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The capability of accurately predicting the Solar Photovoltaic (PV) power productions is

crucial to effectively control and manage the electrical grid. In this regard, the objective

of this work is to propose an efficient Artificial Neural Network (ANN) model in which

10 different learning algorithms (i.e., different in the way in which the adjustment on

the ANN internal parameters is formulated to effectively map the inputs to the outputs)

and 23 different training datasets (i.e., different combinations of the real-time weather

variables and the PV power production data) are investigated for accurate 1 day-ahead

power production predictions with short computational time. In particular, the correlations

between different combinations of the historical wind speed, ambient temperature, global

solar radiation, PV power productions, and the time stamp of the year are examined for

developing an efficient solar PV power production prediction model. The investigation is

carried out on a 231 kWac grid-connected solar PV system located in Jordan. An ANN

that receives in input the whole historical weather variables and PV power productions,

and the time stamp of the year accompanied with Levenberg-Marquardt (LM) learning

algorithm is found to provide the most accurate predictions with less computational

efforts. Specifically, an enhancement reaches up to 15, 1, and 5% for the Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination

(R2) performance metrics, respectively, compared to the Persistence prediction model

of literature.

Keywords: solar photovoltaic, power prediction, Artificial Neural Networks, learning algorithms, training datasets,

persistence

INTRODUCTION

The share of Renewable Energy (RE) in the total installed capacity worldwide has been rapidly
growing in the recent years, with 181 Gigawatts of RE capacity added in 2018, which accounts
for more than 50% of the net annual additions of power generating capacity during the same
year (REN21 Members, 2019). This growth has introduced an increasing general interest in high
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accuracy prediction/forecasting models that predict the output
power of RE systems at short-term or long-term intervals,
especially solar Photovoltaic (PV) and wind energy systems, since
they are highly dependent on intermittent energy sources, i.e.,
solar radiation and wind speed, respectively (Nam and Hur,
2018; Notton and Voyant, 2018; Nespoli et al., 2019). Prediction
of output power of RE systems is crucial for grid operators
since they will provide the balancing power that meet country’s
demand by fossil fuel power plants. Therefore, implementing
high accuracy prediction model in the grid management system
can reduce the cost of this balancing power (Yang et al., 2014;
Antonanzas et al., 2016; Al-Dahidi et al., 2019).

Solar PV power predictions approaches can be globally
classified into model-based and data-driven (Ernst et al., 2009;
Almonacid et al., 2014; Yang et al., 2014; Antonanzas et al., 2016;
Das et al., 2018; Al-Dahidi et al., 2019). Model-based approaches
employ physics-based models that use representative weather
variables, e.g., solar radiations, for the predictions of the solar
PV power productions (Wan et al., 2015; Behera et al., 2018;
Al-Dahidi et al., 2019). Despite the fact that these approaches
can lead to accurate prediction results, but simplifications and
assumptions in the adopted models impose uncertainty that
might pose limitations on their practical implementation (Al-
Dahidi et al., 2019).

On the contrary, data-driven approaches, such as those which
are based on Machine Learning (ML) techniques, rely solely
on the availability of abundant solar PV data to build black-
box models for accurately mapping inputs to outputs, in this
case weather variables to solar PV power productions, without
resorting to any physics-based model (Monteiro et al., 2013;
Antonanzas et al., 2016; Al-Dahidi et al., 2019).

For example, Wolff et al. (2016) compared Support Vector
Regression (SVR) model to physical modeling approaches for
PV power prediction. Different combinations of PV power
measurements, Numerical Weather Predictions (NWP) data,
and Cloud Motion Vector (CMV) forecasts are considered as
inputs to the prediction model. The model accuracy was assessed
by resorting to the Root Mean Square Error (RMSE) and the
Mean Bias Error (MBE). Authors found that SVR model that
combines the three input sources is able to generate the most
accurate predictions.

Wang et al. (2019) investigated the use of different solar
radiation components and cell temperatures derived from PV
analytical modeling as inputs for the prediction model. The
proposed prediction model used Principal Component Analysis
(PCA) to extract the principal components of the weather
variables, k-Nearest Neighbor (k-NN) to classify the perdition
period under study into the historical periods with the similar
weather conditions, and three prediction models (Support
Vector Machine (SVM), Artificial Neural Networks (ANNs)
and weighted k-NN) to predict the solar power. The Cross-
Validation (CV) technique was, then, used to determine the
distribution of prediction errors to adjust and, thus, enhance
the ultimate predictions. Authors found that the utilization of
weather features derived from PV analytical models could highly
boost the prediction accuracy.

Malvoni et al. (2017) investigated the influence of data
preprocessing techniques on the accuracy of data-driven

methods used for PV power prediction. To this aim, Wavelet
Decomposition (WD) and PCA were combined to decompose
the inputs meteorological data. A Group Least Square-Support
Vector Machine (GLS-SVM) method was applied on a dataset
that consists of hourly measurements of PV power and weather
variables (i.e., ambient temperature, irradiance on plan of array,
and wind speed) for 1 day-ahead PV power predictions. Results
showed that PCA-WD as preprocessing technique performs
better than each sole PCA and WD, and better than WD-
PCA for 1-h prediction horizon, in terms of mean error and
probability distribution.

Eseye et al. (2017) proposed a hybrid prediction model
that combines Wavelet Transform (WT), Particle Swarm
Optimization (PSO), and Support Vector Machine (SVM) for 1
day-ahead PV power predictions. The model is based on actual
PV power measurements and NWP for solar radiation, ambient
temperature, cloud cover, humidity, pressure and wind speed.
Results showed that the Hybrid WT-PSO-SVM outperforms
other prediction models in terms of Mean Absolute Percentage
Error (MAPE) and normalized Mean Absolute Error (nMAE).

Liu et al. (2018) developed a two-stage predictionmodel based
on three different ANN algorithms [Generalized Regression
Neural Network (GRNN), Extreme Learning Machine Neural
Network (ELMNN), and Elman Neural Network (ElmanNN)],
combined together using Genetic Algorithms optimized Back
Propagation (GA-BP) algorithm to build a Weight-Varying
Combination Forecast Mode (WVCFM) model that estimates
Prediction Intervals (PIs) of 5 min-ahead PV power. Authors
used solar irradiance, ambient temperature, cloud type, dew
point, relative humidity, perceptible water at time (t) and
PV power production at time (t − 1), as inputs, indicating
that strongest correlation is between solar radiation and PV
power production.

A prediction model based on ELM technique is proposed in
Behera et al. (2018) combined with Incremental Conductance
(IC) Maximum Power Point Tracking (MPPT) technique.
Authors introduced different PSO methods to improve
prediction accuracy. Results showed that ELM has better
performance than classical BP-ANN and performance can be
further improved using PSO methods. Similar work (Behera
and Nayak, 2019) proposed 3-stage model based on Empirical
Mode Decomposition (EMD), Sine Cosine Algorithm (SCA),
and ELM techniques. The model used measured solar radiation,
ambient temperature and PV power production as inputs, with
a prediction horizon of 15, 30, and 60min. The proposed model
with 15min data showed superior performance (MAPE of
1.8852%) compared to other cases and models.

