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Hypertension, a multifaceted cardiovascular disorder influenced by genetic,

epigenetic, and environmental factors, poses a significant risk for the

development of coronary artery disease (CAD) in individuals with type 2

diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone

modifications, DNA methylation, and microRNAs, play a pivotal role in

unraveling the complex molecular underpinnings of blood pressure regulation.

This review emphasizes the crucial interplay between epigenetic attributes and

hypertension, shedding light on the prominence of DNA methylation, both

globally and at the gene-specific level, in essential hypertension. Additionally,

histonemodifications, including acetylation andmethylation, emerge as essential

epigenetic markers linked to hypertension. Furthermore, microRNAs exert

regulatory influence on blood pressure homeostasis, targeting key genes

within the aldosterone and renin-angiotensin pathways. Understanding the

intricate crosstalk between genetics and epigenetics in hypertension is

particularly pertinent in the context of its interaction with T2DM, where

hypertension serves as a notable risk factor for the development of CAD.

These findings not only contribute to the comprehensive elucidation of

essential hypertension but also offer promising avenues for innovative

strategies in the prevention and treatment of cardiovascular complications,

especially in the context of T2DM.
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1 Introduction

Essential hypertension (EH) is a prevalent condition, affecting

around 95% of adults diagnosed with high blood pressure. EH

constitutes a substantial public health concern with considerable

economic implications, accounting for an annual healthcare

expenditure of approximately $50 billion in the United States

alone (1–3). In 2013, EH was responsible for more than 350,000

deaths in the United States, making it a leading cause of mortality

(2, 3). However, despite significant investments in healthcare, the

precise etiology of EH remains elusive, impeding progress in

treatment development. EH arises from a complex interplay of

environmental factors, genetics, and epigenetics, which collectively

influence biological pathways and contribute to the pathogenesis of

hypertension. Notably, EH represents a major risk factor for renal

injuries, cardiovascular pathologies, and cognitive dysfunction

(4, 5).

While earlier perspectives diminished the role of genetics in

hypertension, recent research has underscored the substantial

impact of genetic and epigenetic determinants on blood pressure

regulation and related conditions. Genome-wide association studies

(GWAS) have identified common genetic variants associated with

EH. However, owing to its polygenic nature, targeted, single-gene

therapies for EH remain unavailable (6, 7).

Epigenetics, which explores the dynamic interplay between

genetic factors and the environment, emerges as a critical player

in the regulation of blood pressure. Epigenetic changes can be

influenced by environmental stimuli such as nutrition, aging, and

pharmaceuticals, and importantly, these changes possess the

potential for reversibility (8, 9). This characteristic sets the stage

for a spectrum of treatment possibilities distinct from those for

genetic disorders. Epigenetics has garnered global attention, as

evidenced by initiatives like the International Human Epigenome

Consortium and the Human Epigenome Project (8, 10).

This comprehensive perspective aims to contribute to the

understanding of the intricate interplay between genetics,

epigenetics, and hypertension, with a specific focus on the

chromosomal locus 9p21.3, in the context of CAD development

in individuals with T2DM. The review focuses on the interaction

between epigenetics and hypertension, specifically examining the

role of DNA methylation, base methylation, gene methylation, and

histone modification in hypertension pathogenesis. Additionally,

the review discusses the therapeutic potential of miRNAs in

hypertension and their role as diagnostic biomarkers. It also

classifies epigenome modifications in hypertension based on

pathophysiology and explores the epigenetic interplay between

hypertension and CAD in T2DM. The review further investigates

the environmental influences on epigenetics and hypertension, the

relationship between pre-eclampsia, epigenetics, and hypertension,

and provides insights into future directions in this field. This review

focuses on discussing the role of microRNAs (miRNAs) and histone

modifications in hypertension, excluding studies on long non-

coding RNAs (LncRNAs).
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2 Exploring the genetic significance of
chromosomal locus 9p21.3 in
hypertension, CAD, and T2DM

In this context, our manuscript proposes important additions,

emphasizing the interaction of epigenetics and hypertension as a

critical factor in the development of coronary artery disease (CAD)

in type 2 diabetes mellitus (T2DM) (11). Specifically, we focus on

the chromosomal locus 9p21.3, a genomic risk zone for

cardiovascular diseases, which includes two distinct risk

haplotypes for ischemic heart disease (IHD) and T2DM (12).

These haplotypes, characterized by adjacent blocks of 50–100

single nucleotide polymorphisms (SNPs) separated by a

recombination peak, exhibit linkage disequilibrium ensuring non-

random joint inheritance for each disease (13). The potential

overlap of T2DM SNPs in the CAD block makes the 9p21.3 locus

a promising candidate for shared genetic risk for both CAD and

T2DM (14). This condition sets the stage for the mechanical linkage

of the 9p21.3 chromosomal locus to CAD and T2DM via ANRIL,

the product of the cyclin-dependent kinase inhibitor gene (CDK2A/

B) (15).

Moreover, the wide prevalence of risk haplotypes for

hypertension, IHD, and T2DM (up to 50% of representatives of

many populations) with a strong additive effect leads to at least 15%

of cases of IHD and T2DM, making the chromosomal locus 9p21.3

the largest known genomic source of morbidity (16). The

identification of a potential transcriptional regulatory mechanism

in this locus, induced by the long non-coding mRNA ANRIL,

suggests a common genetic signature for hypertension, CAD, and

T2DM, alongside common environmental risks and clinical

associations (17).

Additionally, the direct vascular and immunomodulatory

functions of ANRIL, accelerating several signaling pathways

(TNF-a-NF-kB-ANRIL and YY1-IL6/8), contribute to systemic

inflammation, indirectly influencing the development of

cardiometabolic diseases (18). This indicates a potential common

genetic signature of hypertension, IHD, and T2DM at the level of

the chromosomal locus 9p21.3 (16).

Furthermore, SNPs included in risk haplotypes for

hypertension, coronary heart disease, and T2DM may be

associated with differential expression of ANRIL splice variants

(19). Determining their significance for the population at the level

of significance for other populations could confirm the hypothesis

of their association with differential expression of ANRIL splice

variants for testing in subsequent studies (in vivo and in vitro) (20).

