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Development and validation of
machine learning-augmented
algorithm for insulin sensitivity
assessment in the community
and primary care settings: a
population-based study in China
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Jie Min1,2, Miaomiao Peng1,2, Geng Liu1,2, Xueyu Zhong1,2,
Ying Wang1,2, Kangli Qiu1,2, Shenghua Tian1,2, Xiaohuan Liu1,2,
Hantao Huang3, Marina Surmach4, Ping Wang5, Xiang Hu1,2*

and Lulu Chen1,2*

1Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Hubei Provincial Clinical Research Center for Diabetes and
Metabolic Disorders, Wuhan, China, 3Department of Emergency Medicine, Yichang Yiling Hospital,
Yichang, China, 4Department of Public Health and Health Services, Grodno State Medical University,
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Objective: Insulin plays a central role in the regulation of energy and glucose

homeostasis, and insulin resistance (IR) is widely considered as the “common soil”

of a cluster of cardiometabolic disorders. Assessment of insulin sensitivity is very

important in preventing and treating IR-related disease. This study aims to

develop and validate machine learning (ML)-augmented algorithms for insulin

sensitivity assessment in the community and primary care settings.

Methods: We analyzed the data of 9358 participants over 40 years old who

participated in the population-based cohort of the Hubei center of the

REACTION study (Risk Evaluation of Cancers in Chinese Diabetic Individuals).

Three non-ensemble algorithms and four ensemble algorithms were used to

develop the models with 70 non-laboratory variables for the community and 87

(70 non-laboratory and 17 laboratory) variables for the primary care settings to

screen the classifier of the state-of-the-art. The models with the best

performance were further streamlined using top-ranked 5, 8, 10, 13, 15, and 20

features. Performances of these ML models were evaluated using the area under

the receiver operating characteristic curve (AUROC), the area under the

precision-recall curve (AUPR), and the Brier score. The Shapley additive

explanation (SHAP) analysis was employed to evaluate the importance of

features and interpret the models.

Results: The LightGBM models developed for the community (AUROC 0.794,

AUPR 0.575, Brier score 0.145) and primary care settings (AUROC 0.867, AUPR

0.705, Brier score 0.119) achieved higher performance than the models

constructed by the other six algorithms. The streamlined LightGBM models for

the community (AUROC 0.791, AUPR 0.563, Brier score 0.146) and primary care
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settings (AUROC 0.863, AUPR 0.692, Brier score 0.124) using the 20 top-

ranked variables also showed excellent performance. SHAP analysis indicated

that the top-ranked features included fasting plasma glucose (FPG), waist

circumference (WC), bodymass index (BMI), triglycerides (TG), gender, waist-

to-height ratio (WHtR), the number of daughters born, resting pulse rate

(RPR), etc.

Conclusion: The ML models using the LightGBM algorithm are efficient to

predict insulin sensitivity in the community and primary care settings

accurately and might potentially become an efficient and practical tool for

insulin sensitivity assessment in these settings.
KEYWORDS

insulin sensitivity assessment, machine learning, community settings, primary care
settings, risk factors
Introduction

Insulin resistance (IR)-related diseases such as obesity, type 2

diabetes, hypertension, hyperlipidemia, non-alcoholic fatty liver

disease (NAFLD), and atherosclerotic cardiovascular diseases have

been increasingly prevalent (1–6). A large number of patients are

not able to be diagnosed and subsequently obtain management

timely because they usually have long asymptomatic phases and

screening tests are not always available or accessible in communities

and primary care settings, which are a critical challenge in the

prevention and control of these IR-related diseases and

consequently increasing morbidity and mortality and imposing a

heavy economic burden on patients and their health care systems

globally (5, 7–10). Decreases in insulin sensitivity, which is well

known as IR, are widely recognized as the common soil in the

pathogenesis of these IR-related disorders (11). Fortunately,

numerous studies indicate that improving insulin sensitivity by

modifying its risk factors is able to prevent and/or prolong the

progression of these diseases (5, 12–14). Thus, it is crucial to

evaluate insulin sensitivity early and identify its risk factors in

individuals potentially at-risk in the community and primary

care settings.

The hyperinsulinemic-euglycemic clamp is widely considered

as the gold standard for evaluating insulin sensitivity in vivo (15).

