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Agricultural residues have been traditionally used as energy resources for many years. In
light of current environmental and fossil fuel supplies for energy applications, agricultural
residues are regarded as sustainable supplies for energy production. However, the
suitability to be renewable fuel and as a co-fuel in coal combustion facilities has to be
investigated. A thermal analysis was conducted to investigate the effect of the blending
and heating rate of the thermal behavior of Malaysian bituminous coal (Silantek), oil palm
biomass (empty fruit bunch), and their blends using thermogravimetric analysis. The
investigation was done in an inert atmosphere at the heating rate of 10, 20, and 40°C/
min. Characteristics including proximate, ultimate, and calorific analyses were also
examined. Six different mass ratios were selected from both samples to study the
effect of blending of the two materials. The results showed that thermal degradation of
empty fruit bunch (EFB) occurred in three stages while Silantek coal (SC) only involved two
regions due to their different fuel properties. The blending of both SC/EFB did not follow
their individual samples, which showed non-additive behavior suggesting that there is an
interaction between coal and biomass. The outcome of this research provides insight on
the behavior of Malaysian bituminous coal and oil palm biomass, which enhances
knowledge for the future of energy generation.

Keywords: pyrolysis, Silantek coal, empty fruit bunch, thermogravimetric analysis, co-utilization, coal/biomass
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INTRODUCTION

Concerns over the environment associated with emissions due to the use of fossil fuels as a main energy
resource has been the main agenda in most countries around the world. The combustion of fossil fuels
has contributed to the emission of greenhouse gases such as carbon dioxide. From 2010 to 2017, the
combustion of fossil fuels has released carbon dioxide emission of about 4,188.5 million tonnes
recorded in Asia alone, but the amount is increasing in 2018 due to an increase in energy demand, in
line with the robust economy growth plus (IEA, 2020). The emissions have caused global warming and
are indirectly increasing the need of either heating or cooling requirements globally. Currently, natural
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gas is the main energy source for power production in Malaysia. In
2018, about 73,352 GWWh of the electricity generation from the
total of 168,897 GWh energy producedwas fueled by coal followed
by natural gas (Energy Commission, 2019). However, the depletion
of petroleum energy reserves over the years has called for the
industry to increase the share of coal in the total energy mix for
power production. Alternative solutions to replace fossil fuels have
been sought after to ensure a reduction in emission, particularly in
electricity generation. This situation has led the Malaysian
government to introduce the use of other energy resources to
meet the increasing energy demand.

Agricultural wastes are essentially a biomass resource that has
the ability to be used as fuel, as its components consist of carbon,
hydrogen, and oxygen, coming from the major biomass
components of hemicellulose, cellulose, and lignin. The
combustion of biomass has been promoted because of the net
zero carbon dioxide emission due to biomass’s ability to consume
carbon dioxide during its growth, while releasing carbon dioxide
during combustion. Its utilization is able to reduce fossil fuel
consumption because of higher fuel flexibility, higher combustion
efficiency, higher heat transfer and other environmental benefits
(Vuthaluru, 2004; Jayaraman et al., 2017).

From a Malaysian perspective, the tropical climate conditions
that prevail around the year are favorable for oil palm plantation.
This has led the country to become one of the major palm oil
producers in the world (Norhidayu, et al., 2017). The palm oil
milling process allows an extraction of palm oil from fresh fruit
bunches. However, the processes have contributed to production of
solid residues. With an increment of the residues of 5.6% from
2016 to 2017, dry solid residues (biomass) are expected to reach
85–110 million dry tonnes by 2020 (Chow, 2008; Agensi Inovasi
Malaysia, 2013). It is estimated that, by the year 2020, about
8 million tonnes of empty fruit bunches (EFB) will have been
produced and the amount is increasing with an increase in oil palm
production every year (Agensi Inovasi Malaysia, 2013). According
to Hasanuzzaman et al. (2014), based on 10million ton/year of dry
EFB, approximately 700MW of electricity will be generated. It is
predicted that the amount of EFB generated to date is sufficient to
be used for electricity generation. Traditionally, empty fruit
bunches have been sent to plantations for mulching, and mostly
left unattended since they contain high moisture, in comparison to
the palm kernel shell and palm mesocarp fiber, which are used as
fuel for boilers. However, application of single biomass for energy
productionmay lead to several problems such as low heating value,
high moisture content, excess smoke during combustion and low
energy density (Tumuluru et al., 2011). High ash content in these
biomass materials causes major problems in a boiler furnace, as it
causes slagging hence reducing heat transfer efficiency and requires
frequent maintenance (Saidur et al., 2011). Nevertheless, with
proper pre-treatment, and available conversion technology, such
limitations can be overcome.

