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High free fatty acids (FFA) content in oils poses challenges such as soap formation and
difficulty in the separation of by-products in direct transesterification of oil to biodiesel,
which is of environmental concern and also increases the cost of production. Thus, in this
study, the ferric sulfate-catalyzed esterification of neem seed oil (NSO) with an FFA of
5.84% was investigated to reduce it to the recommended level of ≤1%. The esterification
process for the NSO was modeled using response surface methodology (RSM) and
artificial neural network (ANN). The effect of the pertinent process input variables viz.
methanol/NSO molar ratio (10:1–30:1), ferric sulfate dosage (2–6 wt%), and reaction time
(30–90min) and their interactions on the reduction of the FFA of the NSO, were examined
using Box Behnken design. The optimal condition for the process for reducing the FFA
content of the oil was established using RSM and ANN-genetic algorithm (ANN-GA). The
results showed that the models developed described the process accurately with the
coefficient of determination (R2) of 0.9656 and 0.9908 and the mean relative percent
deviation (MRPD) of 6.5 and 2.9% for RSM and ANN, respectively. The ANN-GA
established the optimum reduction of FFA of 0.58% with methanol/NSO molar ratio of
18.51, ferric sulfate dosage of 6 wt%, and reaction time of 62.8 min as against the
corresponding values of 0.62% FFA, 23.5, 5.03, and 75min established by the RSM.
Based on the statistics considered in the study, ANN and GA outperformed RSM in
modeling and optimization of the NSO esterification process.
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INTRODUCTION

In the past decade, considerable attention has been focused on
renewable and sustainable alternative fuel by various
governments and the scientific community because of the
finite nature of fossil-based fuels, insecurity of supply, and
attendant environmental concerns (Rashid et al., 2011; Merlin
et al., 2015). Biodiesel is a potential alternative fuel considered as a
credible replacement or supplement to fossil-based fuels in
transportation and internal combustion engines (Sani et al.,
2013). It is non-toxic, biodegradable, produces less combustion
emission, and its usage in internal combustion engines does not
require engine modifications (Niu et al., 2018; Ofoefule et al.,
2019). Transesterification of triacylglycerides (from plant oils or
animal fats or lipids from microalgae) and low molecular weight
alcohol (methanol or ethanol) in the presence of a catalyst is the
most commonly employed technology for biodiesel production
(Gardy et al., 2017; Shan et al., 2018). Traditionally, most
biodiesel production processes use refined vegetable oils as
feedstock, which are expensive, often push up production cost
(Marchetti, 2013; Karmee et al., 2015), and lead to food-energy
competition (Betiku and Adepoju, 2013). Since the cost of
feedstock accounts for 75–80% of the total operating cost of
biodiesel production (Lisboa et al., 2014), lots of research efforts
are focusing on the exploration of cheaper, non-edible feedstock
alternatives (Rincón et al., 2014).

Previous studies have considered cheap alternatives such as
waste cooking oil (Avinash and Murugesan, 2017), sorrel oil
(Betiku and Ishola, 2020), rubber seed oil (Oladipo and Betiku,
2020), neem seed oil (NSO) (Merlin et al., 2015; Akhabue et al.,
2020), African pear seed oil (Ofoefule et al., 2019), and Jatropha
oil (Kamel et al., 2018). A key drawback of this feedstock,
however, is their high free fatty acids (FFA) content that has
to be reduced to ≤1% via acid-catalyzed esterification process
(Gan et al., 2010). High FFA (>1%) favors soap formation
(saponification) at the expense of transesterification, thereby
leading to low biodiesel yield and difficult product separation
(Betiku et al., 2016). Therefore, esterification of several non-
edible plant oils with high FFA has been vigorously studied
using homogeneous catalysts such as H2SO4 (Kamel et al., 2018;
Oladipo and Betiku, 2020). Although the reaction with
homogeneous catalysts is fast and effective, the catalysts
cannot be recycled (that is recovered and reused), which
raises both environmental and high cost of biodiesel
production concerns. To overcome this challenge, solid
heterogeneous catalysts such as ferric sulfate (Gan et al.,
2010; Betiku et al., 2017; Ighose et al., 2017; Ishola et al.,
2017) and biomass-based materials such as Hura crepitans
seed pod (Ogbu et al., 2018; Akhabue et al., 2020) have been
proposed as possible replacements for homogeneous catalysts
since they can be recovered and reused, making them
environmentally benign and cost-effective in the production
of biodiesel. Past reports have shown that the process input
variables viz. alcohol/oil molar ratio, catalyst dosage, reaction
time, and reaction temperature have significant effects on the
reduction of FFA content of the oil through modeling of the
esterification process (Betiku et al., 2015; Selvaraj et al., 2019).

Response surface methodology (RSM) is a statistical tool used
for experimental design, modeling, and optimization of processes
leading to acceptable results from a reduced number of
experiments and cost (Betiku et al., 2014). The tool analyzes
all possible individual and interactive effects of the independent
process factors (numeric or categoric) on the chosen response
variable(s) and then develops a regression quadratic model to
describe the process. Application of RSM in the design, modeling,
and optimization of oil extraction, esterification, and
transesterification processes are well documented
(Jaliliannosrati et al., 2013; Halder et al., 2015; Ibrahim et al.,
2019). Unlike RSM, artificial neural network (ANN) is a
collection of biologically inspired (simplified model of human
brains) mathematical techniques designed for machine learning,
regression, and statistical analysis of often complex data
(Shanmuganathan, 2016). It is a reliable alternative to RSM
(Betiku et al., 2014) with application in such areas as signal
processing, pattern matching, image recognition, language
processing, data mining, process modeling, and optimization
(Abiodun et al., 2018). This computational tool consists of
neuronal structure (neurons as processing elements and
synaptic weights attached to the connections between neurons)
to which a series of training and recall algorithms are attached.
Feedforward and feedback neural network architectures are the
more preferred network topology for reasons of processing speed,
scalability, fault tolerance, and performance (Mozaffari et al.,
2019). Its application to the modeling and optimization of
biodiesel production has been investigated (Samuel and Okwu,
2019; Selvaraj et al., 2019).

