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Detection and timely identification of power system disturbances are essential for situation
awareness and reliable electricity grid operation. Because records of actual events in the
system are limited, ensemble simulation-based events are needed to provide adequate
data for building event-detection models through deep learning; e.g., a convolutional
neural network (CNN). An ensemble numerical simulation-based training data set have
been generated through dynamic simulations performed on the Polish system with various
types of faults in different locations. Such data augmentation is proven to be able to provide
adequate data for deep learning. The synchronous generators’ frequency signals are used
and encoded into images for developing and evaluating CNN models for classification of
fault types and locations. With a time-domain stacked image set as the benchmark, two
different time-series encoding approaches, i.e., wavelet decomposition-based frequency-
domain stacking and polar coordinate system-based Gramian Angular Field (GAF)
stacking, are also adopted to evaluate and compare the CNN model performance and
applicability. The various encoding approaches are suitable for different fault types and
spatial zonation. With optimized settings of the developed CNN models, the classification
and localization accuracies can go beyond 84 and 91%, respectively.

Keywords: fault detection, time series encoding, classification, localization, wavelet decomposition, gramian
angular field, convolutional neural network

INTRODUCTION

More and more digital sensors, e.g., synchronized phasor measurements units (PMUs) and digital
fault recorders have been deployed in the electricity system tomonitor, control and protect the power
grid (Gopakumar et al., 2018). PMUs provide high-resolution, accurate, and time-synchronized
information about power system state and dynamics. With the variety of signals from the many
various sensors, digital signal processing plays an important role in improving system stability and
reliability (Grigsby, 2016; Ren et al., 2018a; Ren et al., 2018b). Power system faults can be caused by
several factors, including equipment, operation, human interference, weather conditions, and the
environment (Han and Zhou, 2016). Effective fault detection and identification are needed to
improve system reliability, prevent widespread damage to the power system network, and avoid
power system blackouts (Guillen et al., 2015; Alhelou et al., 2018). Locating a faulty zone (area) can
also help improve power system situational awareness and help crews take proper corrective actions
(Gopakumar et al., 2015; Yusuff et al., 2011).
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Nowadays, great efforts have been made in developing new
methodologies, from both data and model perspectives, for fault
detection and isolation (FDI) (Chen and Patton, 2012;
Costamagna et al., 2015; Jan et al., 2017; Zhang et al., 2016;
Alhelou et al., 2018). Data-driven FDI has received significant
attention recently; for example, approaches using deep learning
techniques such as long short-term memory (LSTM) networks
and convolutional neural networks (CNNs) are popular among
the deep neural networks (Chen et al., 2017; Zhang et al., 2017;
Patil et al., 2019; Paul and Mohanty, 2019; Qu et al., 2020). An
LSTM network (Hochreiter and Schmidhuber, 1997) has
advantages for learning sequences containing both short- and
long-term patterns from time series (Malhotra et al., 2015), while
CNN is a commodity in the computer vision field that is capable
of achieving record-breaking results on highly challenging image
datasets (Krizhevsky et al., 2012; Zhu et al., 2018). With limited
data preprocessing, convolutional layers in CNN can serve as
dimension reduction model which have the power to obtain
effective representations of the raw images through increasing
depth and width of model without increasing the computational
demands (Gu et al., 2018). Many advanced multi-
class–classification CNNs have been reported, e.g., in the
ImageNet challenge, with high accuracy scores (Canziani et al.,
2016; Russakovsky et al., 2015), as well as other breakthroughs on
computer vision tasks such as image segmentation, object
detection, speech and natural language processing (Sermanet
et al., 2013; Zeiler and Fergus, 2014; He et al., 2016; Tan and
Le, 2019; Shorten and Khoshgoftaar, 2019).

