values, and finally ~Fi represents the fuzzy weight
for criterion Ci.

Microalgal Biomass Selection Problem and
FAHP–Related Works
Montingelli et al., 2015 have provided a comprehensive review
related to biogas production from algal biomass proving that
algae-derived biofuels are a promising alternative to the depleting
of fossil fuels. However, the economic feasibility of massive
biomass production from microalgae has not been established
yet due to high energy requirement for harvesting and drying. For
that reason, research based on FAHP was conducted by Tan et al.
(2016) to prioritize the best harvesting and drying method at the
same determining the degree of confidence of the experts who set
up the criteria and the quantification process. FAHP has been
used to evaluate global market shares in terms of the renewable
bio-energies. Initially, the research of Ubando et al. (2020)
evaluates new algal bioproducts in collaboration with existing
industries. The authors created a Decision Support System (DSS)
that helps the industry to choose the best among candidate sites
and regions to cultivate microalgae based on the environmental
impact, several economic burdens, social aspects, and the
viewpoints of stakeholders via an FAHP that incorporates
uncertainty of opinions. For the same area, a study by
(Ubando et al., 2016a) focuses on the factored ranking of
several criteria using FAHP and Artifical Neural Networks
(ANN). The selected methodologies provided the ability to
discover patterns of inconsistencies as well as a large amount
of missing information in order to apply a complete participatory
modeling process. Towards the same line of research, the work of
(Correa et al., 2019) utilizes FAHP among other fuzzy modeling
approaches to discover the most appropriate and feasible site for
producing microalgal feedstock (but on a global and country
level). In this work the optimization criterion is the revenue and
profit while diminishing several collateral competitions of other
targeted markets (food markets, cosmetics etc.). Their case
studies mostly concentrate on the regions of Africa, Middle
East, and western South America and this is the first sited
work on the subject specifics. The same work in Ubando et al.
(2016b) tries to analyze various microalgal cultivation systems
based again on environmental impact, energy consumption,
economic viability, social acceptability, and system robustness
using FAHP via Monte Carlo simulations. These studies provided
microalgal sites for cultivation for risk-averse and risk-inclined
scenarios.

The majority of research that relates the FAHP method with
the biofuel through microalgal biomass production can be
represented by the work of Hamid et al., 2017. This work
concentrates on the technological screening of the biomass
production using FAHP for feature scaling normalization in
order to select the optimum processing procedure for
sustainable biofuels production from algae. But as it happens
with other forms of renearble resource feedstocks (Katooli et al.,
2019; Kheybari et al., 2019), the most important step towards
sustainable profitability scenario is the development of an
evaluation framework and a well established DSS that
determines the importance of the selected criteria including all
appearances of nature (climate, environment, technological, and
social consequences).

TABLE 2 | Mapping between fuzzy linguistic values, triangular-fuzzy and
numeric scale.

Definition Crisp values (intensity
of importance)

Fuzzy triangular scale
~M � (l,m,u).

Equally important 1 (1,1,1)
Weakly important 3 (1,3,5)
Fairly important 5 (3,5,7)
Strongly important 7 (5,7,9)
Absolutely important 9 (7,9,9)
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FTOPSIS Method
The TOPSIS method is a numerical optimization
methodology that utilizes a pseudo-polynomial heuristic
based on the fact that, in a selection process, we must rank
as the most appropriate the solution that close to the positive
ideal decision candidate and far away from negative
decision ideal candidate (Yoon and Hwang, 1995). The
method was extended to include linguistic valued variables
of fuzzy nature by Chen. (2000) and since then, it has been
heavily used in many disciplines. Via FTOPSIS, policy
makers can define each participating decision criterion
using TFNs as shown in FAHP. Given any two TFNs ~N1 �
(l1,m1, u1) and ~N2 � (l2,m2, u2) and using the vertex distance
calculation for FTOPSIS, the distance between ~N1 and ~N2 is
given by:

d(~N1, ~N2) � ��������������������������������
1
3
[(l1 − l2)2 + (m1 −m2)2 + (u1 − u2)2 ]√

.

Most of therecent FTOPSIS research deals with the
optimization of the renewable energy solution problem as
presented in Rani et al. (2020; 2019); Cayir Ervural et al.
(2018); Dinçer and Yüksel. (2019); Aikhuele et al. (2019);
Krishankumar et al. (2020). We present the whole modeling
approach as a seven step approach:

Step 1. Definition of the criteria involved and weight
classification: The correspondence between the linguistic
ratings and the TFNs is based on Table 2 as a Likert-scale
type. According to this mapping, normalization of the TFNs is
achieved using triplets within the space [0..1].

Step 2. Computation of the judgment matrix: For policy
makers, the following matrix is computed as a combination of
the available criteria Cj and the alternative decisions Di.

JM �
C1 C2 / Cm

D1

D2

«
Dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ~r11 ~r12 / ~r1m
~r21 ~r22 . . . ~r2m
«
~rn1

«
~rn2

. . .

. . .
«

~rnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Step 3. Normalization of the judgment matrix: The JM matrix

normalization is computed using the pre-clustering of the
available criteria into the Benefit Criteria (BC) and Cost
Criteria (CC) subsets. The result is denoted as NJM and the
relevant equations follow:

NJM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ~x11 ~x12 / ~x1m

~x21 ~x22 . . . ~x2m
«
~xn1

«
~xn2

. . .

. . .
«

xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
~xij � (aijcpj , bijcpj , cijcpj ) j ∈ BC, ~xij � (a−jcij , a−jbij , a−jaij), j ∈ CC ,

cpj � maxi cij, j ∈ BC, a−j � maxi aij, j ∈ CC.

Step 4. Construction of the weighted NJM denoted as WNJM
and computed using:

~V � [~vij]n×m, ~vij � ~xij(.)~wi, i � 1 . . . n, j � 1 . . .m .

Step 5. Computation of the the Fuzzy Positive Ideal Solution
(FPIS) and the Fuzzy Negative Ideal Solution (FNIS), via
calculation of two vectors Ap and A− where:

Ap � (~vp1,~vp2, . . . , ~vpn), A− � (~v−1 ,~v−2 , . . . , ~v−n) .
and ~vpi � (1, 1, 1) and. ~vpi � (0, 0, 0) i � 1 . . . n.