Neem tree (Azadirachta indica) is a tropical evergreen tree
that is native to Southeast Asia and is ubiquitous in the northern
and western parts of Nigeria. Its seeds contain 25–45% non-edible
oil, which has potential as a feedstock for biodiesel production via
transesterification (Muthu et al., 2010; Oladipo et al., 2018).
However, the presence of FFA >1% means that a pretreatment
step via esterification is required (Akhabue et al., 2020). While
some studies separately modeled the esterification and
transesterification of NSO in a two-step biodiesel production
process and then determined the optimum condition for
maximum FFA reduction and biodiesel yield using either RSM
or ANN for each step (Chhabra et al., 2020), others lumped the
two processes together in their modeling and optimization studies
(Oladipo et al., 2018) and simply determined the optimum
biodiesel yield. There is a dearth of information in the
literature on the comparison of modeling and optimization of
the esterification process for neem oil with RSM, ANN, and
genetic algorithm (GA), which is the aim of this current work.

Hence, this work focused solely on the ferric sulfate-catalyzed
esterification of the oil from neem seeds, which had a high FFA as
a pretreatment step. Also, the study evaluated the performance of
RSM and ANN in the modeling of the esterification process. The
effect of the pertinent individual process input variables (alcohol/oil
molar ratio, catalyst dosage, and reaction time) and their interactions
on the reduction of the FFA of the oil was investigated using a
combination of Box Behnken design (BBD) and RSM. The best-
operating conditions for the minimization of the percent FFA were
established using both RSM and GA.
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MATERIALS AND METHODS

Materials
The crude NSO used in this study was obtained from the National
Research Institute for Chemical Technology in Zaria, Kaduna
State, Nigeria. All chemicals and reagents used in this study are all
analytical grade viz. methanol (99.8%), ethanol (99.7%), diethyl
ether (99%), sulfuric acid (98%), ferric sulfate, Wij’s solution,
potassium hydroxide, and phenolphthalein manufactured by J.T.
Baker (Phillipsburg, NJ, United States), BDH Chemicals., Poole
England and GFS Chemicals, Inc., Columbus, OH, United States).

Methods
Neem Seed Oil Quality Characterization
The physicochemical and fuel properties of the NSO were
determined using the AOAC protocols (AOAC, 1990). The
acid value and %FFA were calculated for the crude and
esterified NSO using Eqs. 1, 2, respectively in which V
represents the volume of potassium hydroxide used during
titration, and N is the normality of the same.

Acid Value(mg
KOH
g oil

) � V*N* 56.1
Weight of oil sample

(1)

% FFA � Acid value/1.99 (2)

Description of the Esterification Process
Based on the experimental design, specific volume of the NSO
wasmeasured into a 500-ml three-necked glass flask which served
as the reactor and was heated to a temperature of 100°C on a
magnetic stirrer with a hot plate. Methanol was then added to the
oil in the reactor and was allowed to mix for 5 min after ferric
sulfate was added to the mixture. The temperature of the reaction
was maintained at 65°C. At the end of the reaction, the product
was transferred into a separating funnel, which was allowed to
stand for 2 h. The surplus methanol left in the esterified NSO was
removed via heating (Ishola et al., 2017).

Experimental Design, Model Development, and
Optimization by Response Surface Methodology
In this study, the effects of process variables viz. methanol/NSO
molar ratio, ferric sulfate dosage, and reaction time on the %FFA
as the response variable, and mutual interactions, were examined
by a three-level-three-factor BBD. Table 1 shows coded
independent factors with their levels, which were used to
produce 17 experimental conditions randomly executed in the
laboratory. A second-order polynomial equation (Eq. 3) was

regressed to develop the model for predicting the response
variable (%FFA).

Y � ∝ o + ∝ 1X1 + ∝ 2X2 + ∝ 3X3 + ∝ 12X1X2 + ∝ 13X1X3

+ ∝ 23X2X3 + ∝ 11X
2
1 + ∝ 22X

2
2 + ∝ 33X

2
3 (3)

where, Y represents the predicted response (%FFA); αo is the
intercept term; α1, α2, α3 are the linear coefficients; α12, α13, α23 are
the interaction coefficients; α11, α22, α33 are the quadratic
coefficients; and X1, X2, X3 are the coded independent variables.

Equation 3 was subjected to multiple regressions to fit the
coefficients to experimental data, the performance of the model
was evaluated using the analysis of variance (ANOVA) and the
test of significance. For the optimization, the desirability function
approach was applied to solving the regressed quadratic
equation to establish the optimum conditions to achieve the
lowest %FFA. These conditions were then mimicked in the
model validation experiments conducted in triplicates and the
results were averaged and then compared with model-predicted
%FFA as a way of assessing the predictive accuracy of the model.
All procedures from experimental design, model development,
and process optimization were carried out with the aid of
the Statistica 10 software package (StatSoft, Inc., Tulsa, OK,
United States).

Artificial Neural Network Model Development and
Optimization
The modeling of the esterification process for the NSO by ANN
was conducted using a feedforward, multilayer architecture, and a
back-propagation, learning algorithm that was based on the
Levenberg-Marquardt method. While Levenberg-Marquardt
was used for data fitting and the number of hidden neurons
was determined via iteration by testing several neural networks
until the mean square error (MSE) value of the output was
minimized, the neurons in the hidden layer are set up to sum
up the weighted inputs and its associated bias. The hyperbolic
tangent sigmoid (tansig) and pure linear (purelin) activation
transfer function was respectively implemented for the hidden
and output layers. Also, 70% of the experimental data was used
for network training and 15% each for validation and testing to
appraise the ability of the model to predict hidden data not used
for training as well as its generalization capability (Ishola et al.,

TABLE 1 | Independent factors and levels investigated.

Factor Unit Levels

−1 0 +1

Methanol/NSO molar ratio (X1) — 10 20 30
Ferric sulfate dosage (X2) wt% 2 4 6
Reaction time (X3) min 30 60 90

TABLE 2 | Network configurations/features for the developed model.

Property Value/Comment

Algorithm Levenberg-Marquardt back-propagation
Minimised error function MSE
Learning Supervised
Input layer No transfer function is used
Hidden layer Hyperbolic tangent sigmoid (tansig)
Output layer Purelin transfer function
Number of training iterations 69
Number of best iterations 51
Number of input neurons 3
Number of hidden neurons 10
Number of output neurons 1
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2019; Betiku and Ishola, 2020). Furthermore, optimization of the
process variables was carried out by coupling the ANN model
with the GA. Details of the network configurations for the
modeling and ANN-GA optimization are respectively shown
in Tables 2, 3.