Monitoring time series obtained from power systems can be
transformed into two-dimensional (2D) images for better
visualization, and to take advantage of the successful image-
based deep learning architectures in computer vision to learn
and extract features and structure in multivariate time series.
Several methods have been used for encoding and stacking time
series, as explained below. Frequency-based wavelet
decomposition has been used in speed and image processing
as well as time series analysis. A discrete wavelet transform
(DWT) is sufficient to decompose and reconstruct most power
quality problems, and can adequately and efficiently provide
information, in a hierarchical detail structure in high
frequency and approximations in low frequency. DWT has the
capability to obtain both temporal and frequency information on
the signals through effective time localization of all frequency
components (Mallat, 1989). These capabilities are inherent to
dealing with the time series and signals, and have been applied in
multiple studies, including the power system (Saleh et al., 2008;
Avdakovic et al., 2012; Livani and Evrenosoğlu, 2012). Previous
studies have implemented feature extractions from power
waveform as inputs for data-driven approaches, where CNN
achieved a high model accuracy on event classification and
anomaly detection (Wang et al., 2019; Basumallik et al., 2019).
The Gramian Angular Field (GAF) is another recent encoding
approach for converting time series data into RGB images using a
Gramian matrix (Wang and Oates, 2015a). Recently this
approach was used to convert signals through GAF and detect
the features successfully in other domain studies, but rarely in the
power system (Wang and Oates, 2015b; Zhang et al., 2019;

Thanaraj et al., 2020). Given the successful implementation of
different time series encoding techniques and CNNmodels in the
power system studies, we aim to develop and evaluate CNN
models for classification and localization of various types of faults
and the impacts of the time series encoding approaches for
predicting power system disturbances.

Observation-based event detection, classification, and
localization using real world data are usually challenging
because labeled data is often lacking. Such data inadequacy
cannot support training of deep neural networks. One solution
is use of data augmentation by generating an ensemble
simulation-based training data set. In this study, we evaluated
the feasibility of using ensemble simulation-based data with
various types of faults; this will provide adequate labeled data
for supervised learning. Dynamic simulations were performed on
a MATPOWER Polish 3120-bus system with four types of faults
in five geophysical zones. The multichannel time series of
machine speed data were extracted and encoded to images for
evaluating the feasibility of CNN models for classification (fault
types) and localization (occurrence zones). Time series stacking is
straightforward, and it requires the fewest computational
resources; it served as the benchmark dataset for our proposed
CNN model. Three other time-series encoding approaches,
i.e., time-domain stacking, wavelet decomposition-based
frequency-domain stacking, and polar coordinate system-based
GAF stacking, were adopted to evaluate and compare
performance of the CNN models. Visual Geometry Group
(VGG) model architecture was adopted in our CNN to push
the model depth toward high accuracy (Simonyan and
Zisserman, 2014).

POWER SYSTEM TEST BEDANDDYNAMIC
SIMULATION

Polish System
Simulation tests were performed on the 3120-bus Polish system
(“case3120sp.m”) (MATPOWER, 2008). Dynamic data have
been developed in Siemens PSS®E (PSS/E) format that include
generator, governor, stabilizer, and exciter models for generator
dynamics. Several protection models were also prepared in PSS/E
format; these include protection models that incorporate distance
relays, generator-based voltage and frequency relays, and
underfrequency and undervoltage load-shedding relays. They
were added to the existing relay protection models in the
Polish case. The Polish system has 3,120 buses, 3,487
branches, 2,314 loads, and 505 generators and comprises five
zones. The zonal model for total generation of each zone and the
connections between zones are illustrated in Figure 1. Zone 3 is
the largest zone connected with Zones 1, 2, and 4. Zone 5 is the
smallest zone, with only 841 MW; it is connected only with Zones
1 and 4.

Fault Types and Implementation
Various power system faults were simulated using the PSS/E
software. These faults can be categorized into four types, and the
outage characteristics of each type have been summarized in
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Table 1. Fault 1 is the single generator and multiple line fault. In
this scenario, each generator and consequently two transmission
lines were tripped in the system. A total of 298 contingencies were
simulated for Fault 1. For Fault 2, a three-phase fault at a bus
during dynamic simulations was applied to the Polish system
with 3,120 contingencies. Different generators were set to be
tripped during dynamic simulation for the system, as Faults 3 and
4, with 298 contingencies for each fault type. In Fault 3, each
generator was put out-of-service and Fault 4 has the two
neighboring generators out-of-service.

