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Among many lithium secondary batteries, lithium–sulfur batteries stand out because of
their high theoretical specific energy, low cost, non-toxicity and the fact that they cause no
environmental pollution. However, due to poor electronic and ionic conductivity, shuttle
effect, lithium dendrites and other defects, it remains a big challenge to achieve large-scale
application of lithium-sulfur batteries. Here we report an all-solid-state lithium–sulfur battery
based on Li-argyrodite Li6PS5Cl solid-state electrolytes through a slurry-coating method.
Li6PS5Cl with a high ionic conductivity of 1.3 × 10–3 S cm−1 at room temperature is used as
the solid electrolyte and the ion conductive additive in the electrode. The sulfur-based
composite cathode is fabricated through a slurry-coating process by dispersing sulfur,
Li6PS5Cl, ethyl cellulose, and carbon black in 1,3-dioxolane (DOL). This method can
disperse the Li6PS5Cl around sulfur particles well, and the solvent does not react with any
component of composite cathodes during preparation. The battery delivers a high
discharge capacity of 962 mA h g−1 at room temperature for the first cycle at
80 mA g−1. While the Coulombic efficiency is approximately 99.5% during 100 cycles.
This work provides a new insight into the combination method between the sulfide-type
SSEs and sulfur cathodes, which is critical to the electrochemical performance of all-solid-
state lithium-sulfur batteries.
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INTRODUCTION

With the rapid increase in the energy requirements for energy storage devices, it has been difficult to
meet these needs using traditional lithium-ion batteries (LIBs) due to low energy density, poor cycle
stability, and high cost. In the future, energy devices will require higher and higher energy density
(Armand and Tarascon, 2008; Nitta et al., 2015; Liu et al., 2018; Wang et al., 2018b). When lithium
metal (low density and high electronegativity) is paired with elemental sulfur (theoretical capacity of
up to 1,672 mA h g−1) to form a lithium-sulfur battery, the theoretical capacity density of the battery
can reach 2600W h kg−1 or 2800W h L−1 (Ji et al., 2009; Yin et al., 2013). Moreover, compared with
traditional LIBs, lithium-sulfur batteries have many unmatched advantages, such as being low cost,
non-toxic, causes no environmental pollution and has a safer working voltage (Lochala et al., 2017;
Qu et al., 2018). Based on the above advantages, lithium-sulfur batteries are regarded as the most
promising next-generation energy storage product. However, there are still some bottlenecks in the
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application of lithium-sulfur batteries: 1) Liquid electrolytes are
easy to flow, and flammable; 2) Sulfur is an insulator, and its poor
conductivity and low active material utilization seriously affect
the battery rate performance; 3) Polysulfide is easily dissolved in
the electrolyte and the polysulfide shuttle effects lead to poor
Coulombic efficiency and cycle performance; 4) Lithium
dendrites can pierce the separator, causing short circuits
(Balakumar and Kalaiselvi, 2015; Pang et al., 2016; Chen et al.,
2018b).

Aiming to solve the problems mentioned above, many studies
mainly focus on the optimization of the electrode. Currently, the
most common solution is to combine carbon materials
(mesoporous carbon (Ji et al., 2009; Han et al., 2020), hollow
porous carbon (Jayaprakash et al., 2011), carbon nanotube (Guo
et al., 2011; Zheng et al., 2019), and graphene (Wang et al., 2011;
Liu et al., 2020), etc.) with sulfur to improve sulfur utilization and
to fix the polysulfide. But the surface of the carbon material is
non-polar, it therefore cannot exert a strong anchoring effect on
the polar polysulfide. In addition to carbon materials, metal
oxides (TiO2 (Wei Seh et al., 2013), MnO2 (Liang et al., 2015),
Al2O3 (Han et al., 2013), Fe2O3 (Zheng et al., 2017), and V2O5