However, it seems impractical to assess insulin sensitivity

employing the hyperinsulinemic-euglycemic clamp technique for

routine use in clinical practice or in the general population, since its

procedure is considerably time-consuming, labor-intensive, and

costly. Alternatively, the homeostasis model assessment of insulin

resistance (HOMA-IR= fasting glucose (mmol/L)*fasting insulin

(µU/ml)/22.5) has been gradually widely adopted to evaluate insulin

sensitivity for its simplicity, low cost, and good correlation with the

hyperinsulinemic-euglycemic clamp method (16, 17). However, the

determination of fasting insulin is not routinely available or always
02
accessible in the community or primary care settings. Therefore, it

would be of great help to explore novel approaches which are more

convenient and accessible to assess insulin sensitivity in the

community and primary care settings.

Recent studies that many factors are closely related to insulin

sensitivity based on logistic regression analysis and may be

promising predictors in the assessment of insulin sensitivity,

including the TG/HDL ratio (18), the TG/HDL ratio combined

with waist circumference, gender, ALT (19), BMI (20), triglyceride

glucose index (TyG) combined with obesity indicators (BMI, waist

circumference, WHtR) (21), ALT/AST ratio (22), etc. That a large

number of factors might affect insulin sensitivity and the influence

of each factor might be different and complicated makes the

prediction of insulin sensitivity challenging using traditional

methods such as logistic regression analysis. It is extremely

important to screen out as many as critical related factors and

develop novel approaches using these potential complex predictors

to accurately predict insulin sensitivity. Moreover, if these new

approaches are convenient, time-saving, highly accessible, and cost-

effective enough, it would be of great help for individuals in

community and primary care settings to obtain diagnosis and

treatment opportunely.

Machine learning (ML), as a data-driven approach, is well-

known for its ability to detect complex nonlinear relationships and

potential interactions between variables and outcomes and has been

increasingly showing outstanding performance in predicting

health-related outcomes by learning from inputted big data in

clinical practice (23). ML has been used to predict the risk of

hypoglycemic events in hospitalized patients (24) and heart failure

in diabetic patients (25) with great performances in accuracy and

efficiency (26). In this study, we aim to develop predictive models of

insulin sensitivity in individuals potentially at-risk in the

community and primary care settings and validate their

performances, as well as screen out the vital predictors involved
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in these models, in the hope of providing support in the prevention

and/or control of the IR-related diseases.
Methods

Study participants, data collection, and
study design

Data for this study were collected from 10184 individuals over

40 years old who participated in the population-based cohort of the

Hubei center of the REACTION study (Risk Evaluation of Cancers

in Chinese Diabetic Individuals). This study was conducted in 2011

in China and has been described in detail in previous research (27).

Briefly, participants received a standard questionnaire to collect

information on their sociodemographic, lifestyle, exercise status,

educational level, and medical history. The trained nurses used

standard protocols to measure height, weight, waist circumference

(WC), hip circumference (HC), systolic blood pressure (SBP),

diastolic blood pressure (DBP), and resting pulse rate (RPR). The

waist-to-height ratio (WHtR) and waist-to-hip ratio (WHR) were

calculated as the standard method. The participants’ weight gain

since the age of 20 was calculated as the difference between their

current weight and self-reported weight at age 20. The weight gain

ratio was calculated as the weight gain since age 20 divided by

weight at age 20.

Laboratory data were collected through fasting overnight and a

75 g oral glucose tolerance test (OGTT) was performed. Plasma

glucose was measured at the local hospital using the glucose oxidase
Frontiers in Endocrinology 03
method or hexokinase method, while other blood samples were

transported to the central laboratory of Ruijin Hospital for further

testing. Fasting insulin (FIns) levels were measured using a

chemiluminescent immunoassay. Other measurements included

glycated hemoglobin (HbA1c), total cholesterol (TC), low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), and triglyceride (TG) levels. Non-HDL

cholesterol was defined as the difference between TC and HDL-C.

The ratios of non-HDL-C to HDL-C (non-HDL-C/HDL-C),

triglycerides to HDL-C (TG/HDL-C), and total cholesterol to

HDL-C (TC/HDL-C) were also calculated. Participants who had

been diagnosed with tumors, taken hypoglycemic agents, used

insulin, or whose data on FPG, and FIns were missing were

excluded and 9,358 participants were included in the analysis.

The flow chart of this study is shown in Figure 1.

This study complies with the Declaration of Helsinki and was

approved by the Ethics Committee of Tongji Medical College,

Huazhong University of Science and Technology. All participants

provided informed consent.
Outcome variable

Insulin sensitivity was evaluated using the Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR) index: HOMA-IR =

fasting glucose (mmol/L)*fasting insulin (µU/ml)/22.5 (16, 28).