METHODOLOGY

Wavelet Decomposition
The wavelet decomposition is a mathematical tool to analyze
signals in both time and frequency domains at multiple resolution
levels. For a time series X(t), the wavelet transform is defined as
shown in Eq. 1 with a given wavelet function ψ(t). ψ(t) is called a
mother wavelet, chosen from the broad wavelet family, which
includes Haar, Morlet, B-Spline, Mexican hat, and Daubechies
families, among others. Wx(a, b) is the wavelet coefficient at
different resolution levels with respect to time.

Wx(a, b) � |a|− 1
2 ∫∞

−∞
X(t)ψ(t − b/a)dt (1)

In practice, because the time series are discrete, the DWT can be
obtained by discretizing the scale parameter a and location
parameter b. At decomposition level j (j � 1, 2, 3, . . . n),
discretizing a � 2j and b � k2j yield orthonormal basis
functions for certain choices of ψ, as expressed in Eq. 2, where
k is the time translation factor. This results in high frequency
resolution at low frequencies and high time resolution at high
frequencies, removing the redundant information.

ψ(j, k)(t) � 2−
j
2ψ(2− jt − k) (2)

The DWT provides the diagnosis decomposition of a given
time series X(t) into a progression of low-frequency
approximations and high-frequency details expressed as follows:

X(t) � D1 + D2 + D3 + . . . + Dn + An (3)

Where D1, D2, D3,. . ., Dn are the detail coefficient sets and An

represents the approximation coefficient sets at the level n. The

FIGURE 1 | Zonal model of the Polish 3120-bus system.

TABLE 1 | Fault types simulated in Polish system.

Types Outage of
single generator

Outage of
two generators

Three-phase bus
fault

Multiple line
fault

Total contingencies

Fault 1 ✓ — — ✓ 298
Fault 2 — — ✓ — 3,120
Fault 3 ✓ — — — 298
Fault 4 — ✓ — — 298
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output of the DWT is sensitive to the wavelet faction. In our
study, the Morlet wavelet was adopted to capture time-varying
frequency and amplitude in time series (Grossmann and
Morlet, 1984). It is a complex sine wave tapered by a
Gaussian function. The parameter that defines the
time–frequency precision trade-off is referred to as the
“number of cycles.”

Gramian Angular Field
For a time series X � {x1, x2, x3, . . . , xn} with length n, the first
step is to rescale X to the interval [−1, 1] using Eq. 4.

x̃t � (xt −max(X) + (xt −min(X))/
max(X) −min(X) , t � 1, 2, 3, . . . , n

(4)

Then the rescaled time series ~X is converted to polar
coordinates by encoding the value as the angular cosine and
the time stamp as the radius r with Eq. 5:

⎧⎪⎨⎪⎩ θ � arccos(x̃t), −1≤ x̃t ≤ 1, x̃t ∈ ~X

r � Tt/N , Tt ∈ N
(5)

where Tt is the time stamp and N is a constant factor to regularize
the span of the polar coordinate system.

The obtained polar representation provides an alternative way
to understand time series. After the rescaled time series is
converted to polar coordinates, a Gramian matrix can be
generated by considering the trigonometric operations between
each point to identify the temporal correlation within different
time intervals. There are two methods to transform the vectors
into a symmetric matrix: Gramian Angular Summation Field
(GASF) and Gramian Angular Difference Field (GADF). In this
study, we adopted GADF with its formula as shown in Eq. 6. For
each time series with length n, the GADF image is n × n.

GADF �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sin(θ1 − θ1) sin(θ1 − θ2) . . .
sin(θ2 − θ1) sin(θ2 − θ2) . . .

sin(θ1 − θn)
sin(θ2 − θn)

« « 1
sin(θn − θ1) sin(θn − θ2) . . .