Yagli et al. (2019) evaluated the performance of 68ML
algorithms for three sky conditions, seven locations, and five
different climate zones. All algorithms implemented without
any modifications for a fair comparison. It has been found
that tree-based algorithms [such as Extremely Randomized
Trees (ERT)] perform better in terms of 2-year overall results,
but this is not the case for daily predictions. It has been
concluded that there is no single algorithm can be found
accurate for all sky and climate conditions. Authors used
normalized RMSE (nRMSE) and normalized MBE (nMBE)
for comparison.
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VanDeventer et al. (2019) presented a GA Based SVM (GA-
SVM) model for residential scale PV systems. Model inputs were
the measured values of solar radiation, ambient temperature, and
PV output power. Results showed that GA-SVMmodel performs
better than the standard SVMmodel.

Al-Dahidi et al. (2018) investigated the capability of ELM in
providing as accurate as possible 1 day-ahead power production
predictions of a solar PV system. To this aim, the ELM
architecture has been firstly optimized in terms of number
of hidden neurons, number of historical (i.e., embedding
dimension) ambient temperatures and global solar radiations,
and neuron activation functions, then it has been used to
predict the solar PV power. The optimized ELM model slightly
enhanced the prediction accuracy with negligible computational
efforts compared to the BP-ANN model. Later in Al-Dahidi
et al. (2019), authors proposed a comprehensive ANN-based
ensemble approach for improving the 1 day-ahead solar PV
power predictions. A Bootstrap technique has been embedded
in the ensemble for quantifying different sources of uncertainty
that influence the predictions by estimating the PIs. The proposed
approach has been shown superior to different benchmarks in
providing accurate power predictions and properly quantifying
the possible sources of uncertainty.

Muhammad Ehsan et al. (2017) proposed a multi-layer
perception-based ANN model for 1 day-ahead power prediction
of a 20 kWdc grid-connected solar plant located in India.
Authors explored various numbers of hidden layers (span
the interval [1,3]), hidden neurons activation functions (e.g.,
Axon, LinearSigmoidAxon, etc.), and learning algorithms to
update the internal parameters of the ANN model during its
development (i.e., training phase) (e.g., Conjugate Gradient, Step,
Momentum, etc.) for accurate 1 day-ahead power predictions.
Results showed that the ANN characterized by one hidden
layer, LinearSigmoidAxon as a neuron activation function,
and Conjugate Gradient as a learning algorithm is capable of
providing accurate solar power predictions.

Alomari et al. (2018b) proposed a prediction model for solar
PV power production based on ANN. The proposed model
explored the capabilities of two learning algorithms, namely
Levenberg-Marquardt (LM) and Bayesian Regularizations (BR),
using different combinations of the time stamp and the real-
time weather features (i.e., ambient temperature and global solar
radiation). The obtained results showed that a combination of
the time stamp, and the two weather variables using the BR
algorithm is better than the LM algorithm (RMSE = 0.0706 and
0.0753, respectively).

In this context, the objective of this work evolves from that
in Alomari et al. (2018b) by developing an ANN in which
different learning algorithms and different training datasets (i.e.,
sets of real-time weather and PV power production data) are
investigated for accurate 1 day-ahead power predictionwith short
computational time. Specifically, 10 different learning algorithms
are investigated in terms of their capability of optimally setting
the internal parameters of the ANN model, and 23 different
combinations of the time stamp of the year and the historical
wind speed, ambient temperature, global solar radiation, while
incorporating the historical PV power productions, are examined

for developing an efficient solar PV power prediction model.
Furthermore, the ANN prediction models that exploit the
different combination of the learning algorithms and the training
datasets are optimized in terms of number of hidden neurons,H,
to further improve the prediction accuracy.

Up to the knowledge of the authors, no efforts have been
dedicated to fully investigate the impact of the whole available
ANN learning algorithms on the accuracy of the PV power
production predictions together with the investigation of the
different combinations of the time stamp of the year and
the historical weather variables (i.e., wind speed, ambient
temperature, and global solar radiation) while incorporating the
historical PV power productions.

Therefore, the original contributions of the present work
are 2-fold:

1. Assessing different ANN learning algorithms and different
training datasets;

2. Incorporating the historical PV power productions as inputs
to the ANN models and investigating their effect on the
prediction accuracy;

The performance of the ANN prediction models is verified
with respect to standard performance metrics: RMSE, MAE,
Coefficient of Determination (R2) and the computational time
required to train, optimize, and test the ANN models and, then,
compared to the well-known Persistence (P) prediction models
of literature.

The effectiveness of each built-ANN model is carried out on
a real case study concerning a 231 kWac grid-connected solar
PV system installed on the rooftop of Faculty of Engineering
building located at the Applied Science Private University (ASU),
Jordan. Results show that an ANN that receives in input the
whole investigated variables, accompanied with a LM learning
algorithm provides the most accurate predictions with less
computational efforts. Furthermore, the proposed prediction
model is shown superior with respect to the Persistence models
of literature.

The remaining of this paper is organized as follows. The
problem of 1 day-ahead solar PV power production predictions
is stated in section Problem Statement. In section Case Study:
AUS Solar PV System, the ASU solar PV system case study is
presented. The different ANN learning algorithms and training
datasets, and the solar PV power prediction modeling are
discussed in section Solar PV Power Prediction Modeling. In
section Results and Discussions, the results of the application
of the built-ANN models to the case study are presented and
compared with those obtained by the Persistence models of
literature. Finally, some conclusions and future works are given
in section Conclusions.

PROBLEM STATEMENT

We assume the availability of actual weather data (W) and

associated power production data (
−→
P ) of a solar PV system for

Y years. The weather data comprise measurements of the wind

speed at 10m altitude (
−→
S ), the ambient temperature at 1m
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altitude (
−→
T ), the global solar radiation (

−→
I ), and the associated

PV power production (
−→
P ).

The objective of this work is to develop an efficient Artificial
Neural Network (ANN) model for providing accurate 1 day-
ahead hourly predictions of the PV system power productions

(
−→
P̂ ) with short computational efforts. Specifically, the present

work aims at investigating (i) different ANN learning algorithms
and (ii) different sets of features (i.e., training datasets) that
can be used as inputs to the ANN model, for developing an
efficient ANN that provides accurate 1 day-ahead hourly power
production predictions with short computational efforts.

With respect to (i), the candidates ANN learning algorithms
are the whole algorithms available in the MATLAB Neural
Network ToolboxTM (Demuth et al., 2009).

With respect to (ii), for each t-th hour-ahead power
prediction, t ∈ [1, 24], of day d, the candidates sets of features
are the possible combinations of five main features, they are:

• The time stamp. This feature comprises the time stamp (in
hours and number of days) from the beginning of each year

data,
−−→
Time

d

t , i.e., the sequential order of time t and day d of
each year data. This feature is considered to represent both the
diurnal cyclical (hours) and seasonal effects (number of days)
(Wolff et al., 2016; Dahl and Bonilla, 2019);

• The weather variables. This feature comprises the historical

actual weather variables,
−→
W

d−e

t , of the wind speed at 10m

altitude (
−→
S

d−e

t ), the ambient temperature at 1m altitude

(
−→
T

d−e

t ), the global solar radiation (
−→
I
d−e

t ), measured at time
t during the preceding e days of day d (i.e., hereafter called
the embedding dimension). These features are selected due to
the fact that they can strongly affect the PV power production
predictions (Dahl and Bonilla, 2019);

• The associated power productions. This feature comprises the

PV power productions,
−→
P

d−e

t , measured at time t during
the preceding e days of day d. This feature is assumed to
summarize the influence of the previous features on the PV
power productions and, thus, it might be useful to investigate
its affect on the PV power production predictions.