Step 6. Calculation of the distance between FPIS and FNIS,
corresponding to the distance between A* and A− denoted as ~d

p

i
and ~d

−
i respectively:

~d
p

i �∑n
i�1

d(~vij,~vpi ), i � 1 . . . n ,

~d
−
i �∑n

i�1
d(~vij,~v−i ), i � 1 . . . n .

Step 7. Computation of the closeness coefficient of each policy
and rating them in descending order

COEFi �
~d
−
i

~d
p

i + ~d
−
i

.

Microalgal Selection Problem and FTOPSIS–Related
Works
The FTOPSIS methodology can be applied in the microalgae
strain selection problem to produce biofuels as a holistic decision-
making tool. Accordingly, the idea behind FTOPSIS is to choose
one of the candidate elements that has the maximum possible
distance from the negative ideal and the minimum possible
distance from the positive ideal solution among the algal
strain alternatives (Madugu and Collu, 2014). Even though it
is distinguished that the production of biofuel from various
agricultural and other wastes achieves higher overall
performance compared to other technologies (Khishtandar
et al., 2017), microalgal high sugar and oil is a promising
source for biofuel production. For such production chains,
FTOPSIS is the most valuable method to deal with the
uncertainties of inventory deterioration issue, the applicability
and efficiency of microalgal harvesting and the ranking of
cultivation sites (Arabi et al., 2019; Peng et al., 2020).

Apart from the strain selection, other works try to evaluate the
environmental risk of harmful algal bloom via fuzzy analytical
methodologies such as FAHP and FTOPSIS that exert influence
on the risk significance and severity (Gholami et al., 2019).
Additionally, several scenario analyses deal with alternative
techniques of biomass extraction from algae such as pyrolysis
or phycoremediation of wastewater and compare the method
and the properties of biofuel derived to various feedstocks
using FTOPSIS and MCDM (Apandi et al., 2019; Mehta and
Nirvesh, 2020). But the microalgal strain selection is extended
only on the study of environmental social and economic
impacts. Recent works investigate the appropriateness of
fatty acid profiles to biodiesel characterization through the
Preference Ranking Organization Method for Enrichment
Evaluation (PROMETHEE) and the Graphical Analysis for
Interactive Assistance (GAIA) analysis (Islam et al., 2013).
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Thus, there is no specific article, to the best of our knowledge,
examining the microalgae strain ranking via multi-criteria
analysis and FTOPSIS procedure.

Fuzzy Cognitive Mapping (FCM) for
Multi-Criteria Decision Making
Fuzzy Cognitive Maps (FCMs) are semi-quantitative extensions
of cognitive maps used for modeling and structuring expert
knowledge that aims to determine the casual interrelations
between participating concepts of a particular issue. Proposed
by Kosko. (1986; 1992), FCMs are directed graphs of nodes
representing the concepts and edges representing the causal
relationships between any two concepts. The weight of the
directed edges is fuzzified identifying a membership function
for the degree of causality between the concepts. The activation of
the concepts can be defined as a state vector thus, allowing the
FCM to evolve as an ANN converging to a steady state. The
causality of any concept pair can be quantified as a number
between -1 and one spanning from a negative (inverse) very
strong causality to a positive (analogous) very strong influence
(Novak and Cañas, 2008). FCMs can carry out experts’
knowledge which is translated as an inclusion of the concepts
and an initialization of the fuzzy causality weights between then.
For several diverse conditions FCMs can be differentiated
accordingly. For the case of decision making, let us denote the
set of FCM concepts as Ci (i � 1, 2, . . . n) and wij their inter-
causality weights as Figure 3 depicts. The set of the weights wij

form the FCM adjacency matrix.
At every application of the activation function, Ci get the value

At
i indicating the concept-i at iteration-t. The value Ai indicates

the integrated influence of all other concepts Cj to Ci (inference).
The most popular inference rules are: 1) Kosko’s inference, 2)
Modified Kosko’s inference and 3) Rescale inference as shown in
the following activation functions, respectively.

Ai(k + 1) � f⎛⎝ ∑N
j�1, j≠ i

wji × Aj(k)⎞⎠,

Ai(k + 1) � f⎛⎝Ai(k) + ∑N
j�1, j≠ i

wji × Aj(k)⎞⎠,
Ai(k + 1) � f⎛⎝(2 × Ai(k) − 1) + ∑N

j�1, j≠ i

wji × (2 × Aj(k) − 1)⎞⎠.
Threshold (transformation) functions for the inference

procedure can be of: 1) bivalent, 2) trivalent, 3) sigmoid or 4)
hyperbolic type as shown in the following equations respectively:

f (x) � { 1 x > 0,
0 x ≤ 0,

f (x) �
⎧⎪⎨⎪⎩ 1 x > 0,

0 x � 0,
−1 x < 0,

f (x) � 1
1 + e−λx

,

f (x) � tanh(λ × x).
where λ is a real positive number (λ> 0) quantifying the steepness
of f and x is the value Ai(k) on the equilibrium point. Above all,
the sigmoid threshold is the most popular since it guarantees an
outcome within the range [0, 1].

Microalgal Selection Problem and FCM–Related
Works
Compared to the previous twomethodologies, MCDM in relation
to microalgal strain selection via FCM has not been studied. To
the best of our knowledge, the most recently representative work
is from (Naeini and Zandieh, 2020) that is focused on the
microalgal biofuel production to be used for transportation.
The authors apply a SWOT analysis to obtain realistic
production strategies and then they rank them using stepwise
weight assessment ratio analysis (SWARA). The method of
utilizing the fuzzy linguistic environment involves FCMs to
define the casual relationships between the criteria. Also worth
mentioning, although not directly related to the topic under
consideration, is the work by Falcone, Lopolito, and Sica.

FIGURE 3 | A typical FCM graph depicting positive and negative causalities between concepts.
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(2019). This research addresses the phases of the policy making
cycle to find the best suitable strategy for the case of the Italian
liquid biofuel niche. Through the application of FCMs and social
network analysis indicate the highlights and several diversified
policy making instruments in transitioning to renewable energies.
Towards the same research direction, the work by Kokkinos et al.
(2018) used a novel FCM modeling approach that studies the
socio-economic and technological implications in relation to
sustainable waste bio-refinery facilities’ establishment in order
to overcome various uncertainties, by involving stakeholder
participation in concept circumscription for the FCM and the
decision making.