«
sin(θn − θn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Time-Series Encoding and Data
Preparation
PMU frequency monitoring time series can be integrated in
different ways to enable deep learning-based fault
identification and classification. In this study, we adopted
three schemes to obtain 2D image aggregation of multichannel
1D time series extracted from multi-fault, multi-zone
simulations. The first scheme of image aggregation was time-
domain stacking, which was done by keeping each of the original
1D time series as a row vector and assembling themultiple vectors
side-by-side vertically, forming a two-dimensional data matrix.
This approach is the most straightforward way to obtain images
with minimum computational effort, and serves as the
benchmark for the other two complex image encoding
frameworks. The second scheme of image aggregation is

frequency-domain stacking, where a DWT is performed for
the time series of each channel, and the DWT outputs (as row
vectors) are stacked vertically. This yields images having time in
the first dimension and multi-resolution, multichannel
frequencies in the second dimension. The last type of image is
Gramian Angular Field (GAF) stacking, where each time series,
represented in a polar coordination system, is a sub-image and
multichannel GAF sub-images are aggregated vertically.

Examples of the different time series encoding approaches are
illustrated in Figure 2. The time series are extracted from each
channel with 486 time steps. We illustrated the wavelet power
spectrum (WPS) image of the example channel time series
obtained by performing DWT on the signal. The amplitude of
the WPS represents the importance of a variation at a given
frequency relative to the variations at other frequencies across the
spectrum. On the other hand, through the polar coordinate
system, GADF represents the mutual correlations between
each pair of points/phases by the superposition of the
nonlinear cosine functions. Different types of time series
always have their specific patterns embedded along the time
and frequency dimensions. After the features are reformulated
by both DWT and GADF, different patterns can be enhanced to
better facilitate visual inspection and machine learning
classification.

CNN MODEL DEVELOPMENT

We designed the CNN architecture to train models for fault type
prediction and zonal classification for the Polish 3120-bus system.
The inputs to the CNN model training were the image sets
produced by three different data encoding schemes, as
explained in the methodology section. Model training and
testing were done for each data encoding scheme separately
and the corresponding model performances were then
compared. Each image data set has been divided into three
independent subsets: training, validation, and testing. Training
and validation contain 85% of the total data which are used
during model development to determine the optimized model
configuration and hyperparameters. The rest 15% of the data is
the testing set for evaluating the final CNN model. The training
data also include the multi-class labels data that were determined
during the ensemble simulation setup. The multi-class labels are
fault types for fault classification, and can be fault locations or
zones for training CNNmodels for approximating fault locations.

CNN Model Architecture
The CNN model architecture conducted in this study is based on
VGG11 (Simonyan and Zisserman, 2014), which includes three
convolutional blocks containing multiple convolutional layers
followed by pooling and dropout layers within each block, and
then connected to flatten and dense layers. The detailed model
architecture is illustrated in Figure 3with each block representing
one layer. The input to the first 2D convolutional layer is fixed size
128 × 128 RGB image sets. Each image is passed through a series
of blocks of convolutional layers (orange layers). A total of three
sets of convolutional layers are adopted, which contain 2, 3, and
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three consecutive convolutional layers, respectively. Different
numbers of neural nodes are used for convolutional blocks
and the receptive field is consistent for each convolutional
layer. Spatial pooling is carried out by three max-pooling
layers, following each convolutional block. The function of
spatial pooling is to progressively reduce the spatial size of the
representation to reduce the number of parameters and
computation demand in the network. Max pooling is
performed over a 2 × 2-pixel window, with a stride of 2. A
dropout layer follows each max-pooling layer. Dropout is a
regularization technique that randomly disables a selected
fraction of neurons during training to make model
performance more robust and prevent overfitting (Hinton
et al., 2012). The output from the three blocks of

convolutional layers is converted into a 1D feature array by
flattening each layer to feed the next layers. Finally, three fully
connected layers, also known as dense layers, are added followed
by Soft-max activation to yield multi-class predictions. The Soft-
max layer outputs values between 0 and 1 to quantify the
probability of and confidence in which class each image
belongs to. ReLU (i.e., rectified linear unit) activation is one of
the most commonly used activation functions in neural networks,
especially in CNNs; its output is linear for positive values and zero
for negative inputs. In our CNN model architecture, the ReLU
activation function is deployed in each layer except the last dense
layer. The optimizer is stochastic gradient descent (SGD), which
estimates the error gradient for the current state of the model
using the training dataset, then updates the weights of the model

FIGURE 2 | A single time series imaged with two different encoding approaches.