CASE STUDY: AUS SOLAR PV SYSTEM

In this section, a real case study of a solar PV system (264
kWdc – 231 kWac capacity) installed on the rooftop of Faculty
of Engineering building located at Applied Science Private
University (ASU), Shafa Badran Amman, Jordan (32.042044
latitude and 35.900232 longitude) is presented [35]. A weather
station equipped with the latest instruments for providing
accurate real-time weather data is installed 171m apart from the
PV system, as depicted in Figure 1A.

The actual weather data and the associated PV power
production data are collected from monitoring systems of the
weather station and data loggers of the PV system, respectively.
The data are collected for a period of Y = 3.75 years (from
16th May, 2015 to 31st December, 2018) with a logging interval

1t = 1 h, resulting in 31,824 rows of data [the dataset could be
requested through the ASU Renewable Energy Center website at
Applied Science Private University (ASU) (2019)].

ASU Solar PV System
The ASU PV system comprises 13 and 1 grid-connected solar
SMA sunny tripower inverters (17 and 10 kWac, respectively)
connected with Yingli Solar panels with peak power of 245W,
that are directly installed over concrete rooftop with 11◦ tilt angle
and 36◦ azimuth angle (from South to East) [Figure 1B; Applied
Science Private University (ASU), 2019].

The detailed design specifications of the ASU PV system are
reported in Table 1.

ASU Weather Station
The ASU weather station (depicted in Figure 1C) is 36m high
equipped with 10 instruments for measuring the following
meteorological parameters:

• Wind speed (at different levels of 10, 35, and 36m) (m/s);
• Wind direction (at different levels of 10, 35, and 36m);
• Ambient temperature (at different levels of 1, and 35m) (◦C);
• Relative humidity (at different levels of 1 and 35m) (%);
• Barometric pressure (hPa);
• Precipitation amounts (mm);
• Global and diffuse solar irradiances (W/m2);
• Soil surface temperature (◦C);
• Subsoil temperature (◦C).

The influence of the weather features on the predictability of
the PV power productions has been investigated in Alomari
et al. (2018b) by developing different ANN models trained
with different combinations of time and weather inputs. A
combination of the current time stamp in hours, Timedt , ambient

temperature at 1m altitude,
−→
T

d−e

t , and the global solar radiation,
−→
I
d−e

t , measured at time t, t ∈ [1, 24], in the previous e = 5 days,
was found to provide best t-th hour-ahead power production
prediction of day d of the ASU solar PV system.

This work aims at exploiting, in addition to the above-
mentioned features, the current time stamp as number of days,
the lagged weather variables represented by the wind speed, and,
in particular, the lagged actual PV power productions, to further
enhance the power predictions. Thus, the input patterns of the
prediction model that comprises i inputs, i = 1, . . . , n, at each
t-th time, t ∈ [1, 24], can be written as Equation (1):

−→x
d
t j = [

−−→
Time

d

t ,
−→
W

d−e

t ,
−→
P

d−e

t ], (1)

where
−→
W

d−e

t = [
−→
S

d−e

t ,
−→
T

d−e

t ,
−→
I
d−e

t ], and the associated output

of the model will be ydt j = P̂dt j, for j = 1, . . . ,N, and N is the
overall number of the available inputs-outputs patterns.

It is worth mentioning that different steps are carried out
a priori to process/correct the available dataset to effectively
use it for the prediction task (Al-Dahidi et al., 2018; Alomari
et al., 2018a; Das et al., 2018). For example, solar radiation and
associated power production values are shown to be negative

Frontiers in Energy Research | www.frontiersin.org 4 November 2019 | Volume 7 | Article 130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Al-Dahidi et al. Solar Photovoltaic Power Production Prediction

FIGURE 1 | (A) ASU PV system map (retrieved and adapted from Google Maps, 2019). (B) ASU PV solar panels installed on the rooftop of the Faculty of Engineering.

(C) ASU weather station.

TABLE 1 | The detailed design specifications of the ASU PV system.

PV system specifications

PV system capacity 264 kWdc – 231 kWac

Tilt angle 11o

Azimuth angle 36o (from S to E)

Inverters type SMA sunny tripower

Power of inverters 13 × 17 kW + 1 × 10 kW

Solar panels type Yingli Solar: YL 245P-29b-PC

and missing in early and late days’ hours, respectively. Such
values are set to zero. Similarly, in middle days’ hours, weather
variables and power production values are shown to be missing
as reported in Table 2 for the period Y = 3.75 years under
study and, thus, are excluded from the analysis. In fact, such
incorrect values are justified by either offset in the solar radiation
instruments, inverter failures and/or network disruptions, or
weather variables’ instruments failures, respectively. Lastly, the
input-output patterns are normalized to the range [0,1] to
accommodate the neuron activation functions’ value ranges and,
consequently, enhance the ANN performance.

TABLE 2 | Periods of missing weather features and power productions.

Year Dates of missing information Number of

missing days

Missing

information
From To

2016 12th April 18th April 7 Power

30th September 12th October 13 Weather variables

2017 16th May 27th June 43 Power

15th September 16th September 2

2018 15th February 18th February 4 Weather variables

22nd April 24th April 3 Power

10th October 10th October 1

Figure 2 shows four examples of the pre-processed hourly
weather variables, i.e., wind speed at 10m altitude (Figure 2A),
ambient temperature at 1m altitude (Figure 2B), global
solar radiation (Figure 2C), and the associated solar power
productions (Figure 2D) in four seasons of 2016 year. One can
recognize the large variability in the weather variables in the four
seasons, particularly, in the wind speed at 10m altitude, and the
corresponding power productions. This is extremely important
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FIGURE 2 | Few examples of the pre-processed hourly weather variables. (A) Wind speed. (B) Ambient temperature. (C) Global solar radiation. (D) The

corresponding solar power production.

TABLE 3 | The average yearly weather variables and the corresponding power

productions of the ASU PV system for the period under study.

Year S [m/s] T [◦C] I [W/m2] P [kW]

2015 3.38 20.43 242.83 45.57

2016 3.45 17.44 227.39 44.32

2017 3.20 17.49 240.48 38.53

2018 3.35 17.97 230.23 43.70

to notify for the investigation of the influence of each weather
variable on the predictability of the solar power productions, as
we shall see in the following sections.

For completeness, Table 3 reports the yearly average weather
variables [i.e., wind speed at 10m altitude (S), ambient
temperature at 1m altitude (T), global solar radiation (I)] and
the associated yearly average PV power productions (P) for the
period Y = 3.75 years under study. One can notice the small
variability of the reported average values of the variables that can
be due to the variability in number of days of each year for which
the measurements are being available (refer to Table 2) in the
period under study.

The whole inputs-outputs patterns are stored in the dataset
matrix X and partitioned into three datasets:

• Training dataset (Xtrain): it holds the inputs-outputs patterns
sampled randomly from the overall dataset matrix X with a
fraction of 70%. This dataset, formed by Ntrain = 22,192
patterns, is used to develop/train the ANN prediction model;

• Validation dataset (Xvalid): it holds the inputs-outputs patterns
sampled randomly from the overall dataset matrix X with
the remaining fraction of 15%. This dataset, formed by
Nvalid = 4,756 patterns, is used to optimize the ANN
model architectures in terms of number of hidden neurons
and identifying the best set of features and the best ANN
learning algorithm;

• Test dataset (Xtest): it holds the inputs-outputs patterns
sampled randomly from the overall dataset matrix X with the
remaining fraction of 15%, which are never used during the
ANN model development. This dataset, formed by Ntest =

4,756 patterns, is used to test/evaluate the performance of the
best ANNmodel with respect to the Persistence (P) prediction
models of literature.

