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The hydration of proton-conducting ionomers is described in terms of a simplified model,
where only osmotic and elastic contributions to the Gibbs free energy of hydration are
considered. Although only two physically meaningful parameters are used – the deforma-
tion parameter, inversely proportional to the elastic modulus of the ionomer, and the free
volume parameter – simulated hydration isotherms are in good agreement with the exper-
iment. The proton mobility u inside the electrolyte solution of the ionomer is calculated
from the proton conductivity determined at various hydration numbers. Its variation with
the proton concentration c reveals the percolation threshold of hydrated nanometric chan-
nels and the tortuosity of the membrane. Above the percolation threshold, a power law
u ~ c−3 is observed, in agreement with the “universal” law for 3-dimensional percolation.
The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number
~90. The σ= f(c) plot allows to predict, which hydration conditions are necessary for a
desired area specific resistance.
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INTRODUCTION
Polymer electrolytes are a fascinating class of materials with many
promising applications, especially in the field of energy and envi-
ronment (Armand,1994; Meyer,1998; Fergus,2010,2012; Couture
et al., 2011; Hou et al., 2011; Li et al., 2011; Merle et al., 2011; Wang
et al., 2011; Di Vona and Knauth, 2013; Hickner, 2013). One can
mention ion exchange membranes, and a major application con-
cerns separation membranes for electrochemical energy technolo-
gies, such as lithium polymer batteries and polymer electrolyte
fuel cells.

Whereas polymer electrolytes for lithium batteries must work in
absence of water to avoid corrosion and decomposition reactions,
polymer electrolytes used in fuel cells and redox flow batteries con-
tain significant amounts of water in hydrated nanometric domains
that assure the proton or anion conduction inside a matrix made
by the polymer backbones (Springer et al., 1991; Zawodzinski et al.,
1993; Kreuer, 2001; Kreuer et al., 2004; Smitha et al., 2005; Diat and
Gebel, 2008; Peckham et al., 2008; Hickner, 2012; Wu et al., 2013).
Such polymers with a micro-phase separation between hydrated
ionic conducting domains and electronically insulating polymer
domains are also called ionomers.

Given the particular ion conduction mechanism, the water
content of ionomers bears a particular importance (Zawodzin-
ski et al., 1993; Gebel, 2000; Paddison, 2003; Mauritz and Moore,
2004; Majsztrik et al., 2007; Freger, 2009; Wu et al., 2011, 2013;
Kumar et al., 2013; Yan et al., 2013). It fosters on one hand the
ionic conductivity, but reduces on the other hand the mechan-
ical and dimensional stability of the ionomer, because the high
dielectric constant of water diminishes the Van der Waals interac-
tions between macromolecular chains that determine the elastic

properties of the ionomer (Alberti et al., 2008). The loss of dimen-
sional stability is detrimental for the application in electrochemical
energy technologies, because the swelling or shrinkage observed
during changes of hydration might lead to delamination of metal
electrodes in contact with the ionomers. This is particularly true
in the case of fuel cells, where transients between high and low
humidity conditions are observed during on-off cycles.

Water-uptake measurements of an ionomer are thus among the
most important characterizations to be performed; the determi-
nation of the ionic conductivity as function of the hydration of the
ionomer is also fundamental (Casciola et al., 2006; Peckham et al.,
2008; Knauth and Di Vona, 2012; Di Vona et al., 2013; Knauth
et al., 2013).

It is therefore tempting to analyze the interdependence of
hydration and ionic conductivity also by theoretical means and
to predict these properties using simple concepts and analytical
equations, if available (Knauth and Di Vona, 2012; Narducci et al.,
2014).

The following text is an attempt to present recent achieve-
ments made by our group for the phenomenological description
of hydration and ionic conductivity of ionomers and their rela-
tionship. We will take as practical examples sulfonated poly-ether-
ether-ketone (SPEEK) and sulfonated polyphenylsulfone (SPPSU)
for which numerous experimental properties have been published
over the years (Bauer et al., 2000; Rikukawa and Sanui, 2000; Li
et al., 2003; Robertson et al., 2003; Roziere and Jones, 2003; Xing
et al., 2004; Reyna-Valencia et al., 2006; Di Vona et al., 2009, 2010;
Sgreccia et al., 2010; Wu et al., 2011; Hou et al., 2012; Knauth
et al., 2013) but the discussed relations are also valid for other
ionomers.
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HYDRATION PROPERTIES
The hydration equilibrium of an ionomer is governed by the Gibbs
free energy of hydration that contains several contributions (Choi
et al., 2005; Freger, 2009; Knauth et al., 2014; Narducci et al., 2014):