Logical Architecture of the System and
Case Study
The logical architecture and the organizational context of the
current research are depicted in Figure 1. Initially, the goal of the
selection of the most suitable microalgal strain for the most
economical viable biomass production is set for the research
study. Among the huge variety of microalgal strains, for the case
of Greece there few that have been studied either for wastewater
treatment, biomass production or lipid concentration studies for
other byproducts. Greece is a country with adequate climatological
conditions (long sunshine periods, concentrations of high CO2

especially around highly urbanized regions etc.). Studies also show
that marine microalgal species exhibit much higher growth rates
when compared with the freshwater species (Aravantinou et al.,
2013). Among those, we demonstrate the following strains which
were chosen for our study:

• Chlorella vulgaris sp.: mostly occurred in Attica prefecture,
Greece. C. vulgaris exhibit adequately high biomass and
lipid productivity (up to 142.9 ± 6.5 mg L−1 d−1 can be
achieved under sulfur limitation) (Savvides et al., 2019).
These findings have also been justified in Mata et al. (2010);
Sakarika and Kornaros (2019).

• Schizochytrium limacinum SR21: is considered as a low-cost
nutrient cultivation source that produces high averages of
docosahexaenoic acid (DHA) and total lipid content
reaching high average levels with varying effluent
concentrations (Bouras et al., 2020).

• Arthrospira (Spirulina) Platensis strains such as
Chlorococcum sp. and Scenedesmus sp.: for which there
have been various investigations in relation to the algal
biomass growth rates and biochemical content mainly
composed of proteins (up to 70%) and also
polyunsaturated fatty acids and vitamins (Markou et al.,
2019; Tsavatopoulou et al., 2019).

• Nannochloropsis sp.: that demonstrates a considerable fatty
acid profile especially when using magnetic harvesting
(Savvidou et al., 2020) and when it is cultivated in
aquaculture wastewaters (Ansari et al., 2017; Dourou
et al., 2020).

Using Table 1, criteria clustering experts from research and
academia, education, competent authorities, and energy

professionals were asked to provide a ranking of all
involved parameters. Their evaluation was based on a
questionnaire that directed them to evaluate each criterion
in relation to all other criteria regardless of the category they
fall in. Their evaluation was based on a Likert-scale in the
range of 1–10, where one indicates the least important and 10
the most important criterion respectively. The summary of 14
expert responses is illustrated in the spider graph of Figure 4
with average values for each criterion rounded to the closest
integer in the scale.

RESULTS AND DISCUSSION

Ranking of Criteria for Microalgae Strain
Selection Using Fuzzy-AHP Methodology
The primary goal using the Fuzzy AHP method is to find the
relative importance between the factors and the criteria that affect
either positive or negatively the microalgal strain selection for
biofuel production. The method ranks these criteria assuming
however that there is an initial input that relates the importance
between any two pairs. For the pre-assumed clustering of Table 1,
there is not any relevance between criteria of different clusters.
For that reason, the Fuzzy AHP method was applied separately
for each of the criteria clusters and these separate procedures
allowed the completion of the reciprocal pairwise comparison
matrices in every case.

The results are demonstrated in the following Tables 3–6 each
depicting the: 1) initial pairwise comparison matrix before
fuzzification, 2) the fuzzy geometric mean after the
fuzzification, 3) the fuzzy weights of each criterion as a triplet
of the lower, middle, and upper values, 4) the crisp numeric
criteria weights and 5) the normalized crisp numeric weights. We
only depict the pairwise comparisonmatrix before fuzzification to
avoid the complexity and the density of the fuzzified version. We

FIGURE 4 | Criteria ranking summary by experts’ selection.
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TABLE 3 | Fuzzy AHP results per criteria category–Category Technological.

Initial pairwise comparison matrix (before fuzzification)

1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 3 1 1 1 2 3 2 2 3
2 0.5 1 2 1 1 0.5 0.5 0.5 1 0.5 0.5 2
3 0.333 0.5 1 0.5 0.5 0.5 0.5 1 1 2 1 2
4 0.333 1 2 1 1 1 1 1 2 2 1 2
5 1 1 2 1 1 1 1 1 2 2 1 2
6 1 2 2 1 1 1 1 1 2 1 1 2
7 1 2 2 1 1 1 1 2 2 2 2 3
8 0.5 2 1 1 1 1 0.5 1 2 1 1 2
9 0.333 1 1 0.5 0.5 0.5 0.5 0.5 1 1 1 2
10 0.5 2 0.5 0.5 0.5 1 0.5 1 1 1 1 2
11 0.5 2 1 1 1 1 0.5 1 1 1 1 2
12 0.333 0.5 0.5 0.5 0.5 0.5 0.333 0.5 0.5 0.5 0.5 1
Criteria fuzzy and defuzzified weights

Fuzzy geometric mean Lower Middle Upper Crisp Norm crisp
1 (1.259,921,1.817,121,2.289,428) 0.075102 0.141,145 0.236,988 0.151,079 0.136,830
2 (0.577,062,0.793,701,1.200,937) 0.034398 0.061651 0.124,314 0.073454 0.066526
3 (0.577,062,0.793,701,1.200,937) 0.034398 0.061651 0.124,314 0.073454 0.066526
4 (0.912,439,1.189,207,1.442,250) 0.054389 0.092372 0.149,293 0.098685 0.089377
5 (1.000000,1.259,921,1.442,250) 0.059609 0.097865 0.149,293 0.102,256 0.092611
6 (1.000000,1.259,921,1.442,250) 0.059609 0.097865 0.149,293 0.102,256 0.092611
7 (1.059463,1.549,798,1.944,161) 0.063153 0.120,381 0.201,248 0.128,261 0.116,164
8 (0.832,544,1.059463,1.316,074) 0.049627 0.082294 0.136,232 0.089384 0.080954
9 (0.577,062,0.749,154,1.095873) 0.034398 0.058191 0.113,438 0.068676 0.062199
10 (0.632,439,0.840,896,1.200,937) 0.037699 0.065317 0.113,438 0.075777 0.068630
11 (0.832,544,1.000000,1.200,937) 0.049627 0.077675 0.124,314 0.083872 0.075962
12 (0.399,979,0.561,231,1.000000) 0.023842 0.043594 0.103,514 0.056983 0.051609

TABLE 4 | Fuzzy AHP results per criteria category–Category Environmental.