SOLAR PV POWER PREDICTION
MODELING

The ANN model configuration proposed in this work to provide
1 day-ahead solar PV power production prediction is shown
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FIGURE 3 | ANN model configuration.

in Figure 3. ANN aims at capturing the underlying complex
inputs-outputs “a priori unknown” relationship (Rumelhart et al.,
1986; Hornik et al., 1989). To this aim, ANN comprises three
layers through which the inputs are propagated to the outputs,
they are:

• Input layer: it receives the j-th pattern, −→x
d
t j, that comprises

one of the investigated sets of features;
• Hidden layer (composed by H hidden neurons): it processes

the received inputs via a neuron activation (transfer)
function, G1(), and sends the manipulated information to the
output layer;

• Output layer: it provides the t-th hour-ahead solar PV power
production prediction of day d via an output neuron activation
(transfer) function, G2(), y

d
t j = P̂dt j, for all of the available N

data patterns, j = 1, . . . ,N, as defined by Equation (2):

P̂dt j = G2

(

H
∑

h=1

−→
β hG1(

−→w h
−→x

d
t j+bh)+ bo

)

(2)

where −→w h, bh, bo, and
−→
β h are the internal parameters of the

ANNmodel. Specifically:

•
−→w h is the weights vector of the connections that connect the
inputs features to each h-th hidden neuron (the weights’ values
indicate the relative importance of the inputs features to the
ultimate output);

• bh and bo are the biases (weights) of the connections that
connect the bias neurons to each h-th hidden neuron and to
the output neuron, respectively. In practice, to further enhance
the prediction performance of the ANN, additional neurons
are added to the input (bh) and hidden (bo) layers which
have a value of 1 (or other constant) for shifting the output
of the activation functions left or right to assure that the

weights’ variations is sufficient to enhance the ANN prediction
performance (Abuella and Chowdhury, 2015);

•
−→
β h is the weights vector of the connections that connect the
output of each h-th neuron to the output node, and

• G1() and G2() are the hidden and output neuron activation
functions, respectively. The former is usually a continuous
non-polynomial function, whereas the latter is typically a
linear function (Al-Dahidi et al., 2018). The “Log-Sigmoid” has
been employed as a neuron activation function following an
exhaustive search procedure carried out in Al-Dahidi et al.
(2018) on the same dataset of the ASU solar PV system.

In practice, the optimum ANN internal parameters, by which
the outputs produced by the ANN for each input vector
are sufficiently close to the desired corresponding outputs,
are defined by resorting to the error Back-Propagation (BP)
learning/training/optimization algorithms. During the ANN
development (i.e., the training phase), the internal parameters
are defined randomly, then updated iteratively while evaluating
the ANN performance on the entire pair inputs-output training
patterns by calculating the Mean Square Error (MSE) (i.e.,
the cost function) between the computed power outputs, P̂dt j

(obtained by Equation 2) and the actual power productions, Pdt j,
and distributing it back to the ANN model layers until reaching
to the optimal internal parameters at which the calculated MSE
is minimized.

Several learning algorithms have been widely developed and
applied with success for different industrial applications. Such
algorithms have different characteristics and performances in
terms of computational efforts required (i.e., memory usage and
computational time) and accuracy.

The idea underpinning each learning algorithm is to identify

the training directions in which the ANN internal parameters

are required to be updated/changed for reducing the cost/loss

function. In other words, the learning algorithms differ from
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TABLE 4 | The investigated ANN learning algorithms.

Learning algorithm (l) Acronym

Levenberg-Marquardt LM

BFGS Quasi-Newton BFG

Resilient Backpropagation RP

Scaled Conjugate Gradient SCG

Conjugate Gradient with Powell/Beale Restarts CGB

Fletcher-Powell Conjugate Gradient CGF

Polak-Ribiére Conjugate Gradient CGP

One Step Secant OSS

Variable Learning Rate Backpropagation GDX

Bayesian Regularizations BR

each other in the way in which the adjustment on the ANN
internal parameters is formulated to effectively map the inputs
to the outputs. It is worth mentioning that advanced meta-
heuristic optimization algorithms [few to mention are Genetic
Algorithm (GA) (Semero et al., 2018), Genetic Programming
(GP) (De Paiva et al., 2018), Cuckoo Search (CS) (Yang and Deb,
2009), Particle Swarm Optimization (PSO) (Kennedy, 2011),
Biogeography-Based Optimization (BBO) (Duong et al., 2019),
Stochastic Fractal Search (SFS) and its modified version (Pham
et al., 2019), or their combinations] can be employed to optimally
define the ANN internal parameters. However, the influence
of these algorithms on the predictability of the solar power
productions could be an object of a future research work.

The influence of the learning algorithms employed to
optimally define the ANN internal parameters and the sets of
features considered in inputs to the ANN prediction model
are described in sections ANN Learning Algorithms and ANN
Training Datasets, respectively.

ANN Learning Algorithms
To propose an accurate ANN prediction model with short
computational times, 10 different learning algorithms (l, l =

1, . . . , 10) available in MATLAB Neural Network ToolboxTM

(Demuth et al., 2009) and reported in Table 4 are investigated
and their results are compared to each other for selecting the best
learning algorithm.

As stated previously, the learning algorithms aim to
effectively map ANN inputs to outputs by optimally define
the ANN internal parameters. To this aim, each algorithm
adjusts the internal parameters by identifying a training
direction differently from each other. Thus, each algorithm
has different characteristics and performance in terms of
memory usage, computational time, and accuracy. For example,
Conjugate Gradient algorithms adjust the internal parameters
along conjugate gradient directions, whereas the Resilient
Backpropagation adjusts the internal parameters based on the
sign of the slope/partial derivative of the cost function (more
details on the ANN learning algorithms can be found in Demuth
et al., 2009).

TABLE 5 | The investigated sets of features of the ANN model.

Group Subgroup Sets of

features (f)

Features Number of ANN

inputs (n)