Sensitivity Analysis of Process Input Variables
For the RSM investigation, Eq. 4 was used to determine the
influence of each input variable on the model based on the
sum of squares (Ishola et al., 2019; Betiku and Ishola, 2020).
While for ANN, the contribution level of each input variable
was determined by Garson (1991) method as described by
Eq. 5.

Contribution of input variable (%)
� Sum of squares of variable
Sum of squares for all variables

(4)

Sj � ∑m�nh

m�1
((

∣∣∣∣∣wih
jm

∣∣∣∣∣
∑ni

k�1
∣∣∣∣wih

km

∣∣∣∣) × ∣∣∣∣who
mn

∣∣∣∣)/∑k�ni
k�1

[ ∑m�nh

m�1
((

∣∣∣∣wih
km

∣∣∣∣
∑ni

k�1
∣∣∣∣wih

km

∣∣∣∣) × ∣∣∣∣who
mn

∣∣∣∣)]
(5)

where, Sj is the significance of the jth input variable on the output
response. nh and ni are the number of hidden and input neurons,
respectively. w represents the weight, while i, h, and o are the
layers representing input, hidden, and output, respectively. k, m,
and n represent input, hidden and output neurons, respectively.

Performance Assessment of Models
The two models obtained by RSM and ANN were subjected to
statistical analysis to determine their effectiveness (Table 4).
Statistics such as the correlation coefficient (R), coefficient of
determination (R2), Adjusted R2, MSE, root MSE (RMSE), mean
average error, standard error of prediction, mean relative percent
deviation (MRPD). The details of the equations for determining
the parameters have been described in our previous works (Betiku
et al., 2016; Ishola et al., 2019).

RESULTS AND DISCUSSION

Physicochemical Properties of Neem Seed
Oil
The properties of the NSO used in this work are presented in
Table 4. At room temperature, the NSO was a dark brownish
colored liquid with a density of 947.9 kg/m3. The acid value

(11.67 mg KOH/g oil) and FFA (5.94%) of the NSO differ from
those reported in the literature (Akhabue et al., 2020; Chhabra et
al., 2020). These may be due partly to the source of the seeds or
the hydrolysis of the triglycerides. But the values are generally
too high for one-step transesterification (Chhabra et al., 2020).
These should be reduced to <2.0 mg KOH/g oil or ≤1% FFA to
avoid soap formation and also ease the glycerine separation
during biodiesel production (Betiku et al., 2014). The
saponification value of 186.53 mg KOH/g oil is high,
indicating the tendency of NSO to form soap. The kinematic
viscosity of 21.38 mm2/s suggests that the NSO is highly viscous
and may tend to flow slowly due to this resistance to flow. The
iodine value of 73.21 g I2/100 g points to a high level of
unsaturation of fatty acids in the NSO. The acid value of
11.67 mg KOH/g oil of the NSO indicates that the oil
requires s lots of alkali for its neutralization. The peroxide
value of 1.53 meq/g oil suggests that the oil is not prone to
rancidity, which means it has a long shelf life (Jisieike and
Betiku, 2020). A value of 59.09 for cetane number indicates the
aptness of NSO as a potential feedstock with good fuel quality.

The fatty acids present in the NSO as previously reported in
our past work are palmitic (18.1%), stearic (18.1%), oleic (44.5%),
linoleic (18.3%), linolenic (0.2%) and arachidic (0.8%) (Betiku
et al., 2014). The functional groups present in the NSO were
identified using Fourier transform infrared technique. The
spectrum obtained with the identified functional groups is
shown in Figure 1. The presence of –C�O (ester) overtone is
identified by the weak band located at 3,443 cm−1 (Guillén and
Cabo, 1998). The strong bands at 2,926 and 2,854 cm−1 represent
the asymmetric and symmetric stretching vibrations of –C–H in
CH2 group, respectively (Okeleye and Betiku, 2019). The typical
–C�O stretching vibration of the carbonyl group present in
triglycerides, is illustrated by the strong band located at
1,745 cm−1 (Guillén and Cabo, 1998; Coates, 2000; Okeleye
and Betiku, 2019). The bands located at 1,465, 1,379, 1,240,
1,165, and 1,030 cm−1 in the fingerprint region of triglycerides
indicate the presence of –C–H (CH2) bending (scissoring), –C–H

TABLE 3 | Features of the ANN-GA network configuration.

Property ANN-GA

Population 10–15
Generation 15–55
Selection Uniform
Mutation rate 0.1
Cross over rate 0–1
Cross over function Constraint dependent

TABLE 4 | Physical and chemical properties of crude NSO.

Properties Unit Methods Values

Physical state at room
temperature

— Visual Liquid/dark
brown

Moisture content % (AOAC, 1990) 1.6129 ± 0.00
pH — (AOAC, 1990) 6.84 ± 0.01
Kinematic viscosity at 40°C mm2/s (AOAC, 1990) 21.38 ± 0.02
Density at room
temperature

(kg/m3) (AOAC, 1990) 947.90 ± 0.45

Refractive index — (AOAC, 1990) 1.48 ± 0.00
Saponification value mg KOH/g

oil
(AOAC, 1990) 186.53 ± 1.40

Iodine value g I2/100 g (AOAC, 1990) 73.21 ± 0.39
Acid value Mg KOH/ g

oil
(AOAC, 1990) 11.67 ± 0.09

FFA % (AOAC, 1990) 5.84 ± 0.05
Peroxide value meq/g oil (AOAC, 1990) 1.53 ± 0.25
Calorific value (MJ/kg) (Demirbaş, 1998) 40.68 ± 0.05
Cetane number — (Krisnangkura,

1986)
59.08 ± 0.08
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(CH3) bending (symmetric), –C–O, –CH2 (stretching, bending),
strong –C–O, –CH2 – (stretching, bending) and –C–O
(stretching), respectively (Guillén and Cabo, 1998; Coates,
2000; Okeleye and Betiku, 2019). The band located at
723 cm−1 indicated the presence of bending out of – HC �
CH – (cis) and rocking vibration of (CH2)n (Guillén and
Cabo, 1998; Coates, 2000).