Initial pairwise comparison matrix (before fuzzification)

1 2 3 4 5 6 7 8 9 10 11 12
1 1 3 5 3 4 2 3 4 3 6 3 5
2 0.333 1 2 2 1 1 2 4 2 5 4 3
3 0.2 0.5 1 2 0.5 0.25 2 0.333 2 2 1 1
4 0.333 0.5 0.5 1 0.25 1 1 0.2 1 1 2 2
5 0.25 1 2 4 1 2 1 2 1 0.333 0.5 1
6 0.5 1 4 1 0.5 1 1 0.5 2 1 2 1
7 0.333 0.5 0.5 1 1 1 1 2 1 1 0.5 0.5
8 0.25 0.25 3 5 0.5 2 0.5 1 0.333 0.2 1 1
9 0.333 0.5 0.5 1 1 0.5 1 3 1 1 2 2
10 0.166 0.2 0.5 1 3 1 1 5 1 1 3 4
11 0.333 0.25 1 0.5 2 0.5 2 1 0.5 0.333 1 5
12 0.2 0.333 1 0.5 1 1 2 1 0.5 0.25 0.2 1
Criteria fuzzy and defuzzified weights

Fuzzy geometric mean Lower Middle Upper Crisp Norm crisp
1 (2.309,618,3.203,101,4.047904) 0.162,118 0.287,928 0.477,873 0.309,306 0.283,209
2 (1.603,058,2.274,792,2.853,638) 0.112,523 0.204,482 0.336,885 0.217,963 0.199,573
3 (0.000205,0.000126,0.000087) 0.000014 0.059995 0.000470 0.000005 0.000004
4 (0.000355,0.007433,0.000239) 0.059995 0.000126 0.048653 0.000340 0.000340
5 (0.000222,0.000389,0.000619) 0.000016 0.000239 0.048653 0.000005 0.000005
6 (0.832,475,1.059463,1.373,307) 0.058434 0.095235 0.162,125 0.105,265 0.096383
7 (0.632,439,0.793,701,1.095873) 0.044392 0.071346 0.129,373 0.081704 0.074810
8 (0.000205,0.000592,0.000619) 0.002371 0.003921 0.000498 0.000270 0.000270
9 (0.693,130,0.890,899,1.200,937) 0.048653 0.080083 0.141,776 0.090171 0.082563
10 (1.189,108,1.327,680,1.490,270) 0.083466 0.119,345 0.175,933 0.126,248 0.115,596
11 (0.680,360,0.907,620,1.272,242) 0.047756 0.081586 0.150,194 0.093179 0.085317
12 (0.530,054,0.667,420,0.912,363) 0.037206 0.059995 0.107,708 0.068303 0.062540
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use the triangular membership functions and the fuzzy mapping
of Table 2 allowing values in between these ranges.

Microalgal Strain Ranking via
Fuzzy-TOPSIS Analysis
From the Fuzzy AHP described in the previous section, we choose
from each of the four categories the two criteria that illustrated
higher relative importance by the experts. For these eight in total
criteria we calculate the relative importance pairwise comparison
matrix including cross category comparisons. This is necessary
since the values of the relative importance fuzzy weights are input
to the FTOPSIS analysis. The inclusion of only two criteria per
category introduces a minor error however, this is minimal since
further inclusion of all criteria may cause the production of
erroneous results for the case of totally irrelevant criteria.

Table 7 below shows: 1) the produced crisp numeric relative
importance weights, 2) the normalized crisp weights and the type
of criteria clustering those into beneficial (i.e. the ones that need
to be maximized) and into cost criteria (i.e. the ones that need to
be minimized).

The criteria ID is denoted as T for technological, EN for
environmental, EC for economics and S for social. The fourteen
experts were asked to rate the four candidate microalgal strains
for the eight aforementioned criteria. The experts assigned values
to the strains for each criterion using linguistic values that
correspond to normalized triangular fuzzy numbers as
depicted in Table 8 allowing also intermediate values. Table 9
presents the Fuzzy Decision Matrix, the Fuzzy Positive Ideal
Solution and the Fuzzy Negative Ideal Solution, according to
steps. Finally, Table 10 shows the distance of each strain selection
and for each criterion from the FPIS and the FNIS, the total

TABLE 5 | Fuzzy AHP results per criteria category–Category Economics.

Initial pairwise comparison matrix (before fuzzification)

1 2 3 4 5 6 7 8 9
1 1 1 2 2 3 4 2 4 4
2 1 1 3 1 4 5 0.5 1 3
3 0.5 0.333 1 0.5 1 2 0.333 0.5 1
4 0.5 1 2 1 2 3 1 2 5
5 0.333 0.25 1 0.5 1 1 0.333 0.5 0.5
6 0.25 0.2 0.5 0.333 1 1 0.333 1 2
7 0.5 2 3 1 3 3 1 1 3
8 0.25 1 2 0.5 2 1 1 1 3
9 0.25 0.333 1 0.2 2 0.5 0.333 0.333 1
Criteria fuzzy and defuzzified weights

Fuzzy geometric mean Lower Middle Upper Crisp Norm crisp
1 (1.557,716,2.259,662,2.876,908) 0.146,851 0.269,626 0.458,599 0.201,692 0.231,604
2 (1.360,639,1.648,686,1.985,709) 0.128,272 0.196,723 0.316,536 0.210,844 0.220,411
3 (0.000920,0.001592,0.002619) 0.000355 0.007433 0.008470 0.000234 0.002324
4 (1.115,017,1.576,059,2.053039) 0.105,116 0.188,057 0.327,269 0.202,814 0.189,026
5 (0.201,692,0.489,095,0.557,716) 0.037206 0.048653 0.090306 0.005411 0.003451
6 (0.000205,0.000126,0.000087) 0.007708 0.059995 0.062125 0.001727 0.008967
7 (0.955,842,1.220,285,1.489,095) 0.090110 0.145,606 0.237,372 0.153,696 0.144,133
8 (0.799,324,1.046082,1.317,834) 0.075355 0.124,820 0.210,072 0.136,149 0.120,987
9 (0.484,717,0.629,961,0.884,891) 0.045696 0.075168 0.141,058 0.087507 0.079098

TABLE 6 | Fuzzy AHP results per criteria category–Category Social.