A A′ A′
1 [

−→
S ] 5

A′
2 [

−→
T ] 5

A′
3 [

−→
I ] 5

At At1 [
−−→
Time,

−→
S ] 7

At2 [
−−→
Time,

−→
T ] 7

At3 [
−−→
Time,

−→
I ] 7

B B′ B′
1 [

−→
S ,

−→
T ] 10

B′
2 [

−→
S ,

−→
I ] 10

B′
3 [

−→
T ,

−→
I ] 10

Bt Bt
1 [

−−→
Time,

−→
T ,

−→
S ] 12

Bt
2 [

−−→
Time,

−→
S ,

−→
I ] 12

Bt
3 [

−−→
Time,

−→
T ,

−→
I ] 12

C C′ C′
1 [

−→
S ,

−→
T ,

−→
I ] 15

Ct Ct
1 [

−−→
Time,

−→
S ,

−→
T ,

−→
I ] 17

D D′ D′
1 [

−→
P ] 5

Dt Dt
1 [

−−→
Time,

−→
P ] 7

Dt
2 [

−−→
Time,

−→
S ,

−→
P ] 12

Dt
3 [

−−→
Time,

−→
T ,

−→
P ] 12

Dt
4 [

−−→
Time,

−→
I ,

−→
P ] 12

Dt
5 [

−−→
Time,

−→
S ,

−→
T ,

−→
P ] 17

Dt
6 [

−−→
Time,

−→
S ,

−→
I ,

−→
P ] 17

Dt
7 [

−−→
Time,

−→
T ,

−→
I ,

−→
P ] 17

Dt
8 [

−−→
Time,

−→
S ,

−→
T ,

−→
I ,

−→
P ] 22

ANN Training Datasets
Among the available ANN inputs features [the time stamp of the
year, the historical (embedding dimension) wind speed, ambient
temperature, global solar radiation, and the corresponding
historical PV power productions], different combinations
(hereafter called sets of features) are established and investigated
for an ultimate goal of providing accurate 1 day-ahead hourly
power predictions. In particular, 23 sets of features, f = 1, .., 23,
are established and categorized into g = 4 groups for an ease of
clarity, they are (Table 5):

• Group A: it is composed by two subgroups, A′

and At . Specifically:

◦ A′ subgroup comprises three sets of features, each with
a single weather variable, i.e., the wind speed (set A′

1),
the ambient temperature (set A′

2), and the global solar
radiation (set A′

3), whereas
◦ At subgroup combines the time span of a year and the

previous three sets of features, denoted by At
1, A

t
2, and

At
3, respectively.

The objectives of considering these two subgroups are to study (i)
the effect of each single weather variable and (ii) the influence of
the time span when combined with a single weather variable, on
the predictability of the PV power production predictions;

• Group B: it is composed by two subgroups, B′

and Bt . Specifically:
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◦ B′ subgroup comprises three sets of features, each with two
possible combinations of the weather variable, i.e., the wind
speed with the ambient temperature (set B′1), the wind
speed with the global radiation (set B′2), and the ambient
temperature with the global radiation (set B′3), whereas

◦ Bt subgroup combines the time span of a year and
the previous three sets of features, denoted by Bt1, B

t
2,

and Bt3, respectively.

The objectives of considering these two subgroups are to study (i)
the effect of each possible combination of two weather variables
and (ii) the influence of the time span when combined with the
possible pairs of the weather variables, on the predictability of the
solar PV power production predictions;

• Group C: it is composed by two subgroups, C′

and Ct . Specifically:

◦ C′ subgroup comprises one set of features, composed by the
three weather variables (set C′

1), whereas
◦ Ct subgroup combines the time span of a year and the

previous sets of features (set Ct
1).

Similarly, the objectives of considering these two subgroups are
to study (i) the effect of the whole three weather variables and (ii)
the influence of the time span when combined with the whole
weather variables, on the predictability of the solar PV power
production predictions;

Finally, one of the objectives of this work is to investigate the
influence of the lagged power productions on the predictability
of the power production when considered as inputs to the ANN.
To this aim, Group D investigates the effect of the lagged power
productions by adding, incrementally, the weather variables to
the lagged power productions. Therefore,

• Group D: it is composed by two subgroups, D′

and Dt . Specifically:

◦ D′ subgroup comprises one set of features, composed by the
lagged power productions only (set D′

1), whereas
◦ Dt subgroup comprises eight sets of features, denoted from

Dt
1 to Dt

8, by considering the lagged power productions
with the time span (set Dt

1) incrementally reaching to the
lagged power productions, the time span, and the whole
considered weather variables (set Dt

8).

Table 5 summarizes the considered sets of features, together with
their number of inputs using an embedding dimension of e = 5.

It is worth mentioning that the number of hidden neurons,
H, of each ANN candidate configuration characterized by
any possible combination of the above-mentioned learning
algorithms (Table 4) and sets of features (Table 5), is optimized
by considering different number of hidden neurons that span the
interval [1,30] with a step size of 2, as we shall see in section
Results and Discussions.

Performance Metrics
The performance of each ANN candidate configuration,
characterized by (i) different learning algorithms (l, l =

1, . . . , 10), (ii) set of features (f , f = 1, .., 23), and (iii)

different number of hidden neurons (H,H = [1, 30] with a
step size of 2), is examined on the validation dataset, Xvalid,
by computing the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), and the Coefficient of Determination
(R2) as standard performance metrics widely used in literature,
as well as the computational time required for developing (on
the validation dataset) and evaluating (on the test dataset) the
built-ANN models:

• Root Mean Square Error (RMSE) [kW] (Equation 3): it
describes the mismatch between the true and the predicted
power productions obtained by the ANN model. Small
RMSE values entail more accurate predictions and, thus, the
ANN model is effectively capable of capturing the hidden
mathematical relationship between the input (independent)
and the output (dependent) variables, and vice versa;

RMSE =

√

√

√

√

∑Nvalid
j=1

(

Pj − P̂j

)2

Nvalid
(3)

• Mean Absolute Error (MAE) [kW] (Equation 4): it is defined
as the average error between the true and the predicted power
productions obtained by the ANNmodel. Similar to the RMSE
performance metric, small MAE values entail more accurate
predictions and, thus, the ANN model is effectively capable
of capturing the hidden mathematical relationship between
the input (independent) and the output (dependent) variables,
and vice versa;

MAE =

∑Nvalid
j=1

∣

∣

∣
Pj − P̂j

∣

∣

∣

Nvalid
(4)

• Coefficient of Determination (R2) [%] (Equation 5): it is a
statistical indicator that describes the variability in the output
(dependent variable) power production prediction provided
by the ANN models caused by the input sets of features
(independent variables). In practice, R2 = 100% values entail
that the variability in the output variable can be fully justified
by the considered input variables in the ANN prediction
model, whereas R2 < 100% values entail that there are other
inputs (independent) variables that can influence the output
variable but have not been taken into account during the
development of the ANN prediction models:

R2 =






1−

∑Nvalid
j=1

(

Pj − P̂j

)2

∑Nvalid
j=1

(

Pj − P
)2






x 100%, (5)

where Pj and P̂j are the j-th true and predicted PV
power production obtained by the ANN models, j =

1, . . . ,Nvalid and Nvalid is the overall validation data patterns (i.e.,
Nvalid = 4, 756).

• Computational time [seconds/minutes]: it is the time
required for developing the ANN model candidates (on the
validation dataset) and evaluating the built-ANN models (on

Frontiers in Energy Research | www.frontiersin.org 9 November 2019 | Volume 7 | Article 130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Al-Dahidi et al. Solar Photovoltaic Power Production Prediction

the test dataset). Indeed, this metric is useful to identify
the learning algorithm that is capable of providing as
accurate as possible power production predictions, with short
computational time.

RESULTS AND DISCUSSIONS

To robustly evaluate the ANN prediction performance in terms
of the above-mentioned metrics, a 5-fold Cross-Validation
(CV) procedure is carried out. In practice, each CV trial
entails sampling different training, validation, and test patterns
randomly from the overall available dataset, X, with arbitrary
fractions of 70, 15, and 15%, respectively. Then, the CV
procedure is repeated 5 times (5-fold), by using different inputs-
outputs patterns for training, validation, and test datasets.
The final performance metrics values are then, computed by
averaging the 5 metrics values obtained by the 5 different
CV trials.