(Carter et al., 2017), etc.) can also fix polysulfide and conductive
polymers (polyaniline (PANI) (Liu et al., 2015), and polypyrrole
(PPy) (Zhang et al., 2016; Geng et al., 2019), etc.) can improve
electronic conductivity of composite sulfur electrodes. The low
electronic conductivity of metal oxides and the high cost of
conductive polymers are still not optimal solutions to the
serious capacity decay during cycling for a lithium-sulfur
battery. Replacing the liquid electrolyte with solid-state
electrolytes to achieve an all-solid-state lithium-sulfur battery
is one of the most promising strategies to solve these issues (Lin
et al., 2013; Han et al., 2016a; Zhang et al., 2017; Fan et al., 2018;
Zhang et al., 2018b). The conversion of sulfur does not generate
soluble polysulfide, so it can fundamentally solve the polysulfide
shuttle effect (Yan et al., 2019). At the same time, the ultra-high
mechanical modulus of SSEs can also effectively inhibit the
growth of lithium dendrites, thereby improving the Coulombic
efficiency and safety of the battery (Chen et al., 2018a; Cheng
et al., 2019; Shen et al., 2019; Zhao et al., 2020). Unlike traditional
lithium-sulfur batteries that rely on the infiltration of liquid
electrolytes to achieve rapid ion migration, in the all-solid-
state lithium-sulfur batteries, the ion migration is mainly
achieved through solid electrolytes (Kato et al., 2016; Yan
et al., 2019; Zhao et al., 2019; Bai et al., 2020; Ding et al., 2020).

Among various SSEs, sulfide SSEs stand out because of their
high ionic conductivity, low grain boundary resistance, compatible
interface with sulfur-based cathodes, and their easy processability
(Chen et al., 2018a; Ma et al., 2018). The most well-studied sulfide
SSEs are the binary xLi2S-(100-x)P2S5 system (x � 0.4–0.8) (Zhang
and Kennedy, 1990; Kanno and Murayama, 2001; Ohtomo et al.,
2013). The ionic conductivity of β-Li3PS4 synthesized via wet-
chemistry is 1.6 × 10–4 S cm−1 with an activation energy of 0.36 eV
(Liu et al., 2013). Crystalline Li7P3S11 is also an important member
of the binary system, because of its very high ionic conductivity
(1.7 × 10–2 S cm−1 at room temperature (RT)) (Seino et al., 2014).
In 2011, Li10GeP2S12 (LGPS) was found to have a an extremely
high ionic conductivity of 1.2 × 10–2 S cm−1 at RT (Kamaya et al.,

2011). As an isostructural alternative to LGPS, Li10SnP2S12 has the
advantages of being low cost and easily promoted, but it shows a
lower ionic conductivity of 4 × 10–3 S cm−1, because of a slightly
different lithium ion disorder (Bron et al., 2013). The highest
reported ionic conductivity was found in the doping binary
system, Li9.54Si1.74P1.44S11.7Cl0.3, 2.5 × 10–2 S cm−1 at RT (Kato
et al., 2016). Li-argyrodite Li6PS5Cl was reported as a promising
electrolyte with a high ionic conductivity of 1.3 × 10–3 S cm−1 at
RT (Boulineau et al., 2012; Zhang et al., 2018a; Zhang et al., 2019).
The disadvantages of most sulfide electrolytes are their narrow
electrochemical window and the electrochemical instability
between the electrolytes and lithium metal (Han et al., 2016b).
The theoretical calculation results (Zhu et al., 2015; Han et al.,
2016b; Zhu et al., 2016) show that LGPS begins to be lithiated and
reduced at 1.7 V. The phase equilibrium components of LGPS at
0 V consist of Li3P, Li2S, and Li15G4, which have also been
observed in experiments. The interphase has a higher growth
rate between LGPS and lithium, which means the presence of
cations in SSEs such as Ge, Sn, Ti is detrimental to the formation
of stable interface (Sakuma et al., 2016). But Li6PS5Cl can form a
stable SEI, the thickness of SEI and interfacial resistance become
stable after a certain time and no longer increase over time
(Wenzel et al., 2016a; Wenzel et al., 2016b; Wenzel et al.,
2018). Many cathode active materials such as LiCoO2,
LiNi0.8Co0.1Mn0.1O2, S, and Li2S have been used in all-solid-
state lithium batteries (ASSLBs) with Li6PS5Cl (Boulineau et al.,
2012; Boulineau et al., 2013; Huang et al., 2015; Yubuchi et al.,
2015; Han et al., 2016a; Yu et al., 2016; Zhang et al., 2018a; Zhao
et al., 2019; Zhang et al., 2020). Han et al. used a novel bottom-up
method to synthesize nanocomposite cathode by dissolving Li2S
and Li6PS5Cl in ethanol, which showed a large reversible capacity
of 830 mAh g−1 at 50 mA g−1 for 60 cycles (Han et al., 2016a). Yu
et al. fabricated the S/Li6PS5Cl/Li-In ASSLBs with a ball-milled
S-Li6PS5Cl composite cathode (Yu et al., 2016). The batteries
displayed large capacity around 1,400 mAh g−1 during the first
cycle and decayed rapidly 400 mA h g−1 after 20 cycles. In 2018,
Nan et al. employed the nano-sulfur/multiwall carbon nanotube
composites combined with Li6PS5Cl as the cathode, which
delivered a high discharge capacity of 1850 mA h g−1 at 0.1 C
for the first cycle and 1,393 mAh g−1 after 50 cycles (Wang
et al., 2018a).