Initial pairwise comparison matrix (before fuzzification)

1 2 3 4 5 6
1 1 0.5 0.5 0.5 0.25 0.5
2 2 1 1 1 0.5 0.5
3 2 1 1 2 0.5 1
4 2 1 0.5 1 0.5 0.5
5 4 2 2 2 1 2
6 2 2 1 2 0.5 1
Criteria fuzzy and defuzzified weights

Fuzzy geometric mean Lower Middle Upper Crisp Norm crisp
1 (0.367,396,0.500,000,0.832,544) 0.040246 0.076138 0.184,861 0.100,415 0.085573
2 (0.693,130,0.890,899,1.200,937) 0.075928 0.135,663 0.266,661 0.159,417 0.135,854
3 (0.832,544,1.122,462,1.442,250) 0.091200 0.170,925 0.320,243 0.194,123 0.165,430
4 (0.577,062,0.793,701,1.200,937) 0.063214 0.120,862 0.266,661 0.150,246 0.128,038
5 (1.200,937,2.000000,2.720,043) 0.131,555 0.304,554 0.603,969 0.346,693 0.295,449
6 (0.832,544,1.259,921,1.732,051) 0.091200 0.191,857 0.384,591 0.222,549 0.189,655
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distances for each strain and the ranking of the methodology for
the four strains.

Microalgal Strain Selection Trend Using
Fuzzy Cognitive Map Analysis
The FCM includes 40 concepts out of which only the “Biofuel
Production” (denoted as BF) is the receiver (it only has incoming
edges) and the rest are all ordinary concepts (they have incoming
and outgoing edges). The FCM graph is not shown due to the
number of concepts participating and the weighted causality
edges (∼1,500) which makes the visualization of the graph
impossible. However, the FCM statistics and concept metrics
are depicted in Table 11 indicating the in-degree, out-degree,
and the centrality of each concept. The results illustrate
centrality similarities and a balance in the ratio of the in-
degree/out-degree for concepts that belong to the same
cluster/category. This is expected since the probability of
interdependence and inter-causalities on same-cluster

concepts always increases. At the same time, when there
exists an apparent correlation between clusters (for example
social issues affect environmental issues and vice versa) then,
this reflects the corresponding interlinking between the
interclass concepts.

Numerous simulations have been run in order to investigate:
1) the steady state of the FCM, 2) the FCM convergence using the
clamping process as stated in Kosko 1986) and 3) the best- and
worst-case scenarios for the trend of BF (increase/decrease). Note
that separate simulations were performed for each microalgal

strain fixing as constant the values for the concepts (especially the
technological) when values have been established by other
studies. These concepts included the lipid content according to
the fixed daily lipid productivity findings given below:

• Chlorella vulgaris: 134 mg L−1d−1 (Kim et al., 2019)
• Schizochytrium limacinum: 108 mg L−1d−1 (S.-K. Wang

et al., 2020)
• Arthrospira (Spirulina) Platensis: 89 mg L−1d−1 (Lu et al.,

2019)
• Nannochloropsis sp: 105 mg L−1d−1 (Nogueira et al., 2020)

As for the clamping procedures, this cannot be applied to the
driver concepts only because simply there are no driver concepts
(concepts that have in-degree equal to 0). For that reason, our
simulations will apply clamping using the most important
concepts according to the criteria ranking summary produced
by the experts as this is shown in Figure 4 making sure that all
four criteria categories are represented in the analysis.

TABLE 7 | Initial crisp weights and normalized crisp weights used in Fuzzy TOPSIS.

Criteria ID Initial crisp weights Normalized crisp weights Beneficial/Cost criteria

T1 0.22041 0.136,641 Beneficial
T7 0.29545 0.183,159 Beneficial
EN1 0.17178 0.106,493 Cost
EN2 0.11616 0.072014 Cost
EC1 0.19957 0.123,722 Cost
EC2 0.28321 0.175,571 Cost
S5 0.18966 0.117,574 Beneficial
S6 0.13683 0.084826 Beneficial

TABLE 8 | Expert linguistic values and corresponding normalized triangular fuzzy
numbers.

Linguistic value Normalized fuzzy triangular
number

Very low importance (0.0.1.0.3)
Low importance (0.1.0.3.0.5)
Medium importance (0.3.0.5.0.7)
High importance (0.5.0.7.0.9)
Very high importance (0.7.0.9.1)

TABLE 9 | normalized fuzzy decision matrix, FPIS and FNIS.

Chlorella vulgaris
ACA9 and
ACA17

Schizochytrium limacinum
SR21

Arthrospira (Spirulina)
Platensis

Nannochloropsis FPIS Ap FNIS A −

T1 0.590, 0.754, 1 0.536, 0.646, 0.885 0.574, 0.630, 0.774 0.629, 0.699, 0.858 0.590, 0.754, 1 0.536, 0.646, 0.885
T7 0.681, 0.733, 1 0.591, 0.785, 0.929 0.560, 0.684, 0.919 0.614, 0.715, 0.891 0.681, 0.733, 1 0.560, 0.684, 0.919
EN1 0.375, 0.514, 1 0.448, 0.596, 0.745 0.464, 0.508, 0.669 0.503, 0.582, 0.645 0.375, 0.514, 1 0.375, 0.514, 1
EN2 0.469, 0.599, 1 0.372, 0.512, 0.603 0.421, 0.452, 0.574 0.349, 0.362, 0.568 0.469, 0.599, 1 0.349, 0.362, 0.568
EC1 0.537, 0.748, 0.899 0.632, 0.776, 1 0.508, 0.715, 0.888 0.549, 0.727, 0.891 0.632, 0.776, 1 0.508, 0.715, 0.888
EC2 0.596, 0.649, 0.771 0.646, 0.480, 0.920 0.7044, 0.751, 0.888 0.672, 0.864, 1 0.672, 0.864, 1 0.596, 0.649, 0.771
S5 0.569, 0.834, 1 0.557, 0.747, 0.961 0.552, 0.754, 0.930 0.519, 0.713, 0.944 0.569, 0.834, 1 0.519, 0.713, 0.944
S6 0.539, 0.932, 0.973 0.635, 0.702, 0.798 0.433, 0.604, 0.792 0.661, 0.806, 1 0.661, 0.806, 1 0.433, 0.604, 0.792

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 62221012

Kokkinos et al. Microalgal Biomass Feedstock Selection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


The steady state of the FCM is shown in Figure 5 depicting the
final concept values as a defuzzified real number in the range [0.1]
and the convergence curves for these concepts relatively to the
number of iterations needed for the FCM to converge.