The locus 9p21.3, associated with risk haplotypes for

hypertension, ischemic heart disease (IHD), and T2DM, represents

a significant genetic source of morbidity, with potential implications

for shared genetic risk factors and common environmental

influences. Further research into the transcriptional regulatory

mechanisms of this locus, particularly the role of the long non-

coding mRNA ANRIL, may elucidate novel therapeutic targets and

diagnostic biomarkers for cardiometabolic diseases.
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3 Interaction between epigenetics
and hypertension

Epigenetics refers to heritable changes in gene expression that

occur without alterations in the DNA sequence. These changes are

mediated by various mechanisms, including DNA methylation,

histone modifications, and non-coding RNAs. Epigenetic

modifications play a crucial role in regulating gene expression

and have been implicated in the pathogenesis of various diseases,

including hypertension (Figure 1).

DNAmethylation is a well-established epigenetic mechanism in

mammals (21), involving the covalent attachment of a methyl group

to the 5’ position of a cytosine (C) within DNA (22). Genomic DNA

frequently comprises short sequences of guanine (G) and cytosine

dinucleotides linked by phosphodiester bonds, forming what are

known as ‘CpG islands’ (23). Hypermethylation of CpG sites,

typically occurring at cytosine bases, results in gene silencing.

These epigenetic marks also play a pivotal role in determining

active and inactive genomic regions by modulating the interplay

between transcription factors and DNA (24). However, it is

important to acknowledge that multiple cell types may exhibit

similar levels of methylation, giving rise to diverse phenotypic

expressions. Research has demonstrated a close association

between the onset and severity of hypertension and DNA

methylation levels, highlighting the imperative need for further

exploration in this domain (23).

It is noteworthy that patho-clinical investigations related to EH

and organ damage are often constrained by the limited availability

of relevant animal samples. As a consequence, peripheral blood

commonly serves as the preferred material for extensive human

cohort studies. Nevertheless, the progression of the disease and its

severity can influence the bio-metabolic processes governing DNA

methylation, resulting in altered methylation patterns across

different sample types (25). Some studies, such as the work by
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Kato et al., propose that blood and various tissues manifest

analogous methylation patterns, suggesting that DNA methylation

markers identified in blood mononuclear cells can serve as proxies

for methylation profiles in other tissues (26). Conversely,

investigations in rodents indicate that certain tissues may

display distinct methylation patterns in response to specific

pharmacological exposures. Hence, relying solely on the

evaluation of blood mononuclear cells as epigenetic indicators

may not consistently suffice for the assessment of diverse bodily

samples (26).
3.1 Methylation of DNA

DNA methylation is a fundamental epigenetic mechanism that

plays a crucial role in regulating gene expression. It involves the

addition of a methyl group to the cytosine residue of a CpG

dinucleotide, resulting in the formation of 5-methylcytosine.

DNA methylation is essential for normal development and

cellular differentiation, and aberrant DNA methylation patterns

have been implicated in various diseases, including EH.

DNA methylation can be categorized into two primary types:

gene-specific and global, depending on whether it pertains to the

methylation status of a specific gene region or encompasses the

overall level of 5-methylcytosine (5mC) across the entire genome

(27). The methylation of DNA serves a dual purpose: it contributes

to the preservation of genome integrity and exerts regulatory

control over gene expression at the mRNA level (28). A multitude

of studies have underscored the impact of DNA methylation on

diverse pathophysiological processes, including EH, prompting

extensive investigations into its role in hypertension and related

cardiovascular disorders (29, 30). For a comprehensive overview of

reported epigenetic modifications, such as DNA methylation,

during the course of EH, please refer to Table 1.
FIGURE 1

Epigenetic Modifications: Influence on Chromatin Structure and Gene Expression. DNA, wrapped around nucleosomes, comprises four pairs of
histone proteins. Histones are susceptible to various epigenetic modifications, including acetylation, methylation, phosphorylation, sumoylation, and
biotinylation. These modifications alter chromatin formation, leading to either an open (active) or closed (inactive) state, thereby modulating
transcriptional activity. DNA methylation directly impacts DNA structure, influencing gene transcription. The effect of DNA methylation depends on
the specific methylated site. miRNAs primarily target the 3’ UTR of mRNA (though 5’ targeting is possible), leading to the negative regulation of
protein production by mRNA degradation or post-transcriptional regulation of mRNA stability.
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In EH, studies have shown alterations in both global DNA

methylation levels and gene-specific DNA methylation patterns

(39). Global DNA methylation refers to the overall level of

methylation across the entire genome (40). Changes in global

DNA methylation levels have been observed in hypertension,

with some studies reporting global hypomethylation (41), while

others have reported hypermethylation (42). These changes in

global DNA methylation may contribute to the dysregulation of

genes involved in blood pressure regulation and vascular function.

Gene-specific DNAmethylation refers to the methylation status

of specific genes or genomic regions (43). In EH, aberrant DNA

methylation of genes related to the renin-angiotensin system (RAS),

endothelial function, and vascular smooth muscle contraction has

been reported (44). For example, hypermethylation of the

angiotensinogen (AGT) gene promoter has been associated with

increased blood pressure levels in EH patients (45).
3.2 Base methylation

About 3–4% of all cytosines in the genome, known as 5mC, are

distributed throughout the DNA structure (Figure 2). Research

efforts have revealed a connection between different pathological

conditions and specific mRNA expression patterns, as well as gene-

specific 5mC levels (46, 47). Furthermore, approximately 30 single

nucleotide polymorphism (SNP) variants associated with

hypertension have been identified via GWAS that are correlated

with methylation markers, affirming the involvement of DNA

methylation in EH (48). In parallel with 5mC, there exists a

derivative known as 5-hydroxymethylcytosine (5hmC), which

assumes a pivotal role in the demethylation process and is present

in genomic DNA. Analogous to 5mC, 5hmC is pervasive

throughout the mammalian genome, exhibiting distinct profiles

across various tissues (49). A substantial body of research supports

the role of 5hmC in gene regulation (50, 51). Additionally, a study

in rats has provided initial evidence of a substantial correlation

between hypertension and 5hmC levels (52). Nevertheless, current

data linking EH to DNA hydroxymethylation remains limited,
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necessitating further research to elucidate the function of 5hmC

in human EH.

The meticulous mapping of 5mC, which delineates DNA

methylat ion patterns, offers a valuable blueprint for

comprehending DNA functionality and stability. Previous

investigations on DNA methylation have established a connection

between 5mC levels and EH (53). Some studies have reported lower

levels of 5mC in the DNA of whole blood in hypertensive patients,

implying an inverse relationship between DNA methylation levels

and the severity of EH (54). Conversely, pre-eclampsia, a form of

hypertension occurring during pregnancy, has been positively

associated with DNA hypermethylation (55). These findings

strongly underscore the potential impact of DNA methylation on

the development of EH. Studies in young males have indicated that

DNA methylation may play a significant role in the development of

EH, with its effects influenced by age (56). Furthermore, a recent

animal study has demonstrated that cardiac hypertrophy,

considered a relative index of EH following pressure overload,

can be markedly ameliorated through the inhibition of DNA

methylation, thereby emphasizing the role of DNA methylation in

EH-associated cardiovascular damage in rat (32).