However, there are very few works on the synthesis of sulfur
composite cathodes for ASSLBs by wet chemical methods. In this
work, we proposed a new preparation method about sulfur-
composite electrodes for ASSLBs using a liquid-phase process
with a DOL solution. The sulfur-composite electrodes consist of
sulfur as the active material, Li6PS5Cl as the solid electrolyte, ethyl
cellulose as the binder, and Super P (SP) as the conductive
additive. The microstructure, ionic and electronic conductivity,
and electrochemical stability of Li6PS5Cl were systematically
investigated. The electrochemical property of the sandwich-
type S/Li6PS5Cl/Li cell was tested at 80 mA g−1 and 30 °C.
Finally, to further investigate how interface affects battery
performance, S/Li6PS5Cl interface properties before and after
cycling were examined by ex situ characterizations including
scanning electron microscopy (SEM), energy-dispersive spectra
(EDS), and electrochemical impedance spectra (EIS).
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EXPERIMENTAL SECTION

Material Synthesis
Synthesis of Li6PS5Cl: The Li6PS5Cl was prepared using a method
described in our previous work (Zhang et al., 2018a; Zhang et al.,
2019; Zhang et al., 2020). In brief, a stoichiometric mixture of
laboratory-grade Li2S, P2S5 (99%, Aladdin), and LiCl (99.99%,
Aladdin) was milled at 500 rpm for 24 h. Subsequently, the
mixture was sealed in a stainless-steel tube and annealed at
500 °C for 2 h to obtain argyrodite Li6PS5Cl. All the
experiments were carried out in an Ar-filled glove box (H2O
and O2 < 0.5 ppm).

Fabrication of All-Solid-State Lithium-Sulfur
Batteries
The sulfur-composite electrodes (sulfur powder (99%, Alfa
Aesar): Li6PS5Cl: SP (SCM industrial Chemical Co., Ltd.):
ethyl cellulose (Aladdin)) were dispersed with anhydrous DOL
(≥99.8%, Aladdin) in a mass ratio of 60 : 25: 10 : 5 under
continuous stirring for 6 h. The slurry was then coated onto
carbon-coated aluminum foil with a glass rod and dried at 55°C
for 24 h. The average sulfur loading in each electrode is
0.95 mg cm−2. For the assembly of S/Li6PS5Cl/Li cell, the
sulfur-composite electrode was covered with 120 mg Li6PS5Cl
powder and pressed together under 350 MPa in a stainless-steel
tank with a diameter of 12 mm. After that, lithium metal as the
counter electrode was attached on the other side of the Li6PS5Cl
layer. Finally, three-layered pellets (shown in Figure 1) were
assembled with a 2032 coin-type cell in an Ar-filled glove box. For
the SS/Li6PS5Cl/Li, Li/Li6PS5Cl/Li cell and SS/Li6PS5Cl/SS,
lithium foil or stainless steel (SS) as the working electrode, the
assembling procedure remained exactly the same. All the
procedures were carried out in an Ar-filled glove box (H2O
and O2 < 0.5 ppm).