Much research has emerged on the co-utilization of biomass with
coal for power production, which is advantageous with respect to
cost, sustainability, and reduced release of CO2, SOx, and often NOx

emissions (Sahu et al., 2014). Coal is available at different ranks
namely, anthracite, bituminous, sub-bituminous, and lignite;
whereby bituminous coal is the most widely used for the

thermal industry (Grammelis et al., 2016). Although much
research has been reported on the importance of the co-firing
of coal and biomass, limited work has proved the synergistic effect
between the utilization of raw biomass and coal. Synergistic effect
between the two fuels is important as it indicates interaction
between the components in both of the fuels. As coal and
biomass are distinct in their properties, it is important to
understand the behavior of their co-utilization, prior to
commercial application during combustion.

Previously, Silantek coal’s utilization has been performed by
Matali et al. (2016). However, in this work, the investigation
focuses on single utilization rather than co-utilization with raw
and torrefied biomass (Leucaena Leucocephala and oil palm
frond). Jamaluddin et al. (2011) reported the co-combustion of
the palm kernel shell (PKS) and its produced char from
themicrowave pyrolysis technique. It was reported that there
was a lack of synergistic effect during co-combustion of Silantek

FIGURE 1 | Flow diagram for research methodology.
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coal with PKS. Nevertheless, a synergistic effect was reported
when the coal was co-combusted with PKS char. Thus far, limited
work has been reported on using empty fruit bunch (EFB) with
Silantek coal. Therefore, the aim of the current work is to
investigate the thermal behavior of Malaysian bituminous coal
which is Silantek coal blended with EFB by varying the heating
rate and blending ratio. The significance of this work is that it
provides an insight into the suitability of utilizing agriculture
residue such as oil palm residue along with a high rank coal for a
thermal application, which in turn could reduce the impact on the
environment as a result of the waste disposal and combustion of
fossil fuel (coal).

MATERIALS AND METHODS

Empty fruit bunch (EFB) was collected from Malaysia Palm Oil
Board (MPOB), Palm Mill Technology, located in Labu, Negeri
Sembilan, Malaysia and Silantek coal (SC) used in this study was
originated from Silantek, Sarawak. Both coal and biomass were
air dried for 2–3 days to remove moisture. The samples were
ground and sieved to a size of <212 µm and further dried in a
vacuum oven at 105°C for 24 h to remove excess moisture before
being stored in screw-capped bottle. For chemical characteristics,
proximate analyses of SC and EFB were done based on the
standard method of ASTM D 5142–02a using a
thermogravimetric analyzer model TGA/SDTA51e (Mettler
Toledo, United States) (ASTM 5142–02a). As for ultimate
analysis, data on percentage of nitrogen, carbon, hydrogen,
and sulfur were obtained using a Thermo Finnigan Flashed
1,112 analyzer which followed ASTM 5373–02 (ASTM
D5373–02). For calorific data, both SC and EFB was analyzed
using a bomb calorimeter model IKAWORKS calorimeter System
C500 Control. The methodology is summarized in a process flow
as in Figure 1. The result of the characterization of the raw
sample is presented in Table 1.

Thermal analyses of SC, EFB, and their blends were evaluated by
a thermogravimetric analyzer TGA/SDRA51e (Mettler Toledo,
United States). TGA provides simultaneous thermogravimetric
(TG) and derivative thermogravimetric (DTG) data of raw and
blending sample. In this experiment, approximately 20 mg of sample
was placed in 150 µL alumina crucible and heated under nitrogen
atmosphere of flowrate 50 ml/min, at temperatures from 25 to
900°C. All samples were heated at three different heating rates
which were 10, 20, and 40°C/min. To study the effect of
blending, biomass and coal were blended, at five different weight
ratios which were 0:100, 20:80, 50:50, 80:20, and 100:0. Each
pyrolysis was run at least twice, but more repetitions were
carried out in case some inconsistencies were observed.

Synergistic investigation between SC and EFB was analyzed
using a summation of the weighted average of the two fuels
present in the blends given by Eq. 1 (Vuthaluru, 2004; Vamvuka
et al., 2003; Xie et al., 2018; Merdun and Laougé, 2021):

Wblend � xscwsc + xEFBwEFB (1)

where xSC and xEFB are mass fractions of SC coal and EFB in the
blend, respectively andWSC andWEFB are normalized weight loss

of SC and EFB, respectively, which were obtained from individual
experiment data under the same process conditions.