To the best of our knowledge there does not exist any research
that relates the importance and interrelation of criteria in an algal
strain selection analysis using FCMs. For that reason, we used the
aforementioned steady state FCM as a starting point to perform
scenario analysis for the strain selection. More specifically, we did
best and worst case analysis for each of the four strain candidates
using both Sigmoidal and Hyperbolic Tangent learning
methodologies. In all cases we fix the values of the lipid
content (daily lipid productivity) with the values presented in
this section previously. Furthermore, the rest of the participating
concepts are set to values 0.1 for the worst case and one for the
best case respectively. In total we performed 64 simulations to
include all combinations of strains, learning methods, categories
of criteria, and best/worst case scenarios.

Characteristically, in Figure 6, the best case scenario is shown,
for the sigmoidal learning for the Schizochytrium limacinum sp.
for the case of how the technological criteria affect the biofuel
production. For this case, the lipid content criterion is set to 0.80
(after normalization of the daily lipid productivity values of all
strains the value of 108 mg L−1d−1 corresponds to 0.90 in the
range [0.1]). The rest of the technological criteria are all set to one
and this configuration shows the potential percentage increase or
decrease on the receiver concept i.e. to the biofuel production.
Specifically for the described configuration we show an increase
of about 5% to the biofuel production (see Figure 6).

On the other hand, Figure 7 illustrates the worst case scenario
for the sigmoidal learning for the same strain. This is used for
proof of correctness in terms on the negative impacts emanated

from the technological criteria. More specifically, technological
criteria that affect the concept of production BP are set to very
small values (0.1 or even smaller than that) as shown for the
concepts T1-T9 in Figure 7. Instead of using the lipid content
criterion of 0.80 value, we use the worst possible value of 0.03.
This negatively affects the production of the system by 12% while
at the same time diminishes the cost of cultivation indicating a
wrong choice of cultivation.

Finally we show the summary of all simulation findings in
Table 12 for all cases of strains, learning methodologies criteria
categories, and best/worst case scenarios.

The use of participatory modeling assumed the presence of
regional stakeholders (with most of them to be experts in the field
under study). The criteria and factors that influence the
production of biomass from algae were set in Table 1, and
according to the research specialists, they do cover all aspects
spanning from technological to environmental, economic, and
social. Furthermore, regional stakeholders were asked to
individually rate these criteria using a fuzzy scale evaluation,
which was defuzzified into a Likert-scale from 1 to 10. The
experts’ weights were then used into a FAHP having as a
primary goal the construction of the relative importance
matrix using the fuzzy geometric mean of the aforementioned
weights. Based on the findings and due to individual evaluations
for each criteria category the most important criteria are:

• From the technological category, criteria T1 (Energy
content) and T7 (Lipid content) outperform the rest with
normalized weights of 13.68% and 11.61% of the whole
category respectively as shown in the results of Table 3. The
outperformance is relative to the overall descending
ordering of all criteria. The rest of the technological

TABLE 10 | Distances from FPIS and FNIS and the rankings.

Distances from FPIS

Chlorella vulgaris ACA9 and ACA17 Schizochytrium limacinum SR21 Arthrospira (spirulina) Platensis Nannochloropsis
T1 0 0.095,979,685 0.148,766,148 0.090,538,647
T7 0 0.072,159,037 0.088,448,441 0.074,491,275
EN1 0 0.160,217,436 0.197,805,367 0.220,988,582
EN2 0 0.241,041,587 0.26,147,569 0.292,531,799
EC1 0.081,928,546 0 0.102,612,361 0.084,012,162
EC2 0.186,596,347 0.227,249,136 0.093,280,044 0
S5 0 0.055,161,037 0.061,768,762 0.081,764,662
S6 0.102,569,537 0.131,785,545 0.212,832,751 0
Di* 0.37,109,443 0.983,593,464 1.166,989,565 0.844,327,127
Distances from FPIS

Chlorella vulgaris ACA9 and ACA17 Schizochytrium limacinum SR21 Arthrospira (spirulina) Platensis Nannochloropsis
T1 0.095,979,685 0 0.068,432,302 0.063,778,471
T7 0.088,448,441 0.061,507,561 0 0.039,430,403
EN1 0 0.160,217,436 0.197,805,367 0.220,988,582
EN2 0.292,531,799 0.090,124,248 0.067,087,629 0
EC1 0.025,888,157 0.102,612,361 0 0.02,471,747
EC2 0 0.133,363,963 0.109,471,899 0.186,596,347
S5 0.081,764,662 0.031,014,835 0.031,686,064 0
S6 0.224,798,362 0.129,646,224 0 0.212,832,751
Di- 0.809,411,106 0.708,486,627 0.474,483,262 0.748,344,024
Cci 0.685,647,869 0.418,707,501 0.289,059,468 0.469,867,256
Rank 1 3 4 2
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criteria are ranked with importance weights to be much less
than 10%. For that reason, we claim that energy content and
lipid daily productivity seem to overcome all other criteria.
The rest of the criteria are tightly coupled with those, thus
the importance of these satisfies the technological
requirements imposed. Safety and reliability are under-
evaluated when compared to the purely technological
criteria previously. This was expected, as most of the
research community concentrates on the measurements
of the lipid content and daily productivity, thus the
microalgal energy efficiency becomes a primary factor.

• From the environmental category, three criteria get weight-
percentages that exceed the 10%, namely ENV1 (Land/
waterbody use), ENV2 (Water quality requirement) and
ENV10 (Particles emission) with weight percentages
28.32%, 19.95%, and 11.55% respectively. This indicates
that the land or waterbody availability is the most
important factor, given that its absence totally abolishes
the cultivation.

• From the economics category, four criteria out of nine are
shown great importance, namely EC1 (Microalgae (raw
material) cost) with 23.16%, EC2 (Investment cost) with
22.04%, EC4 (Cost of harvesting) with 18.90%, and EC7
(Storage cost) with the lowest performance of 14.41%. The
equivalence of the above criteria indicates that costs of every
level are most significant in investing into a biofuel
production plant based on algae. The fact that EC1 leads
the evaluation means that finding the raw material and
harvesting is the most considerable cost compared to the
investment cost; Finally, • From the social category, we
experience almost equivalent performance from most of the
criteria, as they are all highly interrelated. More specifically,
S5 (Job creation) gets 29.54%, S6 (Social benefits) gets
18.96%, and S3 (Sustainable development) gets 16.54%.
The interrelation between S5 and S6 is analogous since
the higher the job creation the more the social benefits for
the regional society. At the same time, the high numbers of

TABLE 11 | FCM statistics and concept metrics.