∆Ghydration = ∆Gosmotic +∆Gelastic +∆Ginterface+∆Gelectrostatic

(1)
The driving force for the hydration is the osmotic pressure dif-
ference of water between the membrane and the environment
(∆Gosmotic). The osmotic pressure π is related to the concen-
tration of the electrolyte solution inside the ionomer and the
outside water activity a(H2O) (given for example by the relative
humidity RH):

π=
RT

V0
ln

(
a(H2O)

x0,el

)
(2)

In this equation, x0,el is the water molar fraction in the electrolytic
solution; R is the gas constant, T the absolute temperature, and
V 0 the molar volume of water.

The osmotic driving force is counterbalanced by the elastic
forces (∆Gelastic) that hold the polymer together and which can be
expressed by the elastic modulus E of the ionomer. In the elastic
domain of the ionomer, a linear relation exists between the defor-
mation pressure P (taken as equal to the osmotic pressure) and
the volume strain (Lazare et al., 1956):

P =
Vwet − Vdry

Vdry
E (3)

This relation is the tridimensional equivalent of the one-
dimensional Hooke’s law for elastic solids.

The wet volume V wet is the sum of the volumes of the internal
electrolyte solution and of the polymer backbone, which contains
the fixed sulfonate anions and is considered incompressible. The
dry volume V dry is the sum of the polymer backbone volume and
the accessible open volume between macromolecular chains, called
the “free volume” V free. This free volume can be estimated using
Bondi’s equation (Bondi, 1964). In most polymers, it is considered
to be between 10 and 25% of the dry molar volume.

Other contributions to the Gibbs free energy of hydration
can be taken into account, including an interfacial energy term
(∆G interface), due to the interface curvature of the hydrated
domains inside the ionomer (Choi et al., 2005; Freger, 2009) and
an electrostatic term (∆Gelectrostatic), due to the presence of elec-
trically charged groups inside the ionomer (Lazare et al., 1956;
Eikerling and Berg, 2011). These contributions are, however, more
difficult to estimate. The interfacial term depends on the shape
of the hydrophilic domains. In general, these are assumed to have
a cylindrical or spherical shape but this depends on the amount
of water present and the type of polymer (Gebel, 2000; Diat and
Gebel, 2008). In absence of a complete analysis, the interface term,
although reputedly related to the Schröder paradox (Freger, 2009),
is thus difficult to assess. The electrostatic term, which can be
written analytically only with the simplified linearized Poisson–
Boltzmann equation (Kortüm, 1965; Hamann et al., 2007), can be
described in general only numerically, as done for instance in the

early work by Gregor and coworkers (Lazare et al., 1956). These
two terms are thus difficult to express in an analytical form and
hard to predict.

We use in the following a description of the hydration of
ionomers based on the equivalence between the osmotic pres-
sure term and the elastic term. We thus assume that the osmotic
pressure π and the deformation pressure P are identical.

The volume of the inner electrolyte solution can be written as
the sum of the molar volumes of water and of protons present in
the electrolyte. The latter being negligible, we can write:

Vel =
∑

i

niVi ≈ n0V0 (4)

A linear relationship can be postulated between V el and the
thermodynamic osmotic pressure π (Gregor, 1951):

Vel = aπ+ b (5)

The parameters a and b depend upon the specific ionomer con-
sidered. Using the previous considerations, we can identify in
Eq. 5:

a =
Vdry

E
and b = Vfree (6)

We will in the following call a “deformation parameter”and b “free
volume parameter.”