In a similar manner, the same equation is applied on the
thermogram as shown on Eq. 2

TGblend � xscTGsc + xEFBTGEFB (2)

where xSC and xEFB are mass fractions of SC coal and EFB in the
blend, respectively and TGSC and TGEFB are thermogram curve of
pure SC and EFB, respectively, which were obtained from
individual experiment data under the same process conditions.

RESULTS AND DISCUSSION

Thermal Behavior of Individual Sample
Generally, coal and biomass characteristics differ widely due to
their individual characteristics. From Table 1, it can be observed
that Silantek coal (SC) contains high fixed carbon (FC), low volatile
matter (VM), unlike EFB which has high VM and low fixed carbon.
As for elemental characteristics, SC has a carbon content of 74.7%,
while EFB only contained 42.7% of carbon. Accordingly, the calorific
value of SC was observed to be almost double that of EFB. In terms of
thermal behavior, Figure 2 shows thermograms (TG) and derivative
thermograms (DTG) for both individual samples of SC and EFB at a
heating rate of 10°C/min. Thermal activity on a thermogram can be
observed based on changes in the gradient. The changes are depicted
as peaks on a derivative thermogram (DTG). It can be observed that
the thermal degradation of EFB occurred in three different stages
where the first stage was due to the moisture drying process followed
bymain devolatilization and end with a slight devolatilization process.
During the moisture removal region, EFB experienced a loss of
excessive moisture from 25°C to 109°C. The devolatilization stage
started at a temperature range of 131°C up to 478°C. A shoulder peak
at around 200°C prior to the main peak (at peak temperature 320°C)
indicates the degradation of hemicellulose, while the main peak was
attributed to the decomposition of cellulose (Carrier et al., 2011). The
proceeding non-observable peak (curve) at about 360°C–500°C can be
regarded due to degradation of lignin. This finding was evident by a
work reported by Wu et al. (2014). The last stage also involved the

TABLE 1 | Proximate, ultimate, and calorific data for EFB and SC.

Silantek coal (SC) Empty
fruit bunch (EFB)

Proximate analysis (ad) (wt%)
Moisture 1.48 ± 0.29 7.47 ± 0.71
Volatile matter 22.05 ± 5.69 58.52 ± 5.02
Fixed carbon 62.98 ± 2.18 22.0 ± 2.71
Ash 13.49 ± 3.81 12.01 ± 3.60

Ultimate analysis (db) (wt%)
Carbon 74.7 ± 3.0 42.7 ± 0.89
Hydrogen 4.6 ± 0.5 6.16 ± 0.37
Nitrogen 1.95 ± 0.01 1.92 ± 0.18
Sulfur 0.5 ± 0.1 0.11 ± 0.10
Oxygena 18.25 ± 2.7 49.11 ± 1.34
Calorific value (MJ/kg) 30.12 ± 0.4 17.8 ± 0.5

aCalculated by difference, ad as determined basis, db dry basis.
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charring of the remaining solid char of the EFB until the end of the
pyrolysis (Toptas et al., 2015; Wang et al., 2017). A similar study of
EFB done by Omar et al. (2011) also reported the same thermal
degradation profile which consists of the moisture drying region,
cellulose and hemicellulose decomposition, and lastly lignin
decomposition. As for the SC, the degradation only involved two
major stages where the first stage corresponds to moisture removal,
followed by volatile matter released at much a higher temperature as
compared to that of EFB. Similar findings were also reported by other
researchers on the pyrolysis of bituminous coal (Othman and
Boosroh, 2009; Vhathvarothai et al., 2014).

From the DTG curve, reactivity of both SC and EFB can be
determined based on maximum peak temperature and peak height.
Reactivity is important as it indicates how reactive the fuel is or vice
versa (Miranda et al., 2008). It appears that the peak temperature of
EFB is lower than SC at 320°C with the peak height of 1.73mg/min
indicating that EFB is more reactive than SC. Similar findings from
other researchers on comparison of biomass and coal reactivity were
observed (Kastanaki et al., 2002; Omar et al., 2011; Jayaraman et al.,
2017). This is because EFB contains more volatile matter than that of
SC, thus reducing the reactivity of SC. The two fuels have distinct
properties; hence it is important to understand the behavior during
co-utilization.