Characterization and Electrochemical
Measurements
X-ray diffraction (XRD) patterns of samples were recorded by an
X-ray diffractometer (Rigaku Ultima IV) with Cu Kα radiation

(λ � 0.15418 nm). Data was recorded in the 2-theta range of
10–80°. The Raman spectra in a range of 100–2,500 cm−1 were
collected using a DXR Raman microscope (Renishaw InVia
Raman spectrometer) with He-Ne 532 nm laser excitation and
a ×50 objective. The laser beam with a laser spot size of ca. 1 μm
was focused on each sample and the acquisition time for each
spectrum was 20 s. The morphology of samples was observed by
SEM (SEM, Hitachi S4700). An elemental analysis was conducted
on EDS attached to SEM. The cyclic voltammetry (CV)
measurement, the linear sweep voltammetry (LSV)
measurement, and the direct-current (DC) polarization test
was conducted on a CHI660D electrochemical workstation
(Chenhua, Shanghai). The CV curve of S/Li6PS5Cl/Li cell was
recorded between 0.4 V and 3 V with a sweep rate of 0.1 mV s−1.
The LSV curve of SS/Li6PS5Cl/Li cell was recorded in the
potential range from 0 to 6 V with a sweep rate of 0.1 mV s−1.
DC polarization test of a blocking SS/Li6PS5Cl/SS cell at 2 V to
determine the electronic conductivity. The ionic conductivity of
Li6PS5Cl was calculated by the equation:

σ � d
S × R

(1)

where R is the total resistance of the electrolyte, d is the sample
thickness, and S is the area of the electrolyte. The total resistance
of Li6PS5Cl was measured on the SS/Li6PS5Cl/SS cell using the
Zennium electrochemical workstation (ZAHNER, Germany), in
which the frequency ranges from 100 mHz to 4 MHz with an
amplitude of 10 mV and the testing temperature ranges from
25 °C to 60 °C in stepwise increments of 5 °C. The EIS
measurements of the S/Li6PS5Cl/Li cell before and after the
cycle were measured using the same instrument in the same
frequency. A Galvanostatic discharge-charge test of S/Li6PS5Cl/Li
cell was performed in a potential range from 0.4 to 3 V (vs. Li+/Li)
at 80 mA g−1 using a Neware battery test system (Neware,
Shenzhen). The stability of lithium against Li6PS5Cl was tested
by the Neware using symmetric Li/Li6PS5Cl/Li cell at a current
density of 0.1 mA cm−2.

RESULT AND DISCUSSION

The crystal structure, composition, andmorphology of the sulfur-
composite electrode were characterized by XRD, Raman, and
SEM, respectively. Figure 2A shows the typical XRD patterns of
the sulfur-composite electrode and all the materials used in the
synthesis process. After sintering at 500 °C for 2 h, the peaks of
Li6PS5Cl can be indexed to the crystalline Li7PS6 structure, where
the Cl atoms can replace S atoms in Li7PS6 (Deiseroth et al.,
2008). Regarding the sulfur-composite electrode, there are no
obvious peaks of sulfur; the main diffraction peaks and the broad
diffraction peaks are indexed as Li6PS5Cl and amorphous carbon
materials with low crystallization degree, respectively. It indicates
that Li6PS5Cl can distribute evenly on the surface of sulfur
particles. By comparing the Raman spectra (Figure 2B) of all
materials, the sulfur-composite electrode can be further analyzed.
The weak peak at 425 cm−1 associated with PS4

3− (ortho-

FIGURE 1 | Schematic diagram of the slurry Li6PS5Cl-coated sulfur-
composite electrode and S/Li6PS5Cl/Li ASSLBs.
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thiophosphate) from the ionic formula (Li+)6(PS4
3−)S2−Cl−