Component In degree Out degree Centrality Type

T1 9.42 15.60 25.02 Ordinary
T2 9.15 20.94 30.09 Ordinary
T3 3.66 9.22 12.88 Ordinary
T4 9.18 13.97 23.15 Ordinary
T5 10.10 10.30 20.40 Ordinary
T6 10.39 10.35 20.74 Ordinary
T7 10.64 9.85 20.49 Ordinary
T8 9.66 9.57 19.23 Ordinary
T9 7.31 18.87 26.19 Ordinary
T10 14.70 5.04 19.74 Ordinary
T11 10.33 18.2 28.53 Ordinary
T12 6.98 6.70 13.68 Ordinary
EN1 7.99 14.29 22.28 Ordinary
EN2 9.87 16.45 26.32 Ordinary
EN3 14.06 16.46 30.53 Ordinary
EN4 11.07 11.70 22.78 Ordinary
EN5 7.05 19.45 26.50 Ordinary
EN6 9.86 13.52 23.38 Ordinary
EN7 12.21 14.76 26.97 Ordinary
EN8 5.73 8.95 14.69 Ordinary
EN9 10.43 12.68 23.12 Ordinary
EN10 9.29 11.89 21.18 Ordinary
EN11 10.82 8.86 19.68 Ordinary
EN12 8.43 7.43 15.86 Ordinary
EC1 10.88 11.22 22.11 Ordinary
EC2 13.82 13.29 27.11 Ordinary
EC3 15.48 15.51 31 Ordinary
EC4 7.06 6.93 13.98 Ordinary
EC5 9.31 12.78 22.1 Ordinary
EC6 12.34 7.74 20.09 Ordinary
EC7 2.64 0.24 2.88 Ordinary
EC8 2.15 0.26 2.41 Ordinary
EC9 10.40 0.39 10.79 Ordinary
S1 7.02 0.18 7.20 Ordinary
S2 4.34 0.47 4.81 Ordinary
S3 14.54 0.26 14.80 Ordinary
S4 11.78 0.39 12.17 Ordinary
S5 5.94 0.15 6.1 Ordinary
S6 4.65 0.18 4.83 Ordinary
BP 14.36 0 14.36 Receiver

FIGURE 5 | Steady State Analysis for the FCM and convergence curves relatively to the number of iterations.
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social benefits and job creation for criteria indicate a
sustainable environment where members of the regional
society benefit from a stable economy due to steady income.

The FTOPSIS was applied only on the most substantial criteria
of each category, on the basis of the FAHP findings. Taking the
two more representative criteria from each category, we
succeeded to evaluate the plants/investments of the most
popular microalgal strains in the Greek territory. The results
of FTOPSIS ranked Chlorella vulgaris and Nannochloropsis as the
two strains having the best potential to produce higher amounts
of biofuel according to the criteria imposed. More specifically,
Chlorella vulgaris ranked as the most preferable (CCi of

0.685,647,869) and Nannochloropsis the second with (CCi of
0.469,867,256). The significant difference between the first and
second option is explained by the difference in daily lipid
productivity (134 mg L−1d−1 for Chlorella vulgaris as opposed
to 105 mg L−1d−1 for Nannochloropsis). However, further
research must be conducted. For example, the inclusion of all
criteria in FTOPSIS introduces a significant error due to the
number of criteria participating, but at the same time the method
follows a fair approach to all criteria without discrimination of the
ones that did not perform well in FAHP.

The approach of the FCM investigation took care of this
defficiency making sure that all criteria participated in the
concept graph. The complexity of the graph is high, as almost

FIGURE 6 | Best case scenario for the Schizochytrium limacinum sp with sigmoid learning and for the impact of the technological criteria.

FIGURE 7 | Worst case scenario for the Schizochytrium limacinum sp with sigmoid learning and for the impact of the technological criteria.
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TABLE 12 | FCM best and worst case scenario analysis.

Strain Best/Worst case scenario Criteria category Learning method BF increase or decrease

Chlorella vulgaris ACA9 and ACA17 Best Technological Sigmoid 9.3%
Worst Technological Sigmoid −5.6%
Best Environmental Sigmoid 8.4%
Worst Environmental Sigmoid −1.7%
Best Economics Sigmoid 11.2%
Worst Economics Sigmoid −3.4%
Best Social Sigmoid 2.9%
Worst Social Sigmoid −2.2%
Best Technological Hyperbolic tangent 8.6%
Worst Technological Hyperbolic tangent −5.2%
Best Environmental Hyperbolic tangent 7.9%
Worst Environmental Hyperbolic tangent −2.8%
Best Economics Hyperbolic tangent 9.3%
Worst Economics Hyperbolic tangent −2.1%
Best Social Hyperbolic tangent 3.1%
Worst Social Hyperbolic tangent −5.6%

Schizochytrium limacinum SR21 Best Technological Sigmoid 5%
Worst Technological Sigmoid −3.6%
Best Environmental Sigmoid 11.5%
Worst Environmental Sigmoid −7.4%
Best Economics Sigmoid 10.4%
Worst Economics Sigmoid −4.9%
Best Social Sigmoid 3.4%
Worst Social Sigmoid −1.9%
Best Technological Hyperbolic tangent 6.6%
Worst Technological Hyperbolic tangent −4.2%
Best Environmental Hyperbolic tangent 8.3%
Worst Environmental Hyperbolic tangent −3.6%
Best Economics Hyperbolic tangent 3.1%
Worst Economics Hyperbolic tangent −2.9%
Best Social Hyperbolic tangent 4.1%
Worst Social Hyperbolic tangent −6.6%

Arthrospira (spirulina) Platensis Best Technological Sigmoid 6.1%
Worst Technological Sigmoid −7.6%
Best Environmental Sigmoid 6.2%
Worst Environmental Sigmoid −10.8%
Best Economics Sigmoid 1.6%
Worst Economics Sigmoid −4.7%
Best Social Sigmoid 1.7%
Worst Social Sigmoid −3.1%
Best Technological Hyperbolic tangent 6.8%
Worst Technological Hyperbolic tangent −4.1%
Best Environmental Hyperbolic tangent 5.6%
Worst Environmental Hyperbolic tangent −2.7%
Best Economics Hyperbolic tangent 7.5%
Worst Economics Hyperbolic tangent −3.3%
Best Social Hyperbolic tangent 3.3%
Worst Social Hyperbolic tangent −2.6%