In summary, DNA methylation, particularly 5mC, is crucial in

the development of EH. It is linked to various pathologies, mRNA

expression patterns, and gene-specific 5mC levels. GWAS have

associated hypertension-related SNP variants with methylation

markers, supporting the role of DNA methylation in EH. Another

important modification, 5hmC, is also implicated in EH and gene

regulation, but further research is needed. Mapping 5mC patterns

helps understand DNA functionality and stability, providing

insights into potential EH treatments.
3.3 Gene methylation

Recent studies have primarily focused on investigating

methylation patterns within specific gene regions, with gene-

specific epigenetic modifications predominantly occurring within

genomic regions called CpG islands, often situated in gene promoter
TABLE 1 Review of epigenetic characteristics related to DNA methylation and hydroxyl-methylation in hypertension.

Epigenetic occurrence Target gene Severity Study case Effect Reference

Methylation of DNA 5mC High Human placenta Pre-eclampsia (31)

DNA hydroxyl-methylation 5mC High Rat heart Cardiac hypertrophy (32)

Gene-specific DNA methylation

HSD11B2 5mC High Human PBMCs Renal sodium reabsorption (33)

5mC Low Rat adrenal gland RAAS activation (34)

NKCC1 5mC Low SHR hearts and aorta Ionic transport (35)

ACE 5mC High Human, PBMCs
Rat liver and lungs
In vitro HepG2, HT29, HMEC-1, SUT

RAAS activation (36)

Atgr1a 5mC Low SHR endothelial cells RAAS activation (37)

PANX1 5mC High Heart and kidney in rat Vitamin D3 deficiency (38)
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regions (57). These CpG islands are found at the promoters of

approximately 40% of genes, while other genomic regions also

contain CpG sites Remarkably, in typical somatic cells, nearly 90%

of CpG islands may undergo methylation, but those within promoter

regions are relatively spared from such modifications (58, 59).

Hypermethylation of CpG islands, particularly in promoter

regions, plays a pivotal role in repressing gene transcription, as

evidenced by numerous human and animal studies that consistently

demonstrate an inverse relationship between 5mC levels and gene

expression (60). It is important to note, however, that this correlation

is not universally consistent and remains a subject of ongoing debate.

Earlier research indicated a positive association between elevated

levels of 5hmC and increased gene expression, suggesting that lower

levels of 5mC result in gene silencing, while elevated levels of 5hmC

are linked to gene activation (52, 61).

Furthermore, methylation of DNA at specific gene loci can

influence the interplay between gene transcription factors and other

epigenetic factors, such as histone modifications, leading to diverse

expression patterns of the affected genes (62). Numerous genes

documented in the literature have highlighted the role of epigenetic

alterations in modulating biological and molecular processes
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relevant to EH. For example, the stimulation of sympathetic

activity and the activation of the RAS, leading to altered sodium

reabsorption in the kidney, are significant contributors to EH (63).

Several RAAS genes are frequently studied in the context of EH.

Additionally, the entire RAAS components can be found in the

brain and may exhibit dysfunctional activity in various pathological

conditions, including EH. In this context, the HSD11B2 gene,

responsible for cortisol regulation, may experience suppression

due to promoter hypermethylation, resulting in abnormal cortisol

levels and the onset of EH (64). Studies in hypertensive rat models

have further indicated a direct association between hypertension

and hypermethylation of HSD11B2 (65). Moreover, in newborns,

hypermethylation of the HSD11B2 gene, coupled with reduced

HSD11B2 mRNA levels, suggests a potential mechanism for EH

through abnormal renal sodium reabsorption (66–68).

Research has also demonstrated that DNA methylation in

promoters can be modulated to enable the expression of genes

such as Cytochrome P450 Family 11 Subfamily B Member 2

(CYP11B2), which plays a significant role in blood pressure

regulation (69). In spontaneous hypertensive rats, hypomethylation

in the gene promoter of the cotransporter, Na+/K+/2Cl (NKCC),
FIGURE 2

The biochemical pathways of 5-hydroxymethylcytosine (5hmC) in mammalian DNA. The synthesis of 5hmC is initiated by the TET protein-mediated
oxidation (hydroxylation) of 5-methylcytosine (5mC). TET proteins along with co-factors Fe(II) and ascorbate generate 5hmC. Subsequent TET-
driven oxidation of 5hmC consistently results in the formation of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). These oxidized forms are
then replaced with cytosine (C) through thymine-DNA glycosylase (TDG)-mediated base excision repair (BER). Additionally, DNA methyltransferases I
and III (DNMTs I and III) facilitate the transfer of a methyl group to cytosine, producing 5mC.
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leads to an increase in NKCC levels, correlated with postnatal

hypertension. These findings collectively illustrate that dynamic

changes in DNA methylation can influence gene expression,

thereby impacting blood pressure regulation (70).

The RAAS pathway occupies a central role in EH, with genetic

variants and altered epigenetic regulation of key genes in this

pathway known to exert regulatory control over EH (71).

Additionally, other genes associated with EH exhibit differential

DNA methylation patterns associated with EH risk in a sex-, age-,

and therapy-specific manner (Table 2).

In summary, gene-specific DNA methylation and its impact on

various biological and molecular pathways could play a pivotal role

in EH. As a result, epigenetic markers hold the potential to estimate

EH levels, associated risks, and enhance our understanding of

its pathogenesis.
3.4 Histone modification

Nucleosomes are the basic units of chromatin, consisting of DNA

wrapped around histone proteins. Histones are a family of proteins

that play a crucial role in DNA packaging and gene regulation.

Histone modifications, such as acetylation, methylation,

phosphorylation, and ubiquitination, alter the structure of

chromatin and regulate gene expression. These modifications can

affect the accessibility of DNA to transcription factors and RNA

polymerase, thereby influencing gene transcription.

Post-translational modifications occurring at the N-terminal

histone tails of genomic DNA, such as acetylation, methylation,

ubiquitination, and phosphorylation, represent integral epigenetic
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regulators associated with hypertension (23, 76). These histone

modifications exert a profound influence on chromatin dynamics,

often with discernible consequences. For example, histone

acetylation primarily facilitates gene transcription, while histone

deacetylation leads to gene silencing. However, such interactions

are not universally reliable and can be context-dependent.