Figure 4 shows the average RMSE (Figure 4A), MAE
(Figure 4B), and R2 (Figure 4C) values over the 5-fold CV
procedure using the 10 different learning algorithms obtained
at different optimum numbers of hidden neurons. Specifically,
the results of the two best learning algorithms (BR and LM
in diamond and circle green markers, respectively), the three
worse learning algorithms (GDX, RP, and OSS in cross, plus,
upward-pointing triangle red markers, respectively), and the
other remaining learning algorithms (in squares yellow marker)
of each set of features are shown in the figure. Looking at
Figure 4, one can recognize the following:

• The predictability of the power productions is enhanced when
the time stamp (i.e., hours and number of days in a year) is
fed to the ANN prediction models. This is clearly recognized
when looking at the two performance metrics obtained by the
models that are fed by At

1, A
t
2, A

t
3, B

t
1, B

t
2, B

t
3, C

t
1, and Dt

1 sets
of features, compared to the metrics obtained by the models
that are fed by the A1, A2, A3, B1, B2, B3, C1, and D1 sets of
features, respectively. This is, indeed, justified by the fact that
the PV power output depends on the sun position with respect
to the PV surface (i.e., angle of incidence). In practice, the sun
position depends on the location, time, and date. Thus, for a
given location, including the time stamp would enhance the
PV power production predictions;

• The predictability of the power productions is significantly
enhanced when the solar radiation is considered together with
the time stamp (i.e., setAt

3) compared toAt
1 andA

t
2. In fact, the

full dependence on the solar radiation as inputs to the ANN
model (i.e., A3) rather than on the sole wind speed or ambient
temperature, i.e., sets A1 and A2, respectively, ensures better
predictability of the PV power productions. This is, indeed,
expected since the PV power output, in addition to the time
stamp, relies on the solar radiation. However, the influence
of the other weather variables, e.g., wind speed and ambient
temperature, should be, indeed, taken into account. Thus;

• The predictability of the power productions is the lowest
when the sole wind speed, the ambient temperature, or the

combination of these two features are fed to the ANN models,
i.e., A′

1, A
′
2, and B′1, respectively. The influence of the solar

radiation on the predictability of the power productions is
clearly shown when the solar radiation is added to these sets
of features, i.e., B′2 and B′3;

• The combination of the solar radiation and the time stamp
as inputs to the ANN models regardless of the inclusion
of the other weather variables, i.e., A′

3, B
′
2, B

′
3, and C′

1,
slightly enhances the predictability of the power productions
compared to the consideration of the solar radiation without
the time stamp, i.e., At

3, B
t
2, B

t
3, and Ct

1, respectively;
• The inclusion of the power productions as inputs to the

ANN models, i.e., Group D, is boosting the predictability of
the power productions compared to the other groups, i.e.,
Groups A, B, and C. In fact, the best predictability is found
at RMSE = 19.03 kW,MAE = 10.92 kW, R2 = 91.69%, when
the time stamp, the whole weather variables, and the power
productions, i.e., set of features Dt

8, are fed to the ANNmodel;
• The predictability of the power productions using the BR

learning algorithm (diamond green marker) is the best, i.e.,
RMSE = 19.03 kW, MAE = 10.92 kW, and R2 =

91.69% followed by the LM algorithm (circle green marker),
i.e., RMSE = 19.24 kW, MAE = 11.03 kW, and R2 =

91.65%. However, the predictability using the GDX algorithm
(cross red marker) is the worst among the completely
investigated learning algorithms. The predictability using the
other algorithms seems similar (square yellow markers). But,
this performance starts to deviate toward the worse when both
the RP and the OSS algorithms (plus and upward-pointing
triangle redmarkers, respectively) being used for the latest four
sets of features, i.e., Dt

5 to D
t
8.

For the sake of illustration, the average computational times
required by each learning algorithm used for developing each
ANN candidate over the 5-fold CV, considering the best set of
features (i.e., Dt

8) and the possible numbers of hidden neurons,
are shown in Figure 5. Looking at Figure 5, one can easily
notice that:

• The most computational demanding is when the BR learning
algorithm is used to build the ANN models and ensure
convergence to optimally define their internal parameters
(∼30min), whereas the other learning algorithms require
almost short computational efforts (<5min). Such huge efforts
required by the BR algorithm, would, indeed, pose constraints
on its practical implementation on large datasets, despite of its
superior predictability results obtained in Figure 4;

• The lowest computational efforts required for developing the
ANN models are obtained when the RP learning algorithm
being used, i.e., <1min. This is expected because the RP
is a heuristic learning algorithm that reduces the number
of learning steps and, thus, improves the convergence speed
significantly, compared to the other learning algorithms
(Riedmiller and Braun, 1993);

• The short computational time required by the LM algorithm,
i.e., ∼5min, whose predictability is shown superior to the RP
learning algorithm while slightly similar to the BR learning
algorithm, increases its potentiality in real time applications.
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FIGURE 4 | Average performance metrics obtained by each ANN candidate configuration on the validation dataset over 5-fold CV. (A) RMSE metric. (B) MAE metric.

(C) R2 metric.
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FIGURE 5 | Average computational times required by each learning algorithm on the validation dataset.

FIGURE 6 | Optimum number of hidden neurons obtained for each set of features using the LM learning algorithm on the validation dataset.

Further insights can be obtained by looking at Figure 6

concerning the optimum number of hidden neurons, Hopt ,
obtained for the ANN model configuration that uses the LM
learning algorithm for theDt

8 set of features. Looking at Figure 6,
one can generally notice the following:

• Large number of hidden neurons are required when either the
wind speed and/or the ambient temperature being fed to the
ANN models or when large number of inputs being fed to the
ANN models. The former entails that the ANN models would
try barely to correlate the wind speed and/or the ambient
temperature values with those of the power production values
compared, for instance, to the easily obtained correlation
between the solar radiation and the power production values,
whereas the latter entails that the ANN models would require
more hidden neurons to capture the relationship between the
inputs and the output;

• The inclusion of the time stamp in each group of sets of
features facilitates the convergence, and thus, less number of
hidden neurons are required;

• Even though the inclusion of most of the features (Group
D) as inputs to the ANN model, the numbers of hidden

neurons required tend to be similar to those required when
other sets of features are considered. This indicates the fact
that the inclusion of the power production as inputs to the
ANN prediction model facilitates the convergence of the ANN
prediction models.

In fact, the benefits of the utilization of the historical power
productions as part of the ANN inputs set of features (e.g.,
Dt
7) compared, for instance, to the Bt3 set of features (utilized

in Alomari et al., 2018b using the same dataset of this work)
can be easily recognize by looking at the RMSE, MAE, and
R2 performance metrics values. Specifically, the former leads to
more accurate predictions with RMSE equals to 19.24 kW, MAE
equals to 10.84 kW, and R2 equals to 91.59% compared to the
values of the latter with RMSE equals to 23.68 kW, MAE equals
to 16.44 kW, and R2 equals to 85.28%, when the BR learning
algorithm being used. In addition, the BR shows the best in
Alomari et al. (2018b) when looking at the predictions accuracy
without any consideration of the computational efforts required
for building/developing/optimizing the ANN prediction models,
whereas in this work, the computational efforts are considered
and showed that a compromise between the predictions accuracy
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FIGURE 7 | Average performance metrics obtained by the ANN models on the test dataset over the 5-CV using the Dt
8 set of features compared to the two

P Benchmarks.

and the computational efforts has to be taken into account. In
practice, the convenient (short) training times of the prediction
model is extremely important in real time applications such as
those of the solar PV power production predictions.