Participants with HOMA-IR values greater than the third quartile

(HOMA-IR≥2.26) of the study population were considered to be

low insulin sensitivity (low IS, labeled as 1), while those with
FIGURE 1

Flow diagram of the study. FPG, fasting plasma glucose; FIns, fasting serum insulin; SMOTE, synthetic minority oversampling technique; ML, machine
learning; LR, logistic regression; SVM, support vector machine; CART, classification and regression tree; RF, random forest; XGBoost, eXtreme
Gradient Boosting; Extra-trees, extremely randomized trees; LightGBM, light gradient boosting machine; AUROC, area under the receiver operating
characteristic curve; AUPR, area under the precision-recall curve; SHAP, SHapley additive explanation.
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HOMA-IR values less than 2.26 were considered to be high insulin

sensitivity (high IS, labeled as 0) as described previously (29, 30).
Feature processing and algorithm selection

A total of 87 variables, including 70 non-laboratory and 17

laboratory variables, were included in the analysis. Missing values of

variables were imputed using the MissForest method (31). The

Synthetic Minority Oversampling Technique (SMOTE) was utilized

to address the problem of class imbalance (low IS and high IS) to

obtain better performances of the predictive models (32). Three

non-ensemble algorithms [Logistic Regression (LR), Classification

and Regression Tree (CART), and Support Vector Machine (SVM)]

and four ensemble algorithms [Random Forest (RF), eXtreme

Gradient Boosting (XGBoost), Extremely randomized trees

(ExtraTrees), and Light Gradient Boosting Machine (LightGBM)]

were employed to develop the predictive models of insulin

sensitivity assessment in the community and primary care settings.
Model development in community and
primary care settings

In this study, we developed predictive models in the settings of

community and primary care and evaluated their performances. For

internal validation, 10-fold stratified cross-validation was used in the

present study, in which the dataset was randomly divided into ten sets,

with nine used for training and one for validation to reduce variance in

prediction errors and prevent overfitting (33). The training set in

models for the general population initially held 8423 instances, while

the validation set contained 935 before applying SMOTE. After the

SMOTE algorithm processing, the training set achieved class balance

with 12626 instances, and the validation set remained 935. Given that

those non-laboratory indexes were more accessible in communities, the

non-laboratory variables were utilized to build the predictive models of

insulin sensitivity assessment in community settings. Laboratory

indicators which are usually available in primary care providers were

further incorporated to create the insulin sensitivity predictive models

in the setting of primary care with as great performance as possible.

The models performed a binary classification task, predicting whether

the subject falls into class 0 (high IS) or class 1 (low IS). Six streamlined

models were developed using 5, 8, 10, 13, 15, and 20 features of top-

ranked importance among all the variables of the state-of-the-art

model (LightGBM) to simplify the predictive models for practice.

These streamlined models with the best performances and minimum

number of variables were adopted as the predictive models for insulin

sensitivity assessment in the community and primary care settings.

Moreover, GridSearchCV was employed to tune hyperparameters and

improve model prediction performance and the detailed information

about the hyperparameters used for each machine learning algorithm

was shown in Supplementary Tables 1, 2. These hyperparameters were

not varied during the study to ensure the reproducibility of

the research.
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Evaluation of model performance in
community and primary care settings

The models were evaluated using 10-fold stratified cross-validation

and the experiments were repeated for ten times, generating metrics

(e.g., AUROC) in each time, which were averaged to evaluate themodel

performances. The discrimination performance of the model was

evaluated using AUROC and AUPR (34, 35). The calibration of the

model was evaluated using the Brier score (36). We also used

sensitivity, specificity, and accuracy to evaluate the predictive

capacity of the model (35). True Positive (TP) indicated the number

of true positives, False Positive (FP) indicated the number of false

positives, True Negative (TN) indicated the number of true negatives,

and False Negative (FN) indicated the number of false negatives.

Sensitivity was defined as TP/(TP + FN), also known as the true

positive rate, which was the percentage of actual positives that were

correctly identified by the model and reflected the ability to identify

patients. Specificity was defined as TN/(TN + FP), also known as the

true negative rate, which was the percentage of actual negatives that

were correctly judged as negatives by the model, reflecting the ability to

identify non-patients. Accuracy was defined as (TP+TN)/(TP+TN+FP

+FN), which indicated the ratio of the number of correct samples

predicted by the model to the total sample size. The Receiver Operating

Characteristics curve, Precision-Recall curve, and Calibration curve

were adopted to visualize the model performance. The overall

performance was evaluated by averaging the performance in each

experiment of the 10-fold stratified cross-validation mentioned.
Model development and performance
evaluation in sex-specific populations

In view that differences may occur in the assessment of insulin

sensitivity between males and females, we tried to construct the

predictive models of insulin sensitivity assessment in the settings of

community and primary care for male and female populations and

evaluated their performances using 10-fold stratified cross-

validation and applying SMOTE as mentioned above. In male,

the training and validation sets comprised 3012 and 334 cases

respectively before the processing of SMOTE algorithm, and

included 4508 and 334 cases individually after applying SMOTE.