A change of the mole number of water n0 changes V el in Eq. 4,
but also in Eq. 5 by a modification of the osmotic pressure π in Eq.
2. The equilibrium water-uptake n0,eq can then be found graphi-
cally or numerically: it is the simultaneous solution of Eqs 4 and
5. As we use consistently molar quantities, n0,eq is directly equal to
the hydration number λ, also called the water-uptake coefficient,
defined as:

n0,eq =λ=
n(H2O)

n(SO3H)
=

WU

IEC×M(H2O)
(7)

The water-uptake WU is obtained from the polymer mass in wet
and dry conditions. The ion exchange capacity IEC is expressed
in mol/g and M(H2O) is the molar mass of water in g/mol. Using
Eqs 4–6, we can give an analytical expression for the water-uptake
coefficient:

λ≈
Vdry

E · V0
π+

Vfree

V0
(8)

In principle, the advantage of this approach is that it allows the pre-
diction of water-uptake data based on only two physically relevant
parameters: the deformation parameter, inversely proportional to
the elastic modulus of the ionomer, and the free volume parameter,
which is related to the available open space and can be estimated
using Bondi’s equation. The model assumes thermodynamic ide-
ality, i.e., all activity coefficients are set to unity and partial volumes
identified to the molar volume.

We will now check the reliability of the model prediction
by confronting them with experimental hydration isotherms for

Frontiers in Energy Research | Fuel Cells November 2014 | Volume 2 | Article 50 | 2

http://www.frontiersin.org/Fuel_Cells
http://www.frontiersin.org/Fuel_Cells/archive
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SPEEK without cross-links and with some reticulation (Knauth
et al., 2014). In this case, the deformation parameters were deter-
mined from the experimental elastic modulus (~1.1 GPa for
cross-linked and ~0.6 GPa for uncross-linked SPEEK) and its
dry volume (0.275 L/mol) giving values of a= 7.5× 10−5 and
1.5× 10−4 L/(kg.mol), respectively. The free volume parameter
can be estimated from Bondi’s equation using tabulated atomic
or group contributions (Bondi, 1964) giving b= 0.13 L/mol.

Figure 1 shows experimental hydration isotherms and model-
ing based on the analytical equations for SPEEK with and with-
out cross-linking sulfone bridges. The overall agreement between
experiments and simulation is quite good, given that no fit-
ting parameters were used, but only two physically meaningful
constants.

We can recognize that the curves of cross-linked and uncross-
linked ionomers do intersect at a relative humidity value around
40%. At higher humidity, the cross-linked ionomer shows a lower
water uptake, as expected. However, more surprisingly, the hydra-
tion at lower humidity is higher for the cross-linked than for the
uncross-linked ionomer. This is in fact a general finding observed
for many other ionomers, see for example (Di Vona et al., 2009,
2010). Actually, the XL sample does not take up more water at low
RH, but it loses less. In cross-linked ionomers, the deformation is
permanently fixed and conformational changes observed during
hydration are impossible; there are, thus, lower changes in hydra-
tion number between high and low humidity. In other words, the
ionomer with the higher stiffness is less sensible to changes of
relative humidity.

Figure 2 shows water-uptake data for sulfonated polyphenyl-
sulfone (SPPSU) with high degree of sulfonation (IEC= 3.56 eq/kg)
and after a cross-linking treatment (IEC= 2.35 eq/kg, correspond-
ing to a degree of crosslinking ~0.7). The calculation was done
with a deformation parameter 2× 10−4 L/(mol.bar) (SPPSU) and
10−4 L/(mol.bar) (XL-SPPSU) and a constant free volume para-
meter of 0.1 L/mol, which can be obtained from Bondi’s equation.

FIGURE 1 | Experimental water-uptake isotherms (open symbols) for
uncross-linked (IEC=2.5 eq/kg) and cross-linked SPEEK (XL, degree of
cross-linking=0.45, IEC=1.5 eq/kg) and model results using Eqs 2, 4,
and 5 (full symbols). The deformation parameter was taken as 1.5×10−4

(SPEEK) or 7.5×10−5 (XL SPEEK) L mol−1 bar−1 and the free volume
parameter as 0.13 L/mol in both cases. From Knauth et al. (2014).

Again, the change made by XL is mainly the reduced deforma-
tion parameter due to the larger elastic modulus. The agreement
between model and experiment is again quite good, at high humid-
ity especially for the XL ionomer. This is probably related to the
fact that XL ionomers have a larger stiffness so that they are better
described by an elastic model.