Methylation of lysine at position 79 (H3K79) represses gene

transcription, whereas methylation of histone arginine promotes

it. Additionally, hypermethylation of lysine 9 (K9) results in gene

suppression, whereas its hypomethylation allows gene transcription

(77, 78). In these modifications, the interplay between epigenetic

elements and histone tails controls DNA accessibility across the

histones, thereby modulating the transcription of relevant genes.

Moreover, these dynamics create an interactive environment for

chromatin-modifying enzymes, enabling the specific regulation of

gene expression (79).

Earlier studies have suggested that epigenetic elements can be

passed down across generations (80). Recent research has even

offered paternal epigenetic alterations in histones as potential

indicators of offspring fertility, thereby proposing a suitable

model for understanding how paternal epigenetic patterns can

impact the health and development of offspring (81).

The latest investigations in hypertensive animal models,

particularly rats, have indicated associations between histone

modifications and the upregulation of ACE1 (82). A significant

overexpression of ACE1 has also been reported in hypertensive

offspring from lipopolysaccharide-treated rats, linked to histone H3

acetylation (H3Ac) within the ACE1 gene promoter region (83).

Similarly, some studies have reported that hypertensive rats

exhibited reduced levels of a specific gene (HSD11B2), attributed

to the downregulation of H3K36 trimethylation, underscoring the

role of histone modification in the regulation of chromatin structure

in EH (83).

Studies conducted with human umbilical vein endothelial cells

(HUVECs) have shown that hyperacetylation of H4K12 and H3K9,

as well as di- and trimethylation of H3K4 at the promoter of the

iNOS gene, contributes to an increase in blood pressure by

modulating iNOS gene expression (84–86). These findings reveal

that changes in iNOS mRNA gene expression due to histone

acetylation can play a fundamental role in EH.

In this context, Cho et al. have demonstrated a correlation

between hypomethylation and histone H3 in NKCC1 mRNA and

protein levels following angiotensin II-triggered upregulation,

indicating that epigenetic modifications can modulate the

transcription of NKCC1 and related renal sodium reabsorption to

influence blood pressure (87). Trouble-makers of telomeric silencing

(TOT) have been linked to hypertension (88, 89). Specifically,

TOT1a interaction with leukemia chromosome 9 (AF9) leads to

H3K79 hypermethylation, suppressing the renal epithelial sodium

channel (ENaC-a) and maintaining lower or normal blood pressure.

However, aldosterone-mediated disruption of TOT1a-AF9

interaction results in H3K79 hypomethylation, leading to the

activation of ENaC-a and ultimately, the development of severe

hypertension (90).

Furthermore, Mehrotra et al. have reported that EH-mediated

end-organ injuries, such as cardiac hypertrophy in rats subjected
TABLE 2 Epigenetic regulation of genes associated with essential
hypertension (EH) in human (54, 72–75).

Gene DNA methyla-
tion levels

Gene
expression

EH
risk

RAAS
pathway genes

Altered Upregulated High

Estrogen
receptor-a

Altered Upregulated High

PANX1 Altered Upregulated High

SULF1 Altered Upregulated High

NET Altered Upregulated High

TIMP3 Altered Upregulated High

SERPINA3 Altered Upregulated High

CUL7 Altered Upregulated High

ADD1 Altered Upregulated High

Mfn2 Altered Upregulated High

IL-6 Altered Upregulated High

TLRs Altered Upregulated High

IFN-g Altered Upregulated High

GCK Altered Upregulated High
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to a hypertensive condition and salt stimulation, result from

higher levels of H3K4me3 and AcH4, alongside reduced levels

of H3K9me3 and H3K27me3 in the overexpressed atrial

natriuretic peptide (ANP) and brain natriuretic peptide (BNP)

promoters (91).

Moreover, the central nervous system plays a crucial role in

regulating histone modifications that affect arterial blood pressure.

For example, the induction of melatonin neurons via H3 acetylation

leads to increased hypertension in the medulla of the ventrolateral

region through an upsurge in brainstem outflow, contributing to

EH (92). Sympathetic nervous system-renal interactions direct

hypertension in the presence of high salt levels. The activation of

the sympathetic nervous system-renal axis can stimulate sodium

retention, leading to both low and high levels of sodium

reabsorption and increased systemic renin release, along with

decreased kidney blood flow (93, 94). Additionally, the

downregulation of the gene with-no-lysine kinase-4 (WNK4) is

associated with salt-sensitive hypertension in rodents (95), and this

downregulation is linked to histone modifications (96–98). Mu et al.

have indicated that salt-induced acetylation of H3 and H4 results in

WNK4 suppression, while concurrent overexpression of NCC leads

to salt retention and subsequent hypertension (99). High-salt diets

can also induce hypertension, which is related to lysine-specific

demethylase-1 (LSD1) deficiency and the consequent

hypermethylation of H3K9 (99).

Post-translational modifications occurring on DNA,

particularly at the N-terminal histone tail sites, encompass

processes such as ubiquitination, acetylation, methylation, and

phosphorylation. These modifications play a pivotal role as

epigenetic regulators associated with hypertension (88, 100). Each

specific histone modification exerts a unique influence on

chromatin structure, often yielding similar outcomes. For

instance, histone acetylation predominantly facilitates gene

transcription, while histone deacetylation tends to favor gene

silencing. However, it is essential to acknowledge that this

correlation is not universally consistent and remains a subject of

ongoing debate. H3K79 acts as a repressor of gene transcription,

whereas methylation of histone arginine can increase transcription.

Furthermore, hypermethylation of histone K9 results in gene

suppression, while its hypomethylation triggers gene transcription

(82, 101). These modifications involve a tight interplay between

epigenetic factors and histone tails, influencing the extent to which

DNA is coiled around histones and, in turn, controlling the

transcription of related genes. These dynamics also create sites of

interaction for chromatin-altering enzymes, enabling the activation

of gene expression (102). Additionally, past studies suggest the

possibility of epigenetic markers being inherited across generations

(103). A recent investigation even proposes a paternal mode of

histone inheritance based on epigenetics, capable of impacting the

fertility and health of future offspring (81).

In conclusion, histone acetylation and methylation can regulate

chromatin and, subsequently, gene expression (Table 3). However,

despite the evolving techniques and tools, the clinical application

of histone epigenetics in prognostic and diagnostic approaches

for EH remains challenging due to the complex nature of

histone modifications.
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4 Role of miRNAs and epigenetics in
hypertension pathogenesis: a
brief overview

The miRNAs are small, non-coding RNA molecules that play a

crucial role in post-transcriptional regulation of gene expression.