Process Modeling of Neem Seed Oil
Esterification Results
Response Surface Methodology Model Description
Results from the ferric sulfate-catalyzed esterification of NSO as a
pretreatment step in biodiesel production with the experimental
conditions generated from the BBD are shown in Table 5. The

NSO used and the esterified NSO together with the byproducts,
that is, glycerol, excess methanol, and the catalyst, are displayed in
Figure 2. Eq. 6 is the quadratic model equation developed via
RSM to correlate the response variable (%FFA) to the
independent variables in terms of the coded values. From
Table 5, it can be seen that all the experimental conditions
generated by the BBD and subsequently used to conduct
experiments in the laboratory all led to significant reductions
in the %FFA of the NSO.

Y � 5.942 – 0.195X1 − 0.654X2 − 0.033X3 + 0.002X1X2

+ 0.0004X1X3 + 0.0012X2X3 + 0.003X2
1 + 0.05X2

2

+ 0.0001X2
3 (6)

FIGURE 1 | FTIR spectrum for the NSO.

TABLE 5 | Design matrix, experimental and predicted values of %FFA.

Run no Methanol/NSO molar
ratio

Ferric sulfate
dosage (wt%)

Reaction time
(min)

Experimental FFA
(%)

RSM predicted
FFA (%)

ANN predicted
FFA (%)

1 20 4 60 0.8265 0.838 0.827
2 20 6 30 0.858 1.007 0.823
3 10 2 60 1.994 2.047 1.870
4 10 4 30 2.031 1.968 2.030
5 20 6 90 0.7825 0.773 0.783
6 30 4 30 1.027 0.931 0.990
7 20 4 60 0.894 0.838 0.827
8 30 6 60 0.7895 0.736 0.790
9 20 4 60 0.893 0.838 0.827
10 30 2 60 1.049 1.135 1.050
11 20 4 60 0.7635 0.838 0.827
12 20 2 90 1.232 1.083 1.200
13 20 4 60 0.8111 0.838 0.827
14 10 4 90 1.248 1.344 1.260
15 10 6 60 1.5585 1.472 1.580
16 20 2 30 1.662 1.671 1.610
17 30 4 90 0.6705 0.733 0.660
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Fit Statistics for the Response Surface Methodology
Model
The ANOVA results indicated that the quadratic mathematical
model obtained in this work is significant at p-value < 0.05
(Table 6). The goodness of fit of the regression model was
assessed by calculating the R and R2. The value of R (0.9826)
of the model shows good agreement between the predicted and
experimental values, which was also confirmed by the parity plot

in Figure 3. The R2 of 0.9656 suggests that only 3.44% of the total
variation in the response is not described by the model (Betiku
and Ajala, 2014). The adjusted R2 (0.9215) and the predicted R2

(0.9656) obtained showed that the values are in reasonable
agreement with each other with an acceptable difference of
0.0441 (the maximum allowable difference is 0.2), which also
shows the capability of the model to predict the response
adequately. The model F-value of 21.86 and the p-value of
˂0.0003 imply that the model was statistically significant at a
95% confidence level (p < 0.05).

The F-value of 9.70 and the p-value of ˂0.0262 imply the lack of
fit is not significant relative to the pure error, which is desirable
(Table 6). Also, the individual model terms were also tested using
ANOVA at a 95% confidence level (p < 0.05), based on both the
p-value and F-value, all the terms were significant except X1X2

(interaction betweenmethanol/NSOmolar ratio and ferric sulfate
dosage), X1X3 (interaction between methanol/NSO molar ratio
and reaction time), X2X3 (interaction between ferric sulfate
dosage and reaction time), X2

2 (quadratic of ferric sulfate
dosage) and X2

3 (quadratic of reaction time). Adequate
precision is generally used to measure the signal to noise ratio
and a ratio greater than 4 is desirable. The ratio of 14.057
indicates an adequate signal, which shows that the model can
be used to navigate the design space. Figure 4 displays the Pareto
chart with the level of significance of all the model terms on the %
FFA reduction. The length of each bar indicates the significance
level of the variable it represents, any bar behind the reference line
(p � 0.05) denotes insignificance (Ishola et al., 2017). The chart
shows that five out the total of nine model terms were significant
at p < 0.05.

FIGURE 2 | NSO and separation of esterified NSO from byproducts.

TABLE 6 | Univariate test of significance for regression coefficients and ANOVA.

Source SS df MS F-value p-value

Significance test
X1 (Methanol/NSO molar
ratio)

1.3575 1 1.3575 91.3767 0.00003

X2 (Ferric sulfate dosage) 0.4746 1 0.4746 31.9443 0.00077
X3 (Reaction time) 0.3382 1 0.3382 22.7680 0.00203
X1X2 0.0077 1 0.0077 0.5212 0.49371
X1X3 0.0455 1 0.0455 3.0610 0.12367
X2X3 0.0314 1 0.0314 2.1147 0.18921
X2
1 0.4054 1 0.4054 27.2913 0.00122

X2
2 0.1681 1 0.1681 11.3155 0.01202

X2
3 0.0389 1 0.0389 2.6223 0.14937

Error 0.103996 7 0.1014857 — —

Total SS 3.027403 16 — — —

ANOVA
Model 2.9234 9 0.32482 21.86399 0.000255
R2 0.9656 — — — —

Adjusted R2 0.9215 — — — —

SS, sum of squares; df, degree of freedom; MS, mean square.
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The chart shows that the linear term of methanol/NSO molar
ratio was the most significant model term followed by the linear
term of ferric sulfate dosage, the quadratic of methanol/NSO
molar ratio, reaction time, and the quadratic of ferric sulfate
dosage. Conversely, all the interaction terms and the quadratic of
the reaction time are all insignificant. This observation is
supported by the test of significance presented in Table 6.

The interactions among the process variables were
investigated by the contour (2-D) and response surface (3-D)

plots using the Statistica 10 software package (Figure 5). The
effect of methanol/NSO molar ratio and ferric sulfate dosage on
the FFA of the NSO is displayed in Figure 5A. As the methanol/
NSO molar ratio increases with increasing ferric sulfate dosage,
the %FFA decreases significantly. The lowest %FFA was observed
at ferric sulfate dosage of 5.5 wt% and methanol/NSOmolar ratio
of 28:1. Beyond this point, %FFA was observed to increase. While
Figure 5B shows the interactive effect of ferric sulfate dosage and
reaction time, the effect of reaction time and methanol/NSO

FIGURE 3 | Parity plot for the actual and predicted values of % FFA for RSM model.

FIGURE 4 | Pareto chart indicating significant level for all model terms.
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molar ratio on%FFA is displayed inFigure 5C.Figure 5C shows that
the interaction of the variables has a significant effect on the %FFA.