FIGURE 3 | The CNN model architecture.
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with backpropagation. The categorical cross-entropy class is
chosen for the multi-label classification problems. It computes
the cross-entropy loss between the labels and model predictions,
and calculation of the loss function requires that the last dense
layer is configurated with the total number of classes; this enables
Soft-max activation to predict the probability for each class.

Optimizing CNN Model Configuration
Hyperparameter searching was performed to optimize model
configuration during the process of training the CNN model.
In our CNN framework, we explore a set of configuration
parameters, including learning rate, batch size, kernel size,
number of neurons in each convolutional block, and dropout
rate. We chose the optimal configuration based on model
performance with validation data and then applied it to the
testing data set to avoid model bias.

The learning rate is a hyperparameter that controls how much
the model changes in response to the estimated error each time
the model weights are updated. Choosing the learning rate is
challenging, because too small a value may result in a long
training process that could get stuck, whereas too large a value
may result in learning a suboptimal set of weights too fast or an
unstable training process. The batch size is the number of samples
in the training set processed before each model updates. The
kernel size is the size of the convolutional filter, which is the width
× height of the filter mask sliding across every pixel in an image.
The next premasters included in the hyperparameter search are
the numbers of neurons in each convolutional block. The number
of neurons in a convolutional layer is the size of the output of the
layer. Each neuron performs a different convolution and provides
its own activation for each position. The last parameter tuned in
our optimization process is the dropout rate, i.e., the fraction of
randomly selected neurons to be disabled. The values chosen for
dropout rate were 0.1, 0.3, and 0.5 in the experiments, where a
dropout rate of 0.5 leads to the maximum regularization. Because

there are multiple tuning parameter types and values, the
validation accuracy was estimated for each model
configuration combination. Optimization of hyperparameter
searching is illustrated in Figure 4 using zonal models as an
example. The tuning parameters include the number of neurons
in different blocks, kernel size, batch size, dropout rate, and
learning rate. In Figure 4, we compare the model accuracy listed
as the last axis to the right. Each axis in the figure represents a
tuning model parameter and the numbers on each axis are prior
selected parameter values. The lines are the combinations of
model configurations we tuned in the CNNmodel. The validation
accuracy of each model is color coded to show the optimized
model configuration, which can be obtained by tracing back the
warm-colored lines for each parameter.

RESULTS AND DISCUSSION

To evaluate the CNN model performance with respect to zonal
and fault-type classification, a confusion matrix was introduced
for multinomial classification. The confusion matrix provides the
numbers of the target class values that are assigned to the positive
and the negative classes. Four types of events are counted for the
multi-class confusion matrix, including 1) True Positive (TP),
which is the cells identified by row and column for the positive
class that were correctly classified as such. The TP cells are located
at the top left corner of the confusion matrix. 2) For False
Negative (FN), the row is the positive class and the column is
the negative class. FN applies to cells in the positive class that were
incorrectly classified as negative, and is located at the top right of
the confusion matrix. 3) False Positive (FP) is determined by rows
for the negative class and the column for the positive class. FP
applies to cells that belong to the negative class that were
incorrectly classified as positive, and is placed in the lower left
on the confusion matrix; 4) True Negatives (TN) are cells outside

FIGURE 4 | Hyperparameter optimization chart. The warm-colored lines represent the model configurations with higher validation accuracy, and the cool-colored
lines are the model configurations with lower validation accuracy.
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the row and column of the positive class. They belong to the
negative class and were correctly classified as such. TN is placed at
the lower right of the confusion matrix. Using the counts for each
of the four types in the confusion matrix, the class statistics
metrics, including sensitivity, specificity, precision and accuracy,
can be calculated to quantify the model performance. Sensitivity
measures how well the model detects events in the positive class.
Specificity measures how correct the assignment to the positive
class is. Precision measures how good the model is at assigning
positive events to positive classes. Accuracy represents the
percentage of correctly classified applications out of the total
number of applications.