They are typically about 21–23 nucleotides in length and function

by binding to the 3’ untranslated region (UTR) of target messenger

RNA (mRNA), leading to mRNA degradation or inhibition of

translation. This process allows miRNAs to fine-tune the

expression of target genes, impacting various cellular processes

such as proliferation, differentiation, and apoptosis. In the context

of EH, miRNAs have been implicated in the regulation of genes

involved in blood pressure control and vascular function.

Transitioning to the realm of major blood pressure-regulating

pathways, the RAAS stands as a well-established pathway, wherein

angiotensin II governs fluid balance and blood pressure by

stimulating aldosterone production. Research indicates that miR-

21, a microRNA regulated by the RAAS-modulated AGT gene, may

trigger aldosterone production in human adrenocortical cells under

in vitro conditions, hinting at the potential role of miR-21 in human

hypertension (104). Indeed, evidence points to a close connection

between miR-21 and organ damage associated with hypertension

(105). Moreover, miR-27a and miR-27b have been linked to the

downregulation of ACE1 gene expression, while reduced levels of

miR-330 can upregulate angiotensin II type-2 (AT2) receptor gene

translation, thereby affecting the RAAS pathway in the fetal brain

under malnourished conditions (106) (Table 4).

Experimental research conducted in vitro using HUVECs has

illuminated that hyperacetylation of H4K12 and H3K9, alongside

methylation (di- and tri-) of H3K4 within the eNOS gene promoter,

triggers an increase in eNOS gene expression, which plays a pivotal

role in blood pressure regulation (85, 111). This suggests that

alterations in eNOS mRNA levels in response to histone

acetylation may play a pivotal role in the context of EH.

In summary, the intricate web of genetic and metabolic

signaling involved in EH implies the engagement of numerous

miRNAs in the modulation of key genes. Consequently, based on

our recent insights, miRNAs emerge as promising new biomarkers

for unraveling the pathogenesis of EH, potentially leading to future

clinical applications.
TABLE 3 Summary of histone modifications and their role in essential
hypertension (EH) (23, 76–78).

Histone
modification

Role in EH

Histone
acetylation

Promotes gene transcription by loosening
chromatin structure

Histone
methylation

Can activate or repress gene expression depending on the
specific lysine residue and methylation state

Histone
ubiquitination

Plays a role in DNA damage repair and gene
expression regulation

Histone
phosphorylation

Regulates chromatin condensation and gene expression
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In a specific study, Cytoscape software was employed to

construct 36 pairs of co-expression networks involving miRNAs

and mRNAs, comprising 22 miRNAs and 25 mRNAs. Among

these, 3 mRNAs (ARID3A, KIAA0513, and LRPAP1) exhibited

connections with 3 distinct miRNAs, while 4 mRNAs (ADARB1,

RASGRP1, ARF3, and FUCA2) showed associations with two

miRNAs each. The remaining 18 mRNAs were linked to one

miRNA each. Notably, this analysis revealed that LRPAP1,

ARID3A, and KIAA0513 may have the potential to influence

hypertension. A specific relationship was observed between has-

miRNA-5589 and three target mRNAs. Additionally, miRNAs such

as hsa-miR-539, hsa-miR4436b-3p, hsa-miR-4500, hsa-miR-130b-

5p, hsa-miR-4458, hsa-miR-4424, hsa-miR-497–3p, hsa-miR-4452,

hsa-miR374b-5p, and hsa-miR-5584–3p exhibited connections

with 2 target mRNAs each, while the remainder showed

connections with 1 target mRNA. This suggests that hsa-miRNA-

5589–5p may play a particularly significant role in the onset of

hypertension. In conclusion, these results indicate that mRNAs

KIAA0513, LRPAP1, ARID3A, and hsa-miRNA-5589–5p can be

considered as diagnostic biomarkers for patients with hypertension.

Furthermore, the combination of hsa-miRNA-5589–5p and

LRPAP1 may have diagnostic utility for hypertension. To explore

the potential upstream regulation of these three key genes, the

modulatory interaction between transcription factors and LRPAP1,

ARID3A, and KIAA0513 was investigated (107–110). Among the

123 mRNAs associated with hypertension, only the CEBPA

transcription factor gene was identified. Subsequent exploration

of the public chromatin immunoprecipitation sequencing (ChIP-

seq) Cistrome database (http://cistrome.org/db/#/) revealed the

presence of CEBPA binding peaks upstream of both LRPAP1 and

ARID3A. These findings further support the notion that CEBPA

may play a role in regulating LRPAP1 and ARID3A in individuals

with hypertension (112).

In summary, hypertension, a prevalent cause of cardiovascular

disease worldwide, affects millions of people globally. Detecting

hypertension in its early stages is crucial for effective blood pressure

management. Moreover, miRNA and mRNA expression profiles

were investigated for correlation between miRNA-mRNA networks

and the development of hypertension. Firstly, Weighted Gene Co-

expression Network Analysis (WGCNA) was employed to identify

123 mRNAs relevant to hypertension. Subsequently, Gene
Frontiers in Endocrinology 08
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were performed on these selected

mRNAs. The results indicated that these mRNAs were enriched in

terms related to interleukin 4 (IL4) regulation, signaling adaptor

activity, and pathways such as tuberculosis, platelet activation, and

the pentose phosphate pathway. Previous studies have linked

tuberculosis infection to hypertension, suggesting a connection

between these pathways and hypertension. Platelet activation is

also related to hypertension, and the pentose phosphate pathway

has relevance owing to its function in managing reactive oxygen

species (ROS), which can contribute to oxidative stress-related

hypertension. These findings support the involvement of the

screened mRNAs in hypertension.

Subsequently, 35 Differentially Expressed miRNAs (DEMs)

were identified between hypertension patients and healthy

individuals, and 25 target mRNAs for these DEMs were

identified, forming a miRNA-mRNA co-expression network.

Among these mRNAs, ARID3A, LRPAP1, and KIAA0513, along

with hsa-miRNA-5589–5p, demonstrated associations with

hypertension. These could hold promise as suitable biomarkers

for patients with hypertension. KIAA0513 has been linked to

neuroplasticity, which can contribute to hypertension. ARID3A, a

member of the ARID family, is applied as a bimolecular target for

drugs in order to treat diseases, particularly hypertension. LRPAP1,

involved in the suitable localization and folding of LDL receptor-

related protein (LRP1), has known associations with hypertension

and angiogenesis, a potential avenue for hypertension treatment.