In practice, one might be wondering whether the DC to
AC power ratio of the ASU PV system (i.e., 1.14 in this case
which is a typical practice for the PV systems design in Jordan),
might influence the obtained results. This can be justified by
the fact that the peak values of the global solar radiations might
not always be reflected in the PV power productions because
of power limitation process. However, one indication that the
power limitation process has never been occurred in the ASU PV
system, is that the maximum output AC power recorded in the
period under study (215.33 kWac) is less than the system’s AC
rated power (i.e., 231 kWac).

To effectively evaluate the influence of the inclusion of the
historical power productions in inputs to the ANN prediction
model, the prediction performance of the ANN models built
when the set of features (set Dt

8) is used, is compared
to the performance obtained by the well-known Persistence
(P) prediction model of literature, on the test dataset, Xtest.
Specifically, their performances are evaluated on the Ntest test
patterns by considering the three previously defined performance
metrics, using 5-fold CV.

In P model, the solar PV power production at time t over
the 1t = 24 h prediction horizon is assumed to be similar
to the latest power production measured at the same time t in
the previous day, as defined by Equation (6) (hereafter called
Benchmark 1) (Antonanzas et al., 2016):

P̂dt+1t = Pd−1
t , t ∈ [1, 24] (6)

This model is usually considered as a Baseline-prediction model
and it is mostly used to compare the effectiveness of any
sophisticated developed prediction model.

However, onemight be wondering weather the Pmodel can be
implemented in a way that it can benefit from the historical e = 5
latest power production values (i.e., d − e, e = 1, . . . , 5) instead
of the latest production value (i.e., d − e, e = 1), by calculateing
their average value, as defined by Equation (7) (hereafter called
Benchmark 2):

P̂dt+1t =

∑5
e=1 P

d−e
t

5
, t ∈ [1, 24] (7)

The average performance metrics, i.e., RMSE, MAE, and R2, of
the power production predictions obtained resorting to the P
models (Benchmark 1 and Benchmark 2) on the test dataset
over the 5-CV are shown in Figure 7 in solid and dashed lines,
respectively, together with those obtained by the ANN models
using the best two learning algorithms (i.e., LM and BR) (bars
with light shade of color) and the other learning algorithms (bars
with dark shade of color). One can recognize the superiority
of the developed BR and LM ANN models compared to the
P benchmarks. Additionally, one can notice that the worse
predictability is obtained by the developed GDX, RP, and the OS
ANNmodels, respectively.

To effectively evaluate the effectiveness of the ANN models
using the different learning algorithms with respect to the P
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TABLE 6 | Performance gains of the three performance metrics obtained by the ANN models using the different learning algorithms and the best set of features together

with their average computational times with respect to the P models.

ANN Benchmark

LM SCG CGB CGF CGP BFG OSS BR GDX RP P1 P2

PGRMSE (%) 15.4 6.7 10.2 11.8 11.5 5.5 −1.4 16.3 −38.1 −18.6 0 −2.7

PGMAE (%) 0.84 −16.72 −7.16 −2.62 −9.34 −20.3 −41.9 1.26 −117.7 −81.6 0 −10.83

PGR2 (%) −4.6 −2.3 −3.2 3.7 −3.6 −2.2 −0.3 −4.6 11.9 4.8 0 0.5

Computational

time [seconds]

46.2 12.6 33.6 43.2 40.2 58.2 30.6 420 24.6 6 <1 <1

TABLE 7 | Percentages of the hourly predictions overestimating and

underestimating the actual productions on the test dataset.

Overestimation [%]

(P̂t>Pt)

Underestimation [%]

(P̂t<Pt)

CV trials 1 52.78 47.22

2 56.83 43.17

3 46.51 53.49

4 71.54 28.46

5 44.57 55.43

Average 54.45 45.55

benchmark models considering the P Benchmark 1 as a Baseline,
one can compute the performance gain, PGMETRIC (%), for
the RMSE and R2 performance metrics as per Equation (8). In
practice, positive/negative RMSE andMAE/R2 performance gain
values, respectively, entail the superiority of the ANN model to
the Baseline-prediction model, and vice versa:

PGMetric (%) =
METRICBaseline −METRICANN

METRICBaseline
∗ 100% (8)

Table 6 reports the performance gains obtained for the three
performancemetrics on the test dataset by using the ANNmodels
equipped with the different learning algorithms with respect to
the Baseline-prediction model. Looking at Table 6, one can easily
recognize that the developed BR and LM ANN models largely
enhance the accuracy of the PV power production predictions
compared to the other investigated learning algorithms with
respect to the Baseline-prediction model that obtains also a slight
improvement with respect to the P2 (Benchmark 2) model.

In addition, Table 6 reports the average computational times
required by the whole prediction models. One can easily
recognize that:

• The BR algorithm necessitates larger computational efforts
among the whole prediction models;

• The LM algorithm necessitates shorter, and thus, convenient
computational efforts compared to the BR algorithm;

• The RP algorithm necessitates shorter computational efforts
among the whole ANN prediction models;

• The P prediction models, indeed, required negligible
computational efforts with respect to the ANN prediction
models. Despite of that, their prediction performances are
not accepted.

In addition to the previous analysis, it is of paramount
importance to verify whether the built-ANN on the Dt

8 set of
features using the LM learning algorithm tends to overestimate
(i.e., P̂t > Pt) or underestimate (i.e., P̂t < Pt) the actual
t-th hourly power production of the PV system. In practice,
this investigation is beneficial to propose a corrective factor
for correcting the predicted power productions and further
enhancing the power production predictions (Nespoli et al.,
2018). In addition, the PV system owner, in particular, for
a large-scale PV plants, can carry out a cost-benefit analysis
to accurately quantify the benefits of the employed prediction
model in terms of the overestimation and underestimation
the PV power productions. To this scope, the actual PV
power production values of the Xtest dataset are compared to
the corresponding ANN power production predictions while
excluding the zero productions arise in the early morning
and late evening of a day. Table 7 reports the percentages of
the hourly predictions overestimating and underestimating the
actual productions of the 5-fold CV trials, using Ntest = 4, 756
hourly samples of the Xtest dataset while excluding the zeros PV
power productions. One can easily recognize the tendency of the
built-ANN to slightly overestimate (i.e., ∼54%) the PV power
production predictions.

For completeness, one might be wondering whether changing
the embedding dimension to a lower or a higher value can
influence the comparison results to the P models. To investigate
the influence of the embedding dimension on the predictability of
the PV power productions, different embedding dimensions that
span the interval d = [1, 10] with a step size of 1 are considered,
and the ANN model with LM learning algorithm, that uses the

set Dt
8 (i.e., [

−−→
Time,

−→
S ,

−→
T ,

−→
I ,

−→
P ] – 22 inputs), is built using

the training dataset, Xtrain, optimized on the validation dataset,
Xvalid, for identifying the optimum number of hidden neurons,
Hopt , then, evaluated on the test dataset, Xtest, and compared to
the P prediction models, using a 5-fold CV procedure.

In this regard, Figure 8 shows the average values of the three
performance metrics on the test dataset, Xtest, using the ANN
model (bars) and the P prediction models (Benchmark 1 and
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FIGURE 8 | The influence of the embedding dimension on the prediction performance.