%FFA was observed to be <0.7 at methanol/NSO molar ratio
of 28:1 and reaction time of 90 min. Further increase inmethanol/
NSOmolar ratio beyond 28:1 was observed to cause an increase in
the %FFA. The nature of the curvature of the three plots
demonstrates that the three process input variables have a
significant influence on the FFA reduction. Esterification of oil
with alcohol is a reversible reaction controlled by the equilibrium
of the reaction (Pasias et al., 2006); thus, the alcohol/oil molar
ratio should be greater than the stoichiometric requirement to
have a high reduction of the FFA of the oil (Marchetti and Errazu,
2008). This is evident in Figures 5A,B since the %FFA decreases
as the methanol/NSO molar ratio increases. This observation is
corroborated by the reports on esterification of castor oil
(Karmakar et al., 2018) and NSO (Betiku et al., 2017). The
influence of the ferric sulfate dosage on the reduction of %
FFA followed a similar trend with the methanol/NSO molar
ratio, but the reaction time had less effect (Figure 5).

Artificial Neural Network Model Description
After several trials, the best network structure chosen for the
ANN modeling of the NSO esterification process consisted of an

input layer of three neurons (methanol/NSO molar ratio, ferric
sulfate dosage, and reaction time), an output layer of one neuron
(%FFA) and a hidden layer of 10 neurons (Figure 6). The
responses predicted from the ANN model are as presented in
Table 5. The R values of 0.9996, 0.9978, 0.9921, and 0.9954,
respectively obtained from the plots of predicted versus
experimental values for the training, testing, validation, and
whole data sets indicated that there is a good correlation
between the experimental and predicted values (Figure 7).

Also, the high values confirmed good generalization and
predictive capability of the ANN model since it was able to
predict the outputs of validation and testing data that were not
part of the training set used to develop the model (Sarve et al.,
2015; Ishola et al., 2019). The developed ANN model was further
evaluated using R2. The value of 0.9958 suggests that 99.58% of
the variations in both the experimental and predicted values can
be explained, indicating a good fit of the model (Okeleye and
Betiku, 2019). The maximum values of R and R2 possible are 1.0
and the higher the value the better. A model is deemed acceptable
if R2 ≥ 0.8 (Myers et al., 2016). The observation made in this work
is supported by the ANN modeling of esterification of palm
kernel oil using H2SO4 as a catalyst, where high values of R and R2

were also reported (Betiku et al., 2016).

FIGURE 5 | Response surface plots for NSO esterification process. (A)methanol NSOmolar ratio vs. catalyst loading; (B) catalyst loading vs. reaction time and (C)
methanol NSO molar ratio vs. reaction time.
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Comparison of Performance of the
Developed Models
The comparative performance of the models in terms of
predictive accuracy for the esterification of NSO was evaluated
using various fit statistics and the results obtained are presented
in Table 7. The values of R, R2, and adjusted R2 observed are very
high for models obtained with RSM and ANN, indicating a
good fit of the experimental data, though the ANN model had

higher values than the RSMmodel. Also, MSE, root MSE, standard
error of prediction, mean average error, and MRPD measure the
error in the prediction of a model in comparison to the
experimental data data (Okeleye and Betiku, 2019; Selvaraj
et al., 2019). The ANN model had much lower error values
compared to the RSM model. This observation is corroborated
by the plots of the experimental against predicted values based on
the R2 of the models (Figure 8). The values predicted by the

FIGURE 6 | Feedback architecture for the ANN model.

FIGURE 7 | Correlation plots of predicted versus experimental values for the ANN model.
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ANN model aligned closer to the reference line than the
values predicted by the RSM model.

To further visualize the performance of the developedmodels, the
observed and predicted values were plotted against the experimental
run numbers (Figure 9). The predicted values from the ANNmodel
are very close to the experimental data better than the values
predicted by the RSM model. Predictions by ANN models were
superior to that of RSM models in the esterification of palm kernel
oil (Betiku et al., 2016), transesterification of sorrel oil (Ishola et al.,
2019), and transesterification of sesame oil (Sarve et al., 2015).

Figure 10 shows the results of the sensitivity analysis for the
models. The plot demonstrates the level of influence of each of the
independent variables in the model. The results for both RSM and
ANN followed the same trend. In both cases, the methanol/NSO

molar ratio had the most influence on the %FFA, followed by ferric
sulfate dosage and then the reaction time. The influence pattern in the
ANN model is similar among the input variables compared to the
RSMmodel. The order of influence exhibited in Figure 9 is supported
by the F-values obtained for the variables. The F-values are 91.3767,
31.9443, and 22.7680 for methanol/NSO molar ratio, ferric sulfate
dosage, and reaction time, respectively (Table 6).

Establishment of Optimum Conditions and
Model Validation
By solving the quadratic model equation (Eq. 6), the optimum
values for the process input variables for the NSO esterification were
determined by the RSM as methanol/NSO molar ratio of 23.5,
reaction time of 75 min, and ferric sulfate dosage of 5.03 wt% with
predicted %FFA of 0.63. The ANN-GA gave the condition as
methanol/NSO molar ratio of 18.51, reaction time of 62.8 min,
and ferric sulfate dosage of 6.0 wt.% with predicted %FFA of
0.53. To validate the developed models, the predicted values were
used to carry out three independent experiments in the laboratory in
each case, and the %FFA obtained were averaged, and the values
obtained were reported (Table 8). The reaction temperature was
kept at 65°C in both cases for the laboratory experiments. The
experimental %FFA obtained were 0.62 and 0.58 for RSM andANN,
respectively. The condition predicted by ANN-GA was better than
the RSM predicted condition.

TABLE 7 | Comparative performance evaluation of RSM and ANN models.

S/N Parameter RSM ANN

1 R 0.982674 0.995418
2 R2 0.965649 0.990858
3 Adjusted R2 0.921482 0.988748
4 MSE 0.006117 0.002091
5 RMSE 0.078214 0.045728
6 MAE 0.066869 0.031759
7 SEP 6.965045 4.072111
8 MRPD 6.51244 2.884038

FIGURE 8 | Plots of model predicted %FFA against observed %FFA.

TABLE 8 | Predicted optimization conditions and experimental model validation.