Additionally, public data revealed that CEBPA binding peaks were

present upstream of LRPAP1 and ARID3A, strengthening the

possibility of CEBPA’s regulatory role in hypertension (113). The

miRNA-mRNA network constructed in our study may serve as a

valuable diagnostic biomarker for hypertension patients. While

miRNA-mRNA networks have previously been utilized to detect

markers for various diseases, including hypertension, the regulatory

networks involving LRPAP1, KIAA0513, and ARID3A have been

less explored. Therefore, the findings of mentioned study provide

further evidence of the potential diagnostic utility of these mRNAs

and miRNAs in hypertension.
5 Therapeutic potential of miRNAs
in hypertension

Currently, available therapies for pulmonary arterial

hypertension (PAH) primarily focus on managing its symptoms

rather than addressing its root causes, leading to less-than-optimal

treatment outcomes and high mortality and morbidity rates

associated with PAH. Thus, gaining a comprehensive

understanding of the epigenetic mechanisms underlying PAH is

imperative for the development of more effective treatments. Recent

evidence has increasingly emphasized the significant role of

miRNAs and long non-coding RNAs (lncRNAs) in the

pathogenesis of PAH. Further research is essential to unlock the

potential for innovative therapeutic approaches.

One study explored a treatment approach involving the

administration of synthetic miR-204 to rats induced with PAH
TABLE 4 Role of miRNAs in essential hypertension (EH): Target genes
and effects.

miRNA Effect on EH

miR-21 Stimulates aldosterone
production, potentially
contributing to
hypertension (104)

miR-27a; miR-27b; miR-330 Downregulates ACE1 gene
expression, affecting the
RAAS pathway (106)

miR-5589; miR-539; miR-4436b-3p; miR-4500;
miR-130b-5p; miR-4458; miR-4424; miR-497–
3p; miR-4452; miR-374b-5p; miR-5584–3p

Associated with
hypertension, potential
diagnostic biomarker
(107–110)
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through monocrotaline (MCT). The intra-tracheal nebulization of

synthetic miR-204 led to a reduction in pulmonary arterial blood

pressure, decreased thickness of pulmonary arterial walls, and a

decline in ventricular wall thickness. Importantly, this treatment

resulted in a significant reduction in the activation of the STAT3–

NFAT signaling pathway, leading to reduced proliferation and

increased susceptibility to apoptosis in pulmonary arterial smooth

muscle cells (PASMCs). Additionally, the downregulation of miR-

204 in the buffy coat suggests its potential utility as a diagnostic

marker for PAH (114).

Intriguing research investigated the impact of exosomes on

animals (mice) with hypoxia-induced PAH and human pulmonary

artery endothelial cells (hPAECs). Exosomes play a pivotal role in

facilitating intercellular communication through paracrine

signaling. In this study, researchers isolated exosomes from

mesenchymal stromal cells (MSCs) derived from Wharton’s jelly

in human umbilical cords and mouse bone marrow. These

exosomes, termed MSC-derived exosomes (MSDEXs), were

employed for treatment. MSDEX treatment increased the

concentration of miR-204, a molecule typically decreased in PAH

patient cells. Furthermore, this treatment inhibited the STAT3

signaling pathway, known to induce the miR-17/92 cluster while

suppressing mRNA expression of miR-204 (115). This innovative

therapeutic strategy enabled the modulation of various molecular

pathways related to PAH, particularly those associated with

miRNA dysfunction.

In another study, researchers transfected cells with miR-124

molecules, resulting in a reduction of lactic acid and glycolysis

concentration, restoring them to normal levels. This transfection

also normalized the rate of cell proliferation (116).

Chen et al. focused on modulating miR-29 levels in PASMCs

obtained from transgenic mice with hereditary PAH (HPAH)

resulting from a BMPR2 mutation (117). Over a two-week course,

these mice received injections of anti-miR-29 (amiR-29). This

therapeutic approach notably reduced pulmonary vascular

resistance (PVR) and systolic pressure. It also reversed the

enhanced muscularization observed in HPAH-affected mice.

Furthermore, amiR-29 administration had beneficial effects on the

molecular characteristics of the PASMCs, reducing insulin

resistance and improving mitochondrial morphology, which is

often compromised in HPAH (117).

Potus et al. restored normal angiogenesis in examined cells by

increasing the concentration of miR-126 (118). In a 2015 study,

they successfully corrected impaired angiogenesis in endothelial

cells from skeletal muscles and increased microcirculation density

through transfection with a miR-126 mimic. Additionally, in a 2015

study, scientists restored vascular density in cardiomyocytes

obtained from PAH patients through miR-126 administration.

Intravenous injection of the miR-126 mimic demonstrated

advantages for rats with MCT-induced PAH, leading to

improvements in ventricular performance and cardiac outcomes

on echocardiography in the rodents after two weeks of such

treatment (118).

Overall, these findings demonstrate the therapeutic potential of

miRNAs and other epigenetic modifications in the treatment of
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hypertension. Further research is needed to fully elucidate the

mechanisms involved and to develop effective therapeutic

strategies for hypertension and related conditions.
6 miRNAs as diagnostic biomarkers
in hypertension

Circulating miRNAs have garnered significant attention not

only for their regulatory functions but also due to their accessibility

and remarkable stability. As a result, these circulating miRNAs have

emerged as promising diagnostic biomarkers for various

pathological conditions, including cardiovascular diseases (119).

In a study conducted by Matshazi et al., an increased expression

of miR-182–5p and miR-126–3p was notably observed in

individuals with hypertension, whether screen-detected or

previously diagnosed, in comparison to normotensive individuals.

Nevertheless, significant differences in the mRNA levels of miR-

30a-5p, miR-30e-3p, and miR-1299 were not detected between

normotensive individuals and those with detected hypertension.

Multivariable logistic regressions did not reveal an association

between hypertension and the expression of miR-30e-3p and

miR-1299. However, they did establish a connection between the

expression of miR-126–3p, miR-182–5p, and miR-30a-5p with both

screen-detected and previously known hypertension, especially in

the latter group. This study, conducted within an African

population, is significant as it represents the first instance of

identifying differential expression of miRNAs in whole blood

based on blood pressure status. These miRNAs may serve as a

potential panel of diagnostic biomarkers for hypertension.

Moreover, the research reaffirmed prior findings concerning miR-

126 and the miR-30 family, highlighting their potential involvement

in hypertension development. Further exploration of these non-

coding RNAs may open new avenues for prognosis and therapy in

the context of cardiovascular diseases (120).