Effect on Heating Rate
Pyrolysis parameters such as temperature, residence time, and
heating rate are among the important factors that affect yield and
desired product quality (de Jong et al., 2007). Figure 3 shows trends
of pyrolysis of EFB and SC at three different heating rates of 10, 20,
and 40°C/min. It can be observed that derivative curves show similar
profiles as heating rate increases for both samples. Parameters of
initial, peak, and final temperatures during pyrolysis of EFB at
different heating rates are shown in Table 2. Initial reaction
temperatures of EFB at a heating rate of 10, 20, and 40°C/min
are 131.31, 164.75, and 189.24°C, respectively. It is observed that the
peak temperature increases with increasing heating rate.
Corresponding peak temperatures for heating rates at 10, 20, and
40°C/min are 318.28, 331.29, and 335.31°C, respectively.

Final reaction temperature for a heating rate of 10°C/min is
lower as compared to a heating rate of 20 and 40°C/min.
Temperature shifts as heating rate is increased can be
explained by ineffective heat transfer when fast heating rates
was applied. In heating the same sample mass, with higher
heating rates, heat transfer inside inner portion and particle of
biomass is reduced, hence more time is needed to achieve the

FIGURE 2 | (A) TG curves and (B) DTG curve for Silantek coal and EFB
material at heating rate of 10°C/min.

FIGURE 3 | DTG profiles of (A) EFB and (B) Silantek coal (SC) at heating
rates of 10, 20, and 40°C/min under pyrolysis condition.
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same heating, which can be achieved at a later time, hence at a
much higher temperature (El-Sayed and Khairy, 2015). This data
agrees reasonably well with the work carried out by other
researchers on effect of heating rate on thermal degradation of
EFB in inert atmosphere (Mohammed et al., 2013; Idris et al.,
2010). However, it can be observed that, for SC, characteristic
temperatures (Ti, Tp and Tf) were not affected as much as that of
biomass.

Effect of Blending in Inert Condition
It is important to understand the thermal degradation
behavior of the two fuels by performing thermal analysis
under inert conditions. Thermal degradation of EFB
blended with SC at ratio of 100:0, 80:20, 50:50, 20:80, and
0:100 is shown in Figure 4. Three decomposition profiles are
observed for SC/EFB blends where the first peak (TEP 1)
appears at a temperature below 150°C, second peak (TEP 2)
between temperatures of 274 and 400°C, and third peak (TEP
3) is between 434 and 566°C. The first peak can be associated
with water removal from both samples, while the second peak
indicates the devolatilization of biomass and the last were
assigned to decomposition of SC. As can be seen, both samples
followed the same thermal evolution profile as their parent
fuel. Maximum rate of devolatilization (also known as peak
height) gradually increases with an increasing amount of

biomass in the blends due to high volatile quantities
released (Idris et al., 2010; Vamvuka et al., 2003; Panwar
et al., 2020)). This also shows improved reactivity of the
sample where biomass increment will increase the
maximum rate of mass loss (Jayaraman et al., 2017).
Moreover, the position of the maximum peak was shifted to
a lower temperature as the biomass percentage increased,
while the peak temperature was also found to be at a lower
temperature as compared to SC. From Table 1, char yield of SC
and EFB is 76.47% and 34.01%, respectively. This indicates the
remaining solid particles in the main body mass upon
devolatilization. Apparently, the char yield of the blends
decreases with increasing biomass. This can be seen on the
TG curve of the EFB:SC at the mixture of 20:80, 50:50, and 80:
20 where the final residues are 55.35%, 45.85%, and 33.9%,
respectively. The main reason for this finding is because of the
differences in the coal and biomass chemical structures. Coal is
known to have a strong C�C bond energy structure of 1,000 kJ/
mol that makes it difficult to rupture under thermal treatment
as compared to a weak energy bond of 380–420 kJ/mol for
biomass. Thus, it is easier for the biomass to decompose when
subjected to heating (Quan & Gao, 2016). Similar findings have
also been reported by Vuthaluru (2004) on pyrolysis of wood
waste and wheat straw, He et al. (2018) on co-pyrolysis of
bituminous coal and fermented cornstalk, and (Panwar et al.,
2020) on co-pyrolysis of raw/torrefied biomass and coal
blends, and (Quan et al., 2014) on white pine and
bituminous coal using thermogravimetric analysis.