In order to verify that hypothesis, let us check also the water
uptake in liquid water and the existence of a Schröder paradox
in some of our samples, i.e., differences between the water-uptake
measured in liquid water and that in saturated water vapor, which
should be identical according to equilibrium thermodynamics.
Several explanations for the Schröder paradox have been brought
forward over the years, including slow changes of conformation of
the ionomers [kinetic effect (Alberti et al., 2008)] or the interface
curvature of hydrated domains [thermodynamic effect (Freger,
2009)]. Figure 3 shows a comparison of water uptake at high

FIGURE 2 | Experimental water-uptake isotherms (open symbols) for
uncross-linked (IEC=3.56 eq/kg) and cross-linked SPPSU (XL, degree
of cross-linking ~0.7, IEC=2.35 eq/kg) and model results using Eqs 2, 4,
and 5 (full symbols). The deformation parameter was taken as 2×10−4

(SPPSU) or 10−4 (XL SPPSU) L mol−1 bar−1 and the free volume parameter
as 0.1 L/mol in both cases. From Knauth et al. (2014).

FIGURE 3 | Hydration numbers (λ) in liquid water and water vapor
[a(H2O)=0.95] for SPEEK with various degrees of cross-linking (DXL)
and ionic exchange capacities (IEC/eq.kg−1) and comparison with
model. One notices a good agreement of the data except for
uncross-linked SPEEK with the largest IEC.
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humidity, water uptake in liquid water and model data for SPEEK
ionomers with various IEC and degrees of cross-linking. One can
clearly observe that the Schröder paradox is only apparent for
the highest IEC= 2.5 eq/kg. XL ionomers do not show significant
differences between water uptake in water vapor or liquid water
and the model data are in good agreement. This seems to indi-
cate that the appearance of a Schröder paradox is related to an
ionomer with low stiffness and to irreversible plastic deformation
of the ionomer in water, whereas in stiffer ionomers with high
elastic modulus only elastic deformation is observed, which is well
described by our elastic model.

Given that the durability of ionomers decreases with repeated
swelling-drying cycles, a lower difference between water uptakes
at high and low humidity should reduce the degradation issues
for example under fuel-cell operation conditions, especially in
electric vehicles with frequent on-off cycles. In that sense, cross-
linked ionomers appear particular appealing for this application
(Knauth et al., 2014). More discussion of the model assumptions
and predictions and more experimental and modeling data for
other ionomers, including Nafion, can be found in the reference
(Knauth et al., 2014).

PROTON CONDUCTIVITY
High proton conductivity is an even more indispensable property
for an ionomer separation membrane. Given the particular con-
duction mechanism through hydrated nanometric domains, the
hydration is of fundamental importance for high proton conduc-
tion. The relation between proton conductivity and hydration will
be the topic of this part.

Let us first specify that the ionic exchange capacity (IEC) of the
ionomer alone is not a pertinent parameter to analyze the proton
conductivity, because it does not consider the water content of the
ionomer. We will in the following establish the proton concentra-
tion as a more relevant parameter. The proton concentration c (in
mol/L per liter) is defined using the IEC of the ionomer and its
water-uptake WU:

c =
IEC · d

WU
(9)

d is the solution density, taken as 1 kg/L. The relation of the pro-
ton concentration c with the hydration number λ (also called
water-uptake coefficient) can be written:

λ=
1000 · d

M(H2O) · c
(10)

These equations assume a full dissociation of the acidic groups;
although this is certainly correct for super-acids at high water con-
tent, deviations from full dissociation will occur at lower hydration
and are reflected in a large change of the apparent proton mobility
(see below).

The proton conductivity σ can be written as function of the
proton concentration c :

σ= F · u · c (11)

u is the apparent proton mobility inside the nanometric hydrated
channels, which can now be calculated using the measured proton

conductivity and the measured (or calculated, see above) water
uptake. Figure 4 shows the dependence of the apparent pro-
ton mobility on the proton concentration at 25 and 100°C. The
very strong mobility dependence is characteristic of an electrolyte,
where the proton dissociation depends on the hydration. Similar
curves can for example be found for acetic acid solutions (Hamann
et al., 2007). The difference between values at 25 and 100°C
decreases with decreasing concentration, simply because the acti-
vation energy decreases when the solution gets more diluted and
the Grotthuss structural diffusion mechanism becomes dominant
(Kreuer et al., 2004).