Tool Methanol/NSO molar
ratio

ferric sulfate
dosage (wt%)

Reaction time
(min)

Predicted FFA
(wt%)

Actual FFA
(wt%)

RSM 23.50 5.03 75.0 0.63 0.6234 ± 0.02
ANN-GA 18.51 6.00 62.8 0.53 0.5842 ± 0.03
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The superiority of ANN-GA over RSM has been
demonstrated in the optimization of process input
variables for palm kernel oil esterification (Betiku et al.,
2016) and transesterification of sorrel oil (Ishola et al.,
2019). Thus, these previous studies support the observation
made in this present work. The optimal condition previously

established for the esterification of NSO (with an initial acid
value of 11.67 mg KOH/g oil) using RSM was the methanol/
NSO molar ratio of 2.19 (v/v), reaction time of 15 min, ferric
sulfate dosage of 6 wt%, and temperature of 65°C with an acid value
of 1.8 mg KOH/g oil which corresponds to %FFA of 0.90 (Betiku
et al., 2017). In another study with RSM, the optimum values
established for the esterification of NSO (with an initial acid value
of 10.18 mg KOH/g oil) was methanol/NSOmolar ratio of 0.55 (v/
v), reaction time of 36 min, H2SO4 dosage of 0.45%, and
temperature of 60°C with an acid value of 1.22 mg KOH/g oil
which corresponds to %FFA of 0.61 (Betiku et al., 2017).

CONCLUSION

The comparative performance of RSM and ANN to predict the
extent of FFA reduction during esterification of NSO, withmethanol
and ferric sulfate as a solid acid heterogeneous catalyst, was evaluated
in this work. Based on the statistics considered, the ANNmodel with
a higher R2 (0.9909) and a significantly lower MRPD (2.9%)
outperformed the RSM model with a lower R2 (0.9657) and a
higher MRPD (6.5%). For the optimization of the process input
variables, the minimum FFA (0.53%) was predicted by ANN
coupled with GA at a more desired optimal condition of
methanol/NSO molar ratio of 18.51, ferric sulfate dosage of
6 wt.%, and reaction time of 62.8 min. The prediction by ANN-
GA was better by a margin of 1% FFA of the esterified NSO, which
suggests that it can be converted to biodiesel via transesterification
without soap formation. Apart from validating the use of the ferric
sulfate-catalyzed esterification of NSO as a viable pretreatment step,
this work also demonstrated the higher predictive accuracy of the
ANNmodel than the RSMmodel. Also, GA was shown to be better
than RSM as an optimization tool.

FIGURE 9 | Plots of observed and model predicted %FFA versus experimental run number.

FIGURE 10 | Sensitivity level of input variables, (A) RSM and (B) ANN.
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Demirbaş, A. (1998). Fuel properties and calculation of higher heating
values of vegetable oils. Fuel 77, 1117–1120. doi:10.1016/S0016-
2361(97)00289-5

Gan, S., Ng, H. K., Ooi, C. W., Motala, N. O., and Ismail, M. A. F. (2010).
Ferric sulphate catalysed esterification of free fatty acids in waste cooking
oil. Bioresour. Technol. 101, 7338–7343. doi:10.1016/j.biortech.2010.04.
028

Gardy, J., Hassanpour, A., Lai, X., Ahmed, M. H., and Rehan, M. (2017). Biodiesel
production from used cooking oil using a novel surface functionalised
TiO2 nano-catalyst. Appl. Catal. B Environ. 207, 297–310. doi:10.1016/j.
apcatb.2017.01.080

Garson, G. D. (1991). Interpreting neural-network connection weights.AI Expert 6,
46–51.

Guillén, M. D., and Cabo, N. (1998). Relationships between the composition of
edible oils and lard and the ratio of the absorbance of specific bands of
their fourier transform infrared spectra. role of some bands of the
fingerprint region. J. Agric. Food Chem. 46, 1788–1793. doi:10.1021/
jf9705274

Halder, S., Dhawane, S. H., Kumar, T., and Halder, G. (2015). Acid-catalyzed
esterification of castor (Ricinus communis) oil: optimization through a central
composite design approach. Biofuels 6, 191–201. doi:10.1080/17597269.2015.
1078559

Ibrahim, A. P., Omilakin, R. O., and Betiku, E. (2019). Optimization of microwave-
assisted solvent extraction of non-edible sandbox (Hura crepitans) seed oil: a
potential biodiesel feedstock. Renew. Energy 141, 349–358. doi:10.1016/j.
renene.2019.04.010

Ighose, B. O., Adeleke, I. A., Damos, M., Junaid, H. A., Okpalaeke, K. E., and Betiku,
E. (2017). Optimization of biodiesel production from Thevetia peruviana seed
oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm
and response surface methodology. Energy Convers. Manag. 132, 231–240.
doi:10.1016/j.enconman.2016.11.030

Ishola, N. B., Adeyemi, O. O., Adesina, A. J., Odude, V. O., Oyetunde, O. O.,
Okeleye, A. A., et al. (2017). Adaptive neuro-fuzzy inference system-genetic
algorithm vs. response surface methodology: a case of optimization of ferric
sulfate-catalyzed esterification of palm kernel oil. Process Saf. Environ. Protect.
111, 211–220. doi:10.1016/j.psep.2017.07.004

Ishola, N. B., Okeleye, A. A., Osunleke, A. S., and Betiku, E. (2019). Process
modeling and optimization of sorrel biodiesel synthesis using barium hydroxide
as a base heterogeneous catalyst: appraisal of response surface methodology,
neural network and neuro-fuzzy system. Neural Comput. Appl. 31, 4929–4943.
doi:10.1007/s00521-018-03989-7

Jaliliannosrati, H., Amin, N. A. S., Talebian-Kiakalaieh, A., and Noshadi, I.
(2013). Microwave assisted biodiesel production from Jatropha curcas L.
seed by two-step in situ process: optimization using response surface
methodology. Bioresour. Technol. 136, 565–573. doi:10.1016/j.biortech.
2013.02.078