Nannochloropsis Best Technological Sigmoid 2.7%
Worst Technological Sigmoid −3.6%
Best Environmental Sigmoid 9.3%
Worst Environmental Sigmoid −2.8%
Best Economics Sigmoid 4.6%
Worst Economics Sigmoid −6.8%
Best Social Sigmoid 5.6%
Worst Social Sigmoid −3.7%
Best Technological Hyperbolic tangent 4.6%
Worst Technological Hyperbolic tangent −8.8%
Best Environmental Hyperbolic tangent 4.1%
Worst Environmental Hyperbolic tangent −3.4%
Best Economics Hyperbolic tangent 12.3%
Worst Economics Hyperbolic tangent −6.5%
Best Social Hyperbolic tangent 7.8%
Worst Social Hyperbolic tangent −3.9%

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 62221016

Kokkinos et al. Microalgal Biomass Feedstock Selection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


for all concepts inter-causalities may be set. The evaluation of the
four different strains is based on all criteria but the daily lipid
productivity is predefined normalized and fixed for all FCMs
under investigation. For each strain we invstigated the biofuel
production trend in both the best and worst case scenarios, two
FCM learning methods and trying to evaluate the impact of each
category criteria to the trend. The results in Table 12 show:

A significant increase on biofuel (8.6%–9.3%) for Chlorella
vulgaris due to the technological criteria increase in the best
scenario (all technological criteria except lipid content are set to
1) using either Sigmoidal or Hyperbolic Tangent learning. Under
the same conditions, Schizochytrium limacinum performs with an
increase within the range of (5%–6.6%), Arthrospira (Spirulina)
Platensis with an increase of (6.1%–6.8%) where Nannochloropsis
shows an increase range of (2.7%–4.6%). In an analogous way, the
results indicate a significant decrease of the biofuel production
trend for the worst case scenario (where all technological criteria
except lipid content are set to the value of 0.1). Similarly, the same
trend is shown for the best and worst case scenario for the other
three categories of criteria and the microalgal strains. Thus, the
FCM can be used as a dependable Decision Support System that
can help stakeholders, investors and competent authorities to
select investment plans and support decision making.

CONCLUSION

The use of the appropriate microalgal strain as raw material for
biomass feedstock towards nanocatalytic biofuel production is
the most significant factor that controls investment land or
waterbody plants, thus directly affecting the regional economy
and local society. In this work, four microalgal strains for Greece
as a case study were evaluated using a synthesized participatory
modeling approach that: 1) aggreed on the criteria, which are
imposed for the biofuel production, 2) applied FAHP method to
find the relative importance of these criteria, 3) ranked the
abovementioned criteria using the Fuzzy TOPSIS procedure;
and finally 4) via the creation of a FCM, investigated the trend
of increase/decrease of the biofuel production with a
consideration of different learning methods, best and worst
case scenarios and different criteria categories.

The overall methodology gave clear results as to the
microalgae strain selection. Especially, the high lipid content
appears to be the most dominant factor in the strain selection.
Particularly, Chlorella vulgaris microalgae is ranked as the best
choice followed by the Nannochloropsis strain via the FTOPSIS
analysis. Furthermore, the best and worst case scenario runs using
FCM methodology verify this choice, indicating that Chlorella
Vulgaris follows this selection trend mostly with the technological
and the economic criteria for both the sigmoid and the hyperbolic
tangent functions applied. All fuzzy logic procedures employed
were proven to be superior to their numeric equivalent ones
under uncertain factors including cost, policy implications, and
also geographical and seasonal variation, which affect the decision
making process.

The above three MCDM processes act as alternative models to
formal ones (algorithical and procedural). The formulation of

assessment components with scaling procedures, elicitation, and
estimation functionalities as well as stakeholder subjective criteria
settings allow AHP, TOPSIS, and FCM to holistically address
decision-making problems emanating from diverse environments.
Numerous research from various fields such as energy,
environment, medical informatics, and economics confirm
that the abovementioned techniques are applied in a broad
repertoire of problems. Additionally, the structural ability of the
techniques regarding complex problems using multiple criteria
with linguistic variables and fuzzy inference allows their
application in an array of disciplines. From a long list of
MCDM methodologies invented, the vast majority tackles
problems of numeric nature and therefore belongs to the
multiple objective mathematical programming ensemble of
MCDM. However, when fuzzy inference is needed to model
multi-objectives, then only a few methods are used, and in many
cases, these overlap in terms of algorithms developed (VIKOR,
Multi-Attribute Global Inference of Quality etc.). Thus the
proposed triple view of the problem of microalgae strain
selection to maximize biofuel production can be used as a
paradigm for similar modeling in many other problems.

In this work, we provided the corresponding causality from
microalgae cultivation for biomass energy production for the case
of Greece. More specifically, we studied the impacts for
microalgae production via nano-catalysis and we indicated
how this is connected to the economic development via a set
of technological environmental, economic and social criteria. The
findings of the model outcomes provide a roadmap for selecting
specific microalgae strains for cultivation in a specific region.
Eventually, all models assert that biomass energy production via
microalgal cultivation can be a circular economy efficient
technique for environmentally sustainable development and it
can similarly be promoted in other countries. At the same time,
decision and policy makers must take into acount not only purely
cultivation oriented constraints for the biomass production via
microalgae but also must seriously consider environmental and
social criteria in the strain selection problem. This work includes
such constraints, though some other have been left out, including
e.g., climatological conditions influencing microalgal biomass
production and potential impact on climate change respectvely.

Nevertheless, there are few additional challenging issues that
may be thoroughly investigated by a future research. Starting
from the FTOPSIS application, it is worthy to evaluate all
participating criteria without descriminating any of them. This
may diminish the impact of some of the selected criteria or even
increase the significance of others not taken into consideration.
Moreover, the inclusion of similar but differentiated approaches
to FTOPSIS, such as PROMETHE or the amalgamation of fuzzy
and statistical methods, would be a future work challenge for
improving ranking outcomes. Also, there are some further
investigations that can be pursued in relation to the FCMs,
indicatively: the lack of result consistency between the
differences among the best and worst case scenarios for all
categories, the application of FCM with additional machine
learning methods and the exclusion of the inherited bias
derived from the experts in terms of environmental and social
issues.
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