(Deiseroth et al., 2008; Ohara et al., 2016) and peaks at
153 cm−1, 219 cm−1 and 474 cm−1 associated with S–S bond
were observed, indicating no chemical reaction occurred in

DOL solvent during the synthesis process. As shown in
Supplementary Figure S1, the irregular shape of the Li6PS5Cl
particle is beneficial to increasing the contact area between the
active material and electrolyte in the composite cathode. As seen

FIGURE 2 | (A) XRD patterns and (B) Raman spectra of the conductive additives (SP), sulfur, Li6PS5Cl, sulfur-composite electrode (C) The SEM image and
corresponding elemental mappings of sulfur-composite electrode.

FIGURE 3 | (A) Temperature dependence of the ionic conductivity of Li6PS5Cl (B) DC polarization of a blocking SS/Li6PS5Cl/SS cell (C) LSV curve of the SS/
Li6PS5Cl/Li cell (D) Voltage profile of the symmetric Li/Li6PS5Cl/Li cell at 0.1 mA cm−2.
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from the morphology and elemental distribution in Figure 2C,
the sulfur particles are well embedded in the solid electrolyte and
conductive additives, resulting in a dense composite and a low
interfacial resistance.

The temperature dependence of the ionic conductivity of
Li6PS5Cl was systematically investigated. Supplementary
Figure S2 shows the different impedance spectra of Li6PS5Cl
at different temperatures. Through calculations based on
resistance values, the ionic conductivity of Li6PS5Cl exhibits a
gradual increase as the temperature increases, as shown in
Figure 3A. It shows the ionic conductivities of 1.30 ×
10–3 S cm−1 and 1.05 × 10–2 S cm−1 at 25 °C and 60 °C,
respectively. The activation energy Ea is calculated from the
slope of the linear Arrhenius plot according to the Arrhenius
equation:

σ(T) � A × e(− Ea
k×T), (2)

where T is the absolute temperature, A is a pre-exponential factor,
and k is the Boltzmann constant. According to Figure 3A, the Ea
value of Li6PS5Cl is 0.32 eV, which is low in comparison to most
sulfide SSEs. In addition to ionic conductivity, the electronic
conductivity of Li6PS5Cl has also been investigated by the DC
polarization test (Figure 3B). It shows a low electronic
conductivity of 3.56 × 10–8 S cm−1, which is beneficial for
suppressing lithium dendrite growth. LSV was used to
determine the electrochemical window, which is important in
evaluating the stability of Li6PS5Cl against a lithium anode and
cathode. As shown in Figure 3C, the decomposition current
corresponding to Li stripping (Li→ Li+ + e−) is observed around
0 V vs Li/Li+. There is no significant current change in the
potential range from 0 to 6 V vs Li/Li+. Assembling the
symmetric Li/Li6PS5Cl/Li cell is also an important
experimental method to investigate the stability between
Li6PS5Cl and lithium. The voltage profile of Li6PS5Cl remains
at a lower voltage (≈10mV) during 400 h at 0.1 mA cm−2. The
results of LSV and symmetric battery prove that the Li6PS5Cl is
suitable to pair with the lithium anode. Considering the high ionic
conductivity, low electronic conductivity, and wide
electrochemical window, Li6PS5Cl is an appropriate candidate
for an ionic conductor and battery separator.