Benchmark 2, solid and dashed lines, respectively). It can be
seen that:

• The ANN model consistently outperforms the P prediction
models for the different embedding dimensions, in terms of
RMSE and R2, which confirms the benefits of exploiting the
time stamp, the historical weather variables and the PV power
productions values in the development of the ANNmodels;

• The ANN model performs better for the intermediate
embedding dimension values, i.e., d = 3 to d = 7, particularly
in terms ofMAE, compared to the small and large embedding
dimension values. The former entails that the data used for
developing the ANN models are not sufficient to capture the
hidden inputs-output relationship, whereas the latter entails
that considering more data for developing the ANN models
leads to reduce the accuracy of the power predictions;

• The consideration of the historical power production values,
d = 5, i.e., Benchmark 2 (solid line), reduces the accuracy
of the predictions with respect to the consideration of the
latest power production value, d = 1, i.e., Benchmark 1
(dashed line).

CONCLUSIONS

In this work, we have developed an efficient Artificial Neural
Network (ANN) model for providing accurate 1 day-ahead
hourly predictions of the Photovoltaics (PV) system power
productions with short computational efforts. To this aim,
different ANN learning algorithms for optimally defining the
ANN internal parameters (i.e., weights and biases) have been
investigated. In addition, different combinations of sets of

features (training datasets), have been established and considered
as inputs to the ANN prediction model. The sets of features
are the possible combinations of the time stamp of a year, the
historical actual weather variables and the corresponding PV
power productions.

Specifically, several ANN models have been built using
different learning algorithms and training datasets, and have been
further optimized in terms of number of hidden neurons. The
effectiveness of each ANN model candidate configuration has
been quantified by resorting to standard performance metrics of
literature, namely the Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Coefficient of Determination (R2) and
the computational times required to optimally define the ANN
model configuration. To this aim, a 5-fold Cross-Validation
(CV) procedure has been employed and the average of the 5
performance metrics values obtained by the 5 different CV trials
have been reported.

The investigation is carried out on a real case study regarding
a 231 kWac grid-connected solar PV system installed on the
rooftop of Faculty of Engineering building located at the
Applied Science Private University (ASU), Amman, Jordan. It
has been found that the ANN model candidate configuration
characterized by the combination of the time stamp of the
year (in hours and number of days), the historical weather
variables and PV power productions as inputs and equipped with
Levenberg-Marquardt (LM) as learning algorithm, is superior
to the Persistence (P) prediction model of literature, with short
computational times. Specifically, an enhancement reaches up to
15, 1, and 5% for the RMSE, MAE, and R2 performance metrics,
respectively, with respect to the P prediction model, using 5-fold
CV procedure.
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The improvements obtained on the solar PV power
production predictions is expected to contribute toward
improving the reliability of electric power production
and distribution.

Future works could be devoted toward further enhancing the
prediction performance of the ANN by adopting advanced meta-
heuristic optimization algorithms, e.g., Cuckoo Search (CS),
for accurately optimizing the internal parameters of the ANN.
Additionally, it is worth to investigate the powerful of the
ensemble whose base models are the best built-ANN model
of this work and whose internal parameters are optimized by
resorting to CS. This is, indeed, expected to enhance the overall
solar PV power production predictions. Finally, other advanced
Machine Learning techniques, such as Echo State Networks
(ESNs), could be promising in enhancing the predictability of
the solar PV power productions by exploiting their capability of
capturing the hidden stochastic nature of the weather variables
and the corresponding power productions.
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NOTATIONS

RE Renewable Energy Xtest Test input-output dataset matrix

PV Photovoltaics N Number of available input-output patterns

ML Machine Learning j Index of input-output pattern, j= 1,…,N

ASU Applied Science Private University Ntrain Number of training input-output patterns

NWP Numerical Weather Predictions Nvalid Number of validation input-output patterns

CMV Cloud Motion Vectors Ntest Number of test input-output patterns

CV Cross-Validation Y Number of available years of data

SVR Support Vector Regression Time Time stamp of a year

SVM Support Vector Machine
−→
T Ambient temperature vector at 1 m altitude

k-NN k-Nearest Neighbor
−→
S Wind speed vector at 10 m altitude

PCA Principal Component Analysis
−→
I Global solar radiation vector

WD Wavelet Decomposition
−→
P Solar PV power productions vector

GLS Group Least Square Pj True power production of the j-th pattern

WT Wavelet Transform P̂j Predicted power production of the j-th pattern

PSO Particle Swarm Optimization
−−→
Time

d

t Time stamp vector (in hour and day) of a generic j-th pattern collected

at time t of day d

ANNs Artificial Neural Networks e Embedding dimension

GRNN Generalized Regression Neural Network t Time index, t= [1,24]

ELM Extreme Learning Machine
−→
T

d - e

t Ambient temperature vector of a generic j-th pattern collected at time

t from previous e days of day d

ELMNN ELM Neural Network
−→
S

d - e

t Wind speed vector of a generic j-th pattern collected at time t from

previous e days of day d

ElmanNN Elman Neural Network
−→
I
d - e

t Global solar radiation vector of a generic j-th pattern collected at time

t from previous e days of day d

GA Genetic Algorithm
−→
P

d - e

t Solar power production vector of a generic j-th pattern collected at

time t from previous e days of day d

BP Back-Propagation
−→
x
d - e

t Overall ANN input vector of a generic j-th pattern collected at time t

from previous e days of day d

WVCFM Weight-Varying Combination Forecast Mode ydt j ANN production output of a j-th pattern at time t of day d

EMD Empirical Mode Decomposition P̂
d

t j ANN production prediction of a j-th pattern at time t of day d

SCA Sine Cosine Algorithm n Number of ANN inputs

ERT Extremely Randomized Trees i Index of ANN inputs, i=1,…,n

GP Genetic Programming H Number of hidden neurons

CS Cuckoo Search Hopt Optimum number of hidden neurons

BBO Biogeography-Based Optimization h Index of hidden neuron, h=1,…,H

SFS Stochastic Fractal Search
−→
w h,bh,bo,

−→
β h The internal parameters of the ANN model

ESNs Echo State Networks G1() Hidden neuron activation function

PIs Prediction Intervals G2() Output neuron activation function

P Persistence f Index of sets of features

RMSE Root Mean Square Error g Number of sets of features’ subgroups

nRMSE Normalized RMSE l Index of ANN learning algorithms

MBE Mean Bias Error A’,B’,C’,D’ Subgroups of sets of features with no time stamp

nMBE Normalized MBE At,Bt,Ct,Dt Subgroups of sets of features with time stamp

MAPE Mean Absolute Percentage Error LM Levenberg–Marquardt

MAE Mean Absolute Error BR Bayesian regularization

nMAE Normalized MAE 1t Measurements/prediction time step

MSE Mean Square Error P̂dt+1t One day-ahead prediction, 1t= 24 hours, of day d

R2 Coefficient of Determination Pd−1
t Power production at time t of the previous day d

W Actual weather data METRIC Prediction performance metric

X Overall inputs-output dataset matrix METRICBaseline Prediction performance METRIC obtained by a baseline prediction

approach

Xtrain Training input-output dataset matrix METRICANN Prediction performance METRIC obtained by ANN prediction model

Xvalid Validation input-output dataset matrix PGMETRIC Prediction performance gain calculated for a performance METRIC
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