In another study, Yang et al. evaluated miR-505 as a prospective

diagnostic biomarker for hypertension. Their findings provided

evidence of miR-505’s prognostic relevance in hypertension-

related inflammation. Clinical data indicated a positive

correlation between plasma levels of miR-505, systolic blood

pressure, and CRP. CRP serves as an inflammatory marker linked

to target organ damage in hypertensive patients, such as vascular

alterations and cardiovascular events. The positive association of

plasma miR-505 with CRP aligns with clinical outcomes suggesting

miR-505’s pro-inflammatory role, further substantiating its link to

systemic inflammation in hypertension (119).

Furthermore, a study led by Charkiewicz and colleagues

examined 88 men with hypertension, assessing various miRNAs

in their serum levels. Elevated levels of miR-145–5p, miR-1–3p, and

miR-423–5p pointed to the potential involvement of these specific

miRNAs in hypertension. It is important to note that limited studies

have explored this area, making comparisons with existing

literature somewhat challenging. MiR-145–5p and miR-1–3p are

believed to safeguard vascular smooth muscle cells by regulating

processes related to proliferation and migration. Interestingly,
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circulating miR-423–5p levels were found to be reduced shortly

after a severe myocardial infarction, followed by an increase after

five months in the same group of patients, highlighting the dynamic

nature of miRNA levels. Discrepancies in miRNA levels among

various research centers may stem from differences in study

methods, patient selection, age, sex, or ethnicity (121). Liang et al.

assessed 1,141 miRNAs in two subgroups of genotype-positive

hypertension patients and identified 20 miRNAs with potential

significance in patients with hypertension (122).
7 Epigenome modifications in
hypertension: a classification based
on pathophysiology

7.1 Salt-sensitive and salt-
resistant hypertension

Salt-sensitive hypertension is characterized by an exaggerated

blood pressure response to changes in salt intake, while salt-

resistant hypertension is less affected by salt intake (123). Recent

studies have suggested that epigenetic modifications, particularly

DNA methylation, may play a role in the development of salt-

sensitive hypertension by regulating genes involved in sodium

handling and blood pressure regulation (23). Understanding the

epigenetic basis of salt-sensitive and salt-resistant hypertension

could lead to the development of targeted therapies that modulate

these epigenetic mechanisms to treat or prevent hypertension based

on individual salt sensitivity (124).
7.2 RAS-dependent hypertension

The RAS plays a crucial role in blood pressure regulation, and

epigenetic modifications have been implicated in its dysregulation in

hypertension (125). DNA methylation and histone modifications

have been shown to regulate the expression of genes in the RAS, such

as AGT and ACE, influencing blood pressure control (126). Targeting

epigenetic modifications in the RAS could be a promising approach

for the treatment of RAS-dependent hypertension (127). Drugs that

modulate DNA methylation or histone acetylation patterns could

potentially restore RAS balance and reduce blood pressure (128).
7.3 Vascular function-
dependent hypertension

Epigenetic modifications have also been implicated in the

regulation of vascular function in hypertension (82). Changes in

DNA methylation and histone modifications can alter the

expression of genes involved in vascular smooth muscle

contraction, endothelial function, and vascular remodeling,

contributing to hypertension development (129). Future research

should focus on elucidating the specific epigenetic changes

associated with vascular function-dependent hypertension and
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developing targeted therapies to restore vascular function and

reduce blood pressure.
8 Epigenetic interplay between
hypertension and coronary artery
disease in T2DM

8.1 Epigenetic links between hypertension
and CAD

8.1.1 Shared pathways
Recent studies have highlighted the role of epigenetic

modifications, such as DNA methylation and histone

modifications, in the regulation of endothelial function in both

hypertension and CAD (130). Aberrant DNA methylation patterns

in genes related to endothelial function, such as eNOS and ET-1,

have been associated with endothelial dysfunction, a common

feature of both conditions (131). Epigenetic changes, particularly

histone modifications and non-coding RNAs, have been implicated

in the regulation of inflammatory pathways in hypertension and

CAD (130). For example, miRNAs have been shown to modulate

the expression of inflammatory genes, such as IL-6 and TNF-alpha,

contributing to inflammation in both conditions (132). Epigenetic

modifications, including DNA methylation and histone acetylation,

have been linked to oxidative stress, a key mechanism underlying

endothelial dysfunction and vascular damage in hypertension and

CAD (133). These epigenetic changes can alter the expression of

genes involved in antioxidant defense mechanisms, exacerbating

oxidative stress in both conditions (134).

8.1.2 Epigenetic biomarkers
Recent studies have identified specific DNA methylation

changes associated with both hypertension and CAD, suggesting

that DNA methylation patterns may serve as potential biomarkers

for cardiovascular risk assessment in individuals with T2DM (135).

For example, hypermethylation of the ACE gene has been linked to

increased risk of hypertension and CAD (136). Histone

modifications, such as acetylation and methylation, have also

been proposed as potential biomarkers for cardiovascular risk in

individuals with T2DM (137). Altered histone acetylation patterns

in genes related to inflammation and oxidative stress have been

associated with increased risk of hypertension and CAD (138).
8.2 Epigenetic factors in the development
of CAD in T2DM

8.2.1 Synergistic effects
Recent evidence suggests that the combination of hypertension,

epigenetic modifications, and T2DM can lead to a greater risk of

developing CAD than each factor alone (139). The synergistic

effects of these factors may involve complex interactions between

genetic and environmental factors, leading to dysregulation of

pathways related to endothelial function, inflammation, and
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oxidative stress (140). Epigenetic modifications associated with

hypertension and T2DM, such as DNA methylation and histone

modifications, may interact synergistically to alter gene expression

patterns related to CAD development (141). For example,

hypermethylation of genes involved in lipid metabolism and

endothelial function may exacerbate atherosclerosis in individuals

with both conditions (142).

8.2.2 Clinical implications
Recognizing the synergistic effects of hypertension, epigenetic

modifications, and T2DM on CAD development is crucial for

effective risk assessment and management strategies (143).

Clinicians should consider these factors when evaluating

cardiovascular risk in patients with T2DM. Understanding the

epigenetic basis of hypertension as a risk factor for CAD in T2DM

opens up new avenues for therapeutic interventions. Targeting

specific epigenetic pathways implicated in CAD pathogenesis may

offer novel therapeutic strategies to reduce cardiovascular risk in this

population. For example, drugs that modulate DNA methylation or

histone acetylation patterns could potentially be used to prevent or

treat CAD in individuals with T2DM and hypertension (144).
8.3 Future directions

Future studies should aim to elucidate the specific epigenetic

changes that contribute to the development of CAD in individuals

with hypertension and T2DM. By identifying these changes,

researchers can gain insights into the underlying mechanisms of

CAD in this population and identify potential therapeutic targets.