The very strong change of mobility observed in Figure 2 at
√

c≈ 3 (corresponding according to Eq. 10 to λ ~ 6) can be related
to the percolation threshold of the hydrated channels. A similar
percolation threshold has been found by molecular dynamics for
SPEEK (Mahajan and Ganesan, 2010a,b). Near the percolation
threshold, the concentration dependence of conductivity can be
written using a “universal” power law as function of the polymer
volume fraction ϕ (ϕp corresponds to the percolation threshold):

σ= σ0(ϕ− ϕp)
α (12)

The critical exponent α= 2 is typical for three-dimensional perco-
lation (Clerc et al., 1990). This law explains well the experimental
power law u ~ c−3 observed above the percolation threshold, given
that the concentration is inversely proportional to the polymer
volume fraction.

The linear part of the semi-logarithmic mobility plot in
Figure 4 can be extrapolated to c= 0 (infinite dilution). The
extrapolated value at 25°C is somewhat lower than the proton
mobility in pure water (≈3.6× 10−3 cm2/V.s (Kortüm, 1965)).
This is due to the fact that the hydrated domains have only a
reduced size (expressed by the “porosity”) and are not straight,
but tortuous, so that protons have to move a longer way to cross
the membrane as compared to the membrane thickness. These two
factors can be taken into account by two phenomenological para-
meters, called membrane porosity ε and tortuosity τ. The proton
mobility can be rescaled using these two parameters:

u = u0 ·
ε

τ
(13)

FIGURE 4 | Apparent proton mobility in SPEEK ionomers as function of
the square root of the proton concentration (Di Vona et al., 2013). The
open dots were determined at 100°C, the closed dots at 25°C.
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Knauth and Di Vona Hydration and proton conductivity of ionomers

FIGURE 5 | Proton conductivity variation with the hydration number
(a) at 25°C (dots), (b) at 100°C (triangles). An intermediate maximum of
proton conductivity is observed for hydration numbers around 90. At 100°C,
proton conductivity above 0.1 S/cm can be obtained for hydration
number 25.

The ratio ε/τ ~ 0.2 shows a relatively high tortuosity of SPEEK,
as discussed previously in the literature (Mahajan and Ganesan,
2010a).

Using the mobility dependence on concentration, the maxi-
mum proton conductivity can be computed using Eq. 11: a maxi-
mum is expected at high hydration, because the mobility decreases
strongly with concentration. Figure 5 shows this dependence for
SPEEK at 25 and 100°C; such a plot allows predicting the best
conductivity achievable for an ionomer.

The maximum is observed for a quite high hydration number,
about 90, and one may ask if such high values make sense as exces-
sive swelling must be avoided to provide good durability. However,
this plot allows also choosing conditions for combined high proton
conductivity and acceptable swelling. For example, it allows pre-
dicting which hydration conditions are necessary for a desired area
specific resistance. At 100°C, proton conductivity above 0.1 S/cm,
which is often considered the threshold to be reached by fund-
ing agencies, can be attained for a hydration number of 25, which
is more compatible with the requirements for low swelling. The
excellent properties of XL-SPEEK membranes in fuel cells will be
reported soon.

This plot allows also prediction of the area specific resistance
of the ionomer under whatever hydration conditions. Given that
the hydration itself can be valuably predicted using our simplified
hydration model, the potential of a new ionomer can be evaluated
based on only few experimental parameters: elastic modulus, dry
molar volume, and proton conductivity at low (dry state) and high
(in water) humidity.

CONCLUSION
We have presented a phenomenological model for the descrip-
tion of the hydration of ionomers. This model involves only two
parameters, related to physical properties of the ionomer: the
deformation parameter can be calculated from the elastic modulus
and the dry volume of the ionomer. The free volume parameter can

be estimated from the Bondi equation. Experimental and simu-
lated hydration isotherms for SPEEK are in remarkable agreement;
another strength of our simple model is that ionomer hydration
properties can be predicted. The lower difference between hydra-
tion at low and high humidity for cross-linked ionomers should be
an asset for higher durability under fuel-cell operation conditions
(frequent on-off cycles).

The proton conductivity of ionomers depends very strongly on
the hydration. Our approach based on the calculation of the appar-
ent proton mobility, plotted vs. proton concentration, allows the
determination of the percolation threshold and the ratio poros-
ity/tortuosity of the ionomer membrane. Furthermore, optimal
hydration conditions can be determined where good proton con-
ductivity and acceptable swelling can be realized simultaneously
in order to reach the required area specific resistance.
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