Figure 4A shows the charge-discharge profiles of the
S/Li6PS5Cl/Li cell between 0.4 and 3.0 V during the first three
cycles. The current density is 80 mA g-1 and the test temperature
is 30 °C. The initial discharge capacity of ASSLBs is 962 mAh g-1
and the corresponding Coulombic efficiency is as low as 56%,
which are ascribed to the activation process for the sulfur cathode,
interfacial decomposition, and the interfacial chemical reaction
between the electrolyte and electrode (Zhang et al., 2015; Han
et al., 2016a). As shown in Supplementary Figure S3, the CV was
used to study the mechanism of the electrode reaction. During the
first cycle, one reduction peak can be observed at 1.8 V due to the
reduction of S to Li2S and the oxidation peak at 2.5 V can be
attributed to the oxidation of Li2S to S (Takeuchi et al., 2010;
Wang et al., 2018a). During the subsequent cycles, both reduction
and oxidation peaks slightly shift, which means a good
reversibility of the composite cathode. Figure 4B presents the
cycling performance and Coulombic efficiency, the cell delivers a
high Coulombic efficiency of nearly 100% after three cycles,
specific capacity decreases to 387 mAh g-1, and capacity
retention reaches 66% after 100 cycles. The impedance
changes for the S/Li6PS5Cl/Li cell before and after cycling are
shown in Figure 4C. Two Nyquist plots were fitted into one
equivalent circuit. The equivalent circuit is constructed to
distinguish common resistances: Rse, Rct1, Rct2, and Zw,
representing the bulk resistance, two interfacial resistances,
and Warburg impedance, respectively (Deng et al., 2015;
Takada et al., 2015). Based on our previous work (Zhang
et al., 2020), the Rct1 and Rct2 represent the interfacial
resistance between lithium and the electrolyte, and the
interfacial resistance between the cathode and electrolyte,
respectively. The bulk and interfacial resistance values increase
after cycling. But the variations of Rse and Rct1 are very small
(≈40Ω). There is a large difference in value (≈675Ω) of Rct2,
which is attributed to interfacial reactions or a chemo-mechanical
failure (Ohno et al., 2019). These negative effects may be the main
reason for the low initial Coulombic efficiency and the
subsequent capacity loss.

To investigate the interfacial reactions or chemo-mechanical
failure in the S/Li6PS5Cl/Li cell after cycling, a cross-sectional
SEM was conducted, and the elemental distributions of Al, S, P,
Cl, and C elements in the red selected area were assessed by EDS,

FIGURE 4 | (A)Charge-discharge profiles during the first threes cycles and (B) cycling performance of S/Li6PS5Cl/Li cell at 80 mA g−1 and 30°C (C)Nyquist plots of
S/Li6PS5Cl/Li cell before cycling and after 100 cycles at 80 mA g−1.
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as depicted in Figure 5. Since both active material and electrolytes
are sulfur-based materials, it is difficult to determine where the
chemical decomposition products at the interface come from.
Compared to the morphologies and elemental distribution of the
C element at the S/Li6PS5Cl interface, it was found that the
thickness of the sulfur-composite electrode after cycling is more
than twice what it was before. This significant change can be
explained by the volume change (chemo-mechanical failure)
because of the conversion reaction of S and a small number of
Li6PS5Cl. There is about 80% added volume in the cathode after
discharging, when 1 mole of S8 converted into 8 moles of Li2S.
The loose distribution of the C element after cycling, confirms
that the volume increase stresses the surrounding matrix of solid
electrolytes and carbon materials, resulting in a lot of pores and
voids in the cathode. Thus, at this scale, such a large volume
change has a much greater impact on interfacial resistance than
on chemical reactions. In other words, chemo-mechanical failure
is an urgent issue that needs to be resolved in all-solid-state
lithium-sulfur batteries.

CONCLUSION

Argyrodite Li6PS5Cl is an ionic conductor with high ionic
conductivity and a wide electrochemical window. The Li6PS5Cl
possesses good potential for applications in lithium-sulfur
batteries. We successfully demonstrated a new strategy to
fabricate a sulfur cathode for ASSLBs via the solution coating
method by mixing sulfur materials, Li6PS5Cl solid electrolyte,
ethyl cellulose binder, and SP conductive additive in a DOL

solution. The slurry coating achieved intimate contact between
the S/C particles and the Li6PS5Cl solid electrolyte, guaranteeing
adequate lithium-ion pathways. The battery shows a high initial
discharge capacity of 962 mAh g−1 at 80 mA g−1 and a specific
capacity of 387 mAh g−1. After 100 cycles, the capacity retention
reaches 66%. Although the Li6PS5Cl solid electrolyte can
eliminate the shuttle effect and alleviate interfacial reaction,
the volume change of sulfur still seriously affects the
performance of ASSLBs.
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