Additionally, these studies should focus on identifying epigenetic

biomarkers that can be used for risk stratification in individuals

with hypertension and T2DM. These biomarkers could help

clinicians identify patients at higher risk of developing CAD and

tailor treatment strategies accordingly.

Understanding the epigenetic basis of hypertension and CAD in

individuals with T2DM may pave the way for precision medicine

approaches. These approaches could target specific epigenetic pathways

to reduce cardiovascular risk in this population. For example, drugs

that modulate DNA methylation or histone modifications could be

developed to target these pathways. Future studies should focus on

validating epigenetic biomarkers that have been identified as potential

targets for precision medicine approaches. Validation studies will be

crucial in determining the effectiveness of these biomarkers in

predicting CAD risk and guiding treatment decisions.

The concept of personalized medicine, which considers individual

genetic and epigenetic profiles, holds promise for the development of

targeted therapies for CAD in patients with T2DM and hypertension.

Future research should focus on identifying specific epigenetic

signatures associated with CAD in this population and developing

personalized treatment approaches based on these signatures. However,

the implementation of personalized medicine approaches in clinical

practice may present challenges, including the need for robust

validation studies, development of cost-effective testing methods, and

integration of genetic and epigenetic data into clinical decision-making.
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9 Environmental influences on
epigenetics and hypertension

9.1 Diet influences on epigenetics
and hypertension

Diets rich in nutrients such as folate, vitamin B12, and other

methyl donors can influence DNAmethylation patterns, potentially

affecting genes involved in blood pressure regulation (145).

Conversely, diets high in salt or fat may lead to epigenetic

changes that contribute to hypertension (146). Studies have

shown that dietary patterns, such as the Dietary Approaches to

Stop Hypertension (DASH) diet, which is rich in fruits, vegetables,

and low-fat dairy products, can lead to changes in DNA

methylation associated with lower blood pressure (147).
9.2 Pollution influences on epigenetics
and hypertension

Exposure to environmental pollutants, such as particulate

matter, polycyclic aromatic hydrocarbons (PAHs), and heavy

metals, can alter DNA methylation patterns and gene expression,

potentially contributing to the development of hypertension (148).

Epidemiological studies have linked exposure to air pollution with

changes in DNA methylation of genes related to inflammation and

oxidative stress, which are implicated in hypertension (149).
9.3 Ethnicity and geography influences on
epigenetics and hypertension

Ethnicity and geographic location can impact epigenetic

patterns through differences in lifestyle, diet, cultural practices,

and environmental exposures, all of which may contribute to

variations in hypertension prevalence among different

populations (23). Studies have shown ethnic differences in DNA

methylation patterns associated with hypertension-related genes,

suggesting that genetic and environmental factors unique to certain

populations may play a role in hypertension disparities (150).
10 Relationship between pre-
eclampsia, epigenetics,
and hypertension

Pre-eclampsia is a hypertensive disorder that occurs during

pregnancy and is characterized by high blood pressure and

proteinuria (151). It shares some pathophysiological features with

EH, suggesting a potential common etiology involving genetic and

epigenetic factors (152). Epigenetic modifications, such as DNA

methylation, histone modifications, and non-coding RNA

expression, play a crucial role in the pathogenesis of pre-

eclampsia (153). These epigenetic changes can alter the
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expression of genes involved in vascular function, inflammation,

and placental development, contributing to the development of

hypertension in pre-eclamptic women (154). Current research in

this field has focused on elucidating the specific epigenetic changes

associated with pre-eclampsia and their role in the pathogenesis of

the disorder (155). Studies have identified differential DNA

methylation patterns in placental tissue and maternal blood of

women with pre-eclampsia compared to healthy pregnant women,

suggesting that these epigenetic changes may contribute to the

development of the disorder (156). Recent research has also

provided insights into the pathogenesis of pre-eclampsia,

highlighting the role of aberrant placentation, oxidative stress,

and immune dysregulation (157). These processes are influenced

by epigenetic mechanisms, further implicating epigenetic factors in

the development of hypertension in pre-eclampsia. Further research

is needed to unravel the complex interplay between genetic and

epigenetic factors in pre-eclampsia and hypertension. Longitudinal

studies that follow women with pre-eclampsia beyond pregnancy

may provide valuable insights into the long-term effects of

epigenetic changes on hypertension risk later in life.
11 Conclusion

The amalgamation of evidence gleaned from diverse databases

provides crucial insights into EH, a multifaceted condition

intricately regulated by multiple genes. These genes undergo

intricate control through diverse epigenetic mechanisms,

including histone modifications, DNA methylation, and miRNAs.

A noteworthy proportion of EH-associated genes harbor CpG sites

susceptible to DNA methylation and are subject to the regulatory

influence of various miRNAs, thereby being responsive to a

spectrum of epigenetic determinants. The synergistic interplay of

these epigenetic modifications holds immense potential for

advancing the diagnostic and therapeutic paradigms of EH.

Advanced technologies such as Genome-Wide Association Studies

(GWAS) and Epigenome-Wide Association Studies (EWAS) empower

the exploration of epigenetic and genetic variations across different

forms of hypertension. Through these methodologies, novel loci

influencing blood pressure regulation have been unveiled, with

ongoing research poised to uncover further insights. The expansive

realm of epigenetics continuously uncovers additional hereditary

variations intertwined with hypertension.

In a concerted effort to unravel the intricate crossroads of

genetic and epigenetic regulatory elements, researchers aspire to

deepen their comprehension of hypertension’s pathogenesis, paving

the way for personalized therapeutic interventions. High-

throughput techniques, including whole-genome and exome

sequencing, offer a holistic perspective for the simultaneous

exploration of multiple risk variants.

Understanding the role of environmental influences on

epigenetics is essential for elucidating the mechanisms underlying
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hypertension. By considering the impact of diet, pollution, and

ethnicity on epigenetic modifications, we can gain a more

comprehensive understanding of the multifactorial nature of

hypertension and develop more targeted strategies for its

prevention and management.

In conclusion, a comprehensive understanding of hypertension’s

risk factors, incorporating both epigenetic and genetic markers, forms

an imperative foundation for tailoring personalized therapeutic

strategies. This integrated approach holds promise for advancing

precision medicine in the management of EH and related

cardiovascular complications.
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