Zonal Classification
The well-trained CNN model using the training and validation
data sets was then applied on the third independent testing data
set for providing unbiased evaluation of the model. The zonal
classification using time-stacked images. The class statistics were
calculated and are illustrated in Figure 5. The overall average
accuracy metrics among the five zones reached 91% with the
straightforward time-series-stacking approach. Zone 1 and Zone
3 had the lowest and highest metrics of accuracy, i.e., 88 and 96%,
respectively. The specificity metric was high for all zones, with an
average of 97%, which means the model has satisfactory
performance in assigning events to the positive class. For
sensitivity and precision measurements, both averaged values
are about 86%, and Zone 3 stands out among the five zones. All
the measured metrics show a high performance level, which
means the Polish system has well-defined zonal structures and
the CNN model can accurately predict the fault locations.

To enable further insight into the model results, the details of
class predictions under each targeted class are presented in
Figure 6. There were 66 test images for each targeting zone
and the bars show the counts of the model predictions each class.

In general, the majority of model predictions of the individual
classes are correct; i.e., the bar for a given zone (shown in red) has
the most counts and the correct classification cases strongly
dominate. Generally, a fault added to zones outside the target
zone can affect the power flows in the target zones if the zones are
physically connected to each other. The physical connections and
effects between zones will slightly increase the FT and FN in
model predictions. However, if the zones are not connected, the
model can provide accurate TN predictions. Zone 1 has the worst
prediction results, especially for sensitivity and accuracy, since the
model tends to predict a small portion of Zone 1 events as
occurring in the other zones, especially Zone 2 and Zone 5.
This may be because Zone 1 has connections with all the other
zones, which means the flows within Zone 1 are complex and can
be affected by the faults attributed to other zones. The largest
zone, Zone 3, has no transmission lines going to Zone 5, and our
model results showed that none of the predictions for Zone 3 fall
in Zone 5. A similar pattern can be seen for the model predictions
for Zone 5: no prediction goes to Zones two or three because Zone
5 does not have physical connections with these two zones.

Fault Classification
The class statistics for fault classification using the testing data set
using time-stacked images are summarized in Figure 7.
Generally, the overall class statistics are lower than those for
zonal classification. Quantitatively, the measurement of average
fault classification accuracy is 76%. Fault 2 had the highest
accuracy, 87%. The prediction accuracy metrics for Fault 1
and Fault 3 are similar, and are around 64%. Specificity
metrics were better than the other statistics, thus showing the
model’s ability to assign the correct positive classes. The
measurement of sensitivity for Fault 4 was lowest at ∼45%,
which indicates it is challenging for the current model to
detect Fault 4 events and assign them to the positive class.

FIGURE 5 | Zonal CNN model-performance confusion matrix using a time-domain–stacked encoding approach.
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The precision measurements for Faults 1, 3, and 4 are in the range
of 55% to 60%. Some of the faults share similar characteristics,
which complicates model prediction. For example, both Fault 3
and Fault 4 are generator faults; the difference is that Fault 4 has
two neighboring generators out-of-service. The numbers
illustrate that model improvements are needed in terms of
accurate assignment of positive events to positive classes. The
images converted by straightforward time-domain stacking trained

in the current CNNmodel do not contain adequate information for
the model to learn the different fault types in the system. More
advanced and complex time series for image conversion are adopted
to extract more features and pattern characteristics.

To improve the model performance in fault classification, the
frequency-domain and GAF-stacked encoded images were used
to retrain the CNN models. Comparisons of model performance
using the accuracy metric with different time-series–encoding

FIGURE 6 | Zonal CNN model prediction for each zone using time-domain–stacked encoding approach.