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 61462112

Okpalaeke et al. Ferric Sulfate-Catalyzed Esterification of Neem Oil

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.renene.2020.01.103
https://doi.org/10.1016/j.renene.2020.01.103
https://doi.org/10.1080/15567249.2017.1319438
https://doi.org/10.1186/2251-6832-4-9
https://doi.org/10.1016/j.indcrop.2013.12.046
https://doi.org/10.1021/acs.energyfuels.7b00604
https://doi.org/10.1021/acs.energyfuels.7b00604
https://doi.org/10.1002/ep.13393
https://doi.org/10.1016/j.enconman.2016.07.030
https://doi.org/10.1016/j.enconman.2016.07.030
https://doi.org/10.1016/j.renene.2014.11.049
https://doi.org/10.1016/j.renene.2014.11.049
https://doi.org/10.1016/j.energy.2014.05.033
https://doi.org/10.1080/15567036.2020.1771480
https://doi.org/10.1080/15567036.2020.1771480
https://doi.org/10.1016/S0016-2361(97)00289-5
https://doi.org/10.1016/S0016-2361(97)00289-5
https://doi.org/10.1016/j.biortech.2010.04.028
https://doi.org/10.1016/j.biortech.2010.04.028
https://doi.org/10.1016/j.apcatb.2017.01.080
https://doi.org/10.1016/j.apcatb.2017.01.080
https://doi.org/10.1021/jf9705274
https://doi.org/10.1021/jf9705274
https://doi.org/10.1080/17597269.2015.1078559
https://doi.org/10.1080/17597269.2015.1078559
https://doi.org/10.1016/j.renene.2019.04.010
https://doi.org/10.1016/j.renene.2019.04.010
https://doi.org/10.1016/j.enconman.2016.11.030
https://doi.org/10.1016/j.psep.2017.07.004
https://doi.org/10.1007/s00521-018-03989-7
https://doi.org/10.1016/j.biortech.2013.02.078
https://doi.org/10.1016/j.biortech.2013.02.078
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


Jisieike, C. F., and Betiku, E. (2020). Rubber seed oil extraction: effects of solvent
polarity, extraction time and solid-solvent ratio on its yield and quality. Biocatal.
Agric. Biotechnol. 24, 101522. doi:10.1016/j.bcab.2020.101522

Kamel, D. A., Farag, H. A., Amin, N. K., Zatout, A. A., and Ali, R. M. (2018). Smart
utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel
production: optimization and mechanism. Ind. Crop. Prod. 111, 407–413.
doi:10.1016/j.indcrop.2017.10.029

Karmakar, B., Dhawane, S. H., and Halder, G., (2018). Optimization of biodiesel
production from castor oil by Taguchi design. J. Environ. Chem. Eng. 6,
2684–2695. doi:10.1016/j.jece.2018.04.019

Karmee, S., Patria, R., and Lin, C. (2015). Techno-Economic evaluation of biodiesel
production from waste cooking oil-A case study of Hong Kong. Ijms 16,
4362–4371. doi:10.3390/ijms16034362

Krisnangkura, K. (1986). A simple method for estimation of cetane index of
vegetable oil methyl esters. J. Am. Oil Chem. Soc. 63, 552–553. doi:10.1007/
bf02645752

Lisboa, P., Rodrigues, A. R., Martín, J. L., Simões, P., Barreiros, S., and Paiva, A.
(2014). Economic analysis of a plant for biodiesel production from waste
cooking oil via enzymatic transesterification using supercritical carbon dioxide.
J. Supercrit. Fluids 85, 31–40. doi:10.1016/j.supflu.2013.10.018

Marchetti, J. M. (2013). Influence of economical variables on a supercritical
biodiesel production process. Energy Convers. Manag. 75, 658–663. doi:10.
1016/j.enconman.2013.07.039

Marchetti, J. M., and Errazu, A. F. (2008). Esterification of free fatty acids using
sulfuric acid as catalyst in the presence of triglycerides. Biomass Bioenergy 32,
892–895. doi:10.1016/j.biombioe.2008.01.001

Merlin, A. Z., Marcel, O. A., Louis Max, A. O., Salem, C., and Jean, G. (2015).
Development and experimental investigation of a biodiesel from a nonedible
woody plant: the neem. Renew. Sustain. Energy Rev. 52, 201–208. doi:10.1016/j.
rser.2015.07.027

Mozaffari, A., Emami,M., and Fathi, A. (2019). A comprehensive investigation into
the performance, robustness, scalability and convergence of chaos-enhanced
evolutionary algorithms with boundary constraints. Artif. Intell. Rev. 52,
2319–2380. doi:10.1007/s10462-018-9616-4

Muthu, H., SathyaSelvabala, V., Varathachary, T. K., Kirupha Selvaraj, D.,
Nandagopal, J., and Subramanian, S. (2010). Synthesis of biodiesel from
Neem oil using sulfated zirconia via tranesterification. Braz. J. Chem. Eng.
27, 601–608. doi:10.1590/s0104-66322010000400012

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2016). Response
surface methodology: process and product optimization using designed
experiments. Chichester, UK: John Wiley & Sons.

Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., and Zhou, Y. (2018). Esterification of oleic
acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo.
Energy Convers. Manag. 163, 59–65. doi:10.1016/j.enconman.2018.02.055

Ofoefule, A. U., Esonye, C., Onukwuli, O. D., Nwaeze, E., and Ume, C. S. (2019).
Modeling and optimization of African pear seed oil esterification and
transesterification using artificial neural network and response surface
methodology comparative analysis. Ind. Crops Prod. 140, 1–16. doi:10.1016/
j.indcrop.2019.111707

Ogbu, I. M., Ajiwe, V. I. E., and Okoli, C. P. (2018). Performance Evaluation of
carbon-based heterogeneous acid catalyst derived fromHura crepitans seed pod
for esterification of high FFA vegetable oil. Bioenerg. Res. 11, 772–783. doi:10.
1007/s12155-018-9938-8

Okeleye, A. A., and Betiku, E. (2019). Kariya (Hildegardia barteri) seed oil
extraction: comparative evaluation of solvents, modeling, and optimization
techniques. Chem. Eng. Commun. 206, 1181–1198. doi:10.1080/00986445.2018.
1550397

Oladipo, A. S., Ajayi, O. A., Oladipo, A. A., Azarmi, S. L., Nurudeen, Y., Atta, A. Y.,
et al. (2018). Magnetic recyclable eggshell-based mesoporous catalyst for
biodiesel production from crude neem oil: process optimization by central
composite design and artificial neural network. Compt. Rendus Chem. 21,
684–695. doi:10.1016/j.crci.2018.03.011

Oladipo, B., and Betiku, E. (2020). Optimization and kinetic studies on
conversion of rubber seed (Hevea brasiliensis) oil to methyl esters over a
green biowaste catalyst. J. Environ. Manag. 268, 110705. doi:10.1016/j.
jenvman.2020.110705