The synergistic interaction between the SC and EFB can be
observed from the additive or non-additive behavior based on
the sum of weighted average of the mass loss profile, as indicated
in Eq. 1 (Vamvuka et al., 2003; Merdun and Laougé, 2021; Xie
et al., 2018). An equation was applied on the char yield of the
blends as shown in Figure 5. The trend line represents data as
calculated by using Eq. 1, while experimental data were
represented by the data points. It appears that the char yield
profile does not show an additive behavior as the data point for
the experimental result lies away from the summation of
weighted average line (trendline). Such a behavior is
indicative of synergistic effect between fuels in the blend.
Similar observation was reported by Quan et al. (2014) on
the co-pyrolysis of white pine with bituminous coal using
TGA. It was reported that the interaction exists due to the
formation of volatiles and residues of biomass that took place at
a much lower temperature than that of coal, and could easily be
deposited on the coal surface. At a low heating rate, there is a

TABLE 2 | The characteristic temperatures of EFB and SC pyrolysis at heating rate of 10, 20, and 40°C/min.

EFB SC

Heating rate
(°C/min)

Initial temperature,
Ti (°C)

Maximum peak
temperature, Tm

(°C)

Final temperature,
Tf (°C)

Initial temperature,
Ti (°C)

Maximum peak
temperature, Tm

(°C)

Final temperature,
Tf (°C)

10 131.31 318.28 478.08 362 450 868
20 164.75 331.29 603.63 363 495 850
40 189.24 335.31 647.92 378 504 900

FIGURE 4 | EFB blended with SC at ratio of 100:0, 80:20, 50:50, 20:80,
and 0:100 under pyrolysis condition at heating rate of 10°C/min.
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longer release time of volatiles from both materials, hence
allowing secondary reaction of intraparticle volatiles.

Using Eq. 2, an additional plot was made for calculated and
experimental thermograms (TG) of the blends as shown in Figure 6
(Xie et al., 2018). It appears that the calculated data are not able to
represent the experimental data by a simple weighted average,
indicating the existence of interaction between the fuels
(Vuthaluru, 2004; Quan and Gao, 2016). It is also observed at
the beginning of the process up to 300°C, the experimental data for
the blends appear to be much lower than that of the parent fuels.
This is also evidence of the synergistic effect of the two fuels. This
could be due to lignocellulosic materials being primarily
transformed into laevoglucose with the breakdown of glycosidic
bonds, which can provide a hydrogenous donor for bituminous coal
pyrolysis (Wu et al., 2014). Interaction between coal and biomass
during co-pyrolysis, although uncommon, has been reported by
some researchers involving different ranks of coal and various types
of biomass (Haykiri-Acma and Yaman, 2008; Aboyade et al., 2013;
Xie et al., 2018)). Similar work performed but on different coal by
Idris et al. (2010), however, showed the additive behavior when
Mukah Balingian coal (lower rank coal) and EFB were co-utilized
during pyrolysis.

It has been demonstrated that, synergistic effect exists for the
two fuels during co-pyrolysis. Its application for co-combustion is
much influenced by the understanding of both behaviors in this
condition i.e., in the absence of oxidative gas. Ideally, the best
ratio could be selected so as to overcome limitations of both fuels
during combustion. It is already highlighted that biomass has
high volatile matter and low characteristic temperature, meaning
its reactivity is high as compared to coal which has a high initial
temperature. A high char yield would translate into a char
combustion phase at a much higher temperature and longer
duration could be maintained and is desirable (Sotannde et al.,
2010; Jamaluddin et al., 2011; Matali et al., 2016; Abdullah et al.,
2019) Thus it can be said that the blend of 50% coal and biomass,
has an ignition temperature of about 172°C, intermediate
reactivity, with a long reaction time. Nevertheless, further

combustion analysis of the co-blend materials shall be carried
out in our future research.

CONCLUSION

As a conclusion, thermal decomposition of Silantik Coal (SC),
Empty Fruit Bunches (EFB), and their blends under inert
conditions has been determined using a thermogravimetric
analysis technique. Degradation of EFB occurred at a lower
temperature compared to SC and reactivity of the EFB is higher
than SC. Heating rate has an effect on the thermal behavior of the
fuel causing temperature shifts to higher temperatures as the
heating rate increases. Blended fuels showed a degree of
interactions during co-pyrolysis, observed from the sum of the
weighted average of the thermograms. The interactions between
the biomass and coal are of paramount importance with the hope
to further reduce NOx or SOx during combustion, hence sustaining
the environment. Outcomes from this work provide an insight and
prompts further research into reducing utilization of coal by
increasing the share of biomass materials as fuel toward
obtaining energy for the benefit of future generations.
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