FIGURE 7 | Fault type CNN model performance confusion metric using time-domain–stacked encoding approach.
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approaches are shown in Figure 8. Compared with time-
domain–stacking method, both frequency-domain–stacking
and GAF-stacking approaches increase the accuracy except for
Fault 3. The most significant improvement occurs on Fault 1:
frequency-domain stacking has 87% accuracy, which is 12%
higher than for time-domain stacking. GAF stacking reaches
the highest accuracy, 97%, for both Fault 1 and Fault 2; these
values are 20% and 10% higher than time-domain–stacking
predictions, respectively. For Fault 4, all three encoding
approaches have poor performance: the frequency-
domain–stacking approach improves the accuracy by 6%,
reaching 74%. Meanwhile the GAF stacking accuracy reaches
79%, which is 5% higher than frequency-domain stacking.
However, time-domain–stacked encoding works better than
the other two advanced encoding approaches for Fault 3.

Detailed class predictions for each targeted class using
different encoding approaches are presented in Figure 9. In
general, most model predictions of the individual classes are
correct for all three encodings except for Fault 3. As the most
challenged fault type, time-domain stacking provides limited
predictions to Fault 1 and Fault 4 and both frequency-domain
stacking and GAF stacking tend to predict Fault 3 to Fault 4. For
Fault 4, time-domain stacking has about half predictions for Fault
3 and slightly more predictions for Fault 4. This is because the
characteristics of Faults 3 and 4 are similar and both of them are
in “outage of generator” category. The model has difficulty
distinguishing a single generator fault from a fault of two
neighboring generators. However, it is noteworthy that when
the target fault is Fault 3 or Fault 4, the model will not provide the
predictions to Fault 2. The GAF-stacking based model does not
provide any predictions to Fault 1 either. The reason is that Fault
2 is a bus fault whose characteristics are different from the
generator faults. Vice versa, when the target fault is fault 2,

the model will never provide the predictions to Faults 3 or 4.
However, Fault 2 shares some patterns with Fault 1 because a bus
fault can affect the transmission lines connected through the
buses. For Fault 1, the majority of predictions are in the correct
fault category. Both frequency-domain stacking and GAF
stacking provide very limited predictions to Fault 2, but the
GAF encoding approach provides no predictions to Faults 3 or
4. From the physical perspective of the Polish system, Fault 1 is a
single-generator, multiple-line fault, which shares the patterns
with all the other three faults because it has faults added on both
generator and transmission lines.

CONCLUSION

In this study, we developed and evaluated a deep-learning CNN
model to identify locations and predict types of various faults in the
Polish 3120-bus system. Four distinct types of faults in different
spatial zones and locations were simulated in the Polish system, and
the outputs provided adequate and balanced data for CNN training
and testing. Our CNN is composed of convolutional, pooling,
dropout, and dense layers, which are designed to adaptively learn
spatial hierarchies of features. Hyperparameter searches were
performed to determine the optimal model configuration and the
final model for fault classification and prediction. To enable a
powerful, image-based CNN for pattern recognition and
extraction, the PMU monitoring time series were encoded in
three different ways, including time-domain stacking, frequency-
domain stacking andGAF stacking, for generating the image datasets
for CNN model training and testing. Different classified responses
were benefit from different time-series encoding approaches.

Overall, the line fault and single-bus fault can be classified
accurately through fault classification and localization from the

FIGURE 8 | Model accuracy results from different encoding approaches.
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PMU monitoring time-series–encoded images with the CNN
framework. Different time series encoding techniques can
benefit different classified responses. GAF stacking, in
particular, when combined with CNN, yields an accuracy
around 90% or above for all fault types. The CNN framework
was also tested for predicting fault zones or locations, and in
general, the fault location is easier to predict than the fault type.
For example, using time-domain stacking data, we can achieve
91% accuracy for zonal classification. In practice, both the
wavelet decomposition-based frequency-domain stacking and
polar coordinate system-based GAF stacking approaches are
superior to the time-domain–stacking method, and GAF
stacking is recommended to enable deep learning
classification to distinguish the fault types that share the
similar patterns.
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