Pasias, S., Barakos, N., Alexopoulos, C., and Papayannakos, N. (2006).
Heterogeneously catalyzed esterification of FFAs in vegetable oils. Chem.
Eng. Technol. 29, 1365–1371. doi:10.1002/ceat.200600109

Rashid, U., Anwar, F., Ashraf, M., Saleem, M., and Yusup, S. (2011). Application of
response surface methodology for optimizing transesterification of Moringa
oleifera oil: biodiesel production. Energy Convers. Manag. 52, 3034–3042.
doi:10.1016/j.enconman.2011.04.018

Rincón, L. E., Jaramillo, J. J., and Cardona, C. A. (2014). Comparison of feedstocks
and technologies for biodiesel production: an environmental and techno-
economic evaluation. Renew. Energy 69, 479–487. doi:10.1016/j.renene.2014.
03.058

Samuel, O. D., and Okwu, M. O. (2019). Comparison of Response Surface
Methodology (RSM) and Artificial Neural Network (ANN) in modelling
of waste coconut oil ethyl esters production. Energy Sources, Part A
Recovery, Util. Environ. Eff. 41, 1049–1061. doi:10.1080/15567036.2018.
1539138

Sani, Y. M., Daud, W. M. A. W., and Abdul Aziz, A. R. (2013). Solid acid-catalyzed
biodiesel production frommicroalgal oil-The dual advantage. J. Environ. Chem.
Eng. 1, 113–121. doi:10.1016/j.jece.2013.04.006

Sarve, A., Sonawane, S. S., and Varma, M. N. (2015). Ultrasound assisted
biodiesel production from sesame (Sesamum indicum L.) oil using barium
hydroxide as a heterogeneous catalyst: comparative assessment of prediction
abilities between response surface methodology (RSM) and artificial neural
network (ANN). Ultrason. Sonochem. 26, 218–228. doi:10.1016/j.ultsonch.
2015.01.013

Selvaraj, R., Moorthy, I. G., Kumar, R. V., and Sivasubramanian, V. (2019).
Microwave mediated production of FAME from waste cooking oil:
modelling and optimization of process parameters by RSM and ANN
approach. Fuel 237, 40–49. doi:10.1016/j.fuel.2018.09.147

Shan, R., Lu, L., Shi, Y., Yuan, H., and Shi, J. (2018). Catalysts from renewable
resources for biodiesel production. Energy Convers. Manag. 178, 277–289.
doi:10.1016/j.enconman.2018.10.032

Shanmuganathan, S. (2016). “Artificial neural network modelling,” in Studies
in computational intelligence: an introduction. Editors S. Shanmuganathan
and S. Samarasinghe (Cham, Switzerland: Springer International
Publishing), 1–14.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Okpalaeke, Ibrahim, Latinwo and Betiku. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 61462113

Okpalaeke et al. Ferric Sulfate-Catalyzed Esterification of Neem Oil

https://doi.org/10.1016/j.bcab.2020.101522
https://doi.org/10.1016/j.indcrop.2017.10.029
https://doi.org/10.1016/j.jece.2018.04.019
https://doi.org/10.3390/ijms16034362
https://doi.org/10.1007/bf02645752
https://doi.org/10.1007/bf02645752
https://doi.org/10.1016/j.supflu.2013.10.018
https://doi.org/10.1016/j.enconman.2013.07.039
https://doi.org/10.1016/j.enconman.2013.07.039
https://doi.org/10.1016/j.biombioe.2008.01.001
https://doi.org/10.1016/j.rser.2015.07.027
https://doi.org/10.1016/j.rser.2015.07.027
https://doi.org/10.1007/s10462-018-9616-4
https://doi.org/10.1590/s0104-66322010000400012
https://doi.org/10.1016/j.enconman.2018.02.055
https://doi.org/10.1016/j.indcrop.2019.111707
https://doi.org/10.1016/j.indcrop.2019.111707
https://doi.org/10.1007/s12155-018-9938-8
https://doi.org/10.1007/s12155-018-9938-8
https://doi.org/10.1080/00986445.2018.1550397
https://doi.org/10.1080/00986445.2018.1550397
https://doi.org/10.1016/j.crci.2018.03.011
https://doi.org/10.1016/j.jenvman.2020.110705
https://doi.org/10.1016/j.jenvman.2020.110705
https://doi.org/10.1002/ceat.200600109
https://doi.org/10.1016/j.enconman.2011.04.018
https://doi.org/10.1016/j.renene.2014.03.058
https://doi.org/10.1016/j.renene.2014.03.058
https://doi.org/10.1080/15567036.2018.1539138
https://doi.org/10.1080/15567036.2018.1539138
https://doi.org/10.1016/j.jece.2013.04.006
https://doi.org/10.1016/j.ultsonch.2015.01.013
https://doi.org/10.1016/j.ultsonch.2015.01.013
https://doi.org/10.1016/j.fuel.2018.09.147
https://doi.org/10.1016/j.enconman.2018.10.032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


NOMENCLATURE

ANN Artificial neural network

BBD Box Behnken design

FFA Free fatty acid

GA Genetic algorithm

MRPD Mean relative percent deviation

MAE Mean average error

MSE Mean square error

NSO Neem seed oil

R Correlation coefficient

R2
Coefficient of determination

RMSE Root mean square error

RSM Response surface methodology

SEP Standard error of prediction

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 61462114

Okpalaeke et al. Ferric Sulfate-Catalyzed Esterification of Neem Oil

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles

	Mathematical Modeling and Optimization Studies by Artificial Neural Network, Genetic Algorithm and Response Surface Methodo ...
	Introduction
	Materials and Methods
	Materials
	Methods
	Neem Seed Oil Quality Characterization
	Description of the Esterification Process
	Experimental Design, Model Development, and Optimization by Response Surface Methodology
	Artificial Neural Network Model Development and Optimization
	Sensitivity Analysis of Process Input Variables
	Performance Assessment of Models


	Results and Discussion
	Physicochemical Properties of Neem Seed Oil
	Process Modeling of Neem Seed Oil Esterification Results
	Response Surface Methodology Model Description
	Fit Statistics for the Response Surface Methodology Model
	Artificial Neural Network Model Description

	Comparison of Performance of the Developed Models
	Establishment of Optimum Conditions and Model Validation

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References
	Nomenclature