In female, the training and validation sets involved 5411 and 601

cases separately before using SMOTE, and contained 8120 and 601

cases respectively after the application of SMOTE.
Feature importance evaluation and
model interpretation

The contribution to the state-of-the-art model (LightGBM) of

the features was evaluated using the SHapley Additive explanation

(SHAP) analysis (37). SHAP summary plots were employed to

summarize the impact of each feature in the model, while SHAP

dependence plots were adopted to show the correlation between the
frontiersin.org
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features and the predicted outcome. A positive SHAP value

indicated that the feature has a positive effect on the model

output, a negative SHAP value indicated a negative impact, and

the higher absolute SHAP value represented a greater impact. Two

participants were selected at random as examples to demonstrate

the feature importance evaluation and model interpretation.
Statistical analysis

Data for continuous variables were presented as means ± standard

deviations(normally distributed) or median ± interquartile range

(nonnormally distributed), while data for categorical variables were

shown as frequency (percentage). Statistical analysis was performed

using SPSS software (v.26.0 IBM) software, with the t-test, the Mann-

Whitney U test, and c2 test applied to test for differences between

groups for normally distributed continuous variables, nonnormally

distributed variables, and categorical variables, respectively. A two-

sided P value <0.05 was considered statistically significant. ML models

were developed using the scikit-learn package (0.24.1) in Python 3.8.

The SHAP analysis was conducted using the implementation available

at http://github.com/slundberg/shap.
Results

Basic characteristics of the participants

Among the 9,358 participants enrolled, there were 2,344 (25%)

subjects with HOMA-IR greater than 2.26 and thus identified as low

IS. The demographic and biochemical characteristics of the

participants were shown in Table 1. Compared to high IS group,

people with low IS had significantly higher levels of WC, HC, BMI,

WHR, WHtR, weight gain since age 20, weight gain ratio since age

20, SBP, DBP, RPR, FPG, FIns, P2hPG, HbA1c, creatinine, LDL-C,

TG, TC, TG/HDL-C, ALT, ALT/AST, and g-GGT (P values <0.05).

Height, HDL-C/LDL-C, HDL-C, and the proportion of smoking

and drinking were significantly lower (P values <0.05). No

significant difference was observed in age, AST, and education

levels between the two groups (P values > 0.05).
Evaluation performance of models
developed for the community and primary
care settings

The LightGBM model for community setting achieved the

highest performance among the machine learning models

developed by three non-ensemble algorithms and four ensemble

algorithms mentioned above, with an AUROC of 0.794, AUPR of

0.575, Brier score of 0.145, accuracy of 0.785, specificity of 0.900,

and sensitivity of 0.441, respectively (Figures 2A–C; Table 2).

Likewise, the LightGBM model for primary care setting

demonstrated the best performance in models created by the

seven algorithms mentioned above, with an AUROC of 0.867,
Frontiers in Endocrinology 05
TABLE 1 Characteristics of participants.

High IS
(HOMA-
IR<2.26)

Low IS
(HOMA-
IR≥2.26)

P-
value

Total 7014 2344

Age(years)a 55.00(13.00) 55.00(12.00) 0.925

Females,n(%)c 4261(60.75) 1751(74.70) 0.000

Education,n(%)c

≤Primary school 3473(49.52) 1154(49.23)

≥Middle school 3541(50.48) 1190(50.77) 0.812

Snore,n(%)c 898(12.80) 421(17.96) 0.000

Medical history, n(%)c

CVD 109(1.55) 59(2.52) 0.002

Hypertension 440(6.27) 287(12.24) 0.000

Dyslipidemia 59(0.84) 48(2.05) 0.000

Diabetes mellitus 90(1.28) 99(4.22) 0.000

Smoking status

Current, n(%)c 1477(21.06) 249(10.62) 0.000

Former, n(%)c 1720(24.52) 330(14.08) 0.000

Drinking status

Current, n(%)c 993(14.16) 154(6.57) 0.000

Former, n(%)c 1117(15.93) 202(8.62) 0.000

Weight(kg)a 55.00(11.00) 61.50(13.50) 0.000

Height(cm)a 156.32(10.00) 155.50 (9.50) 0.000

SBP (mmHg)b 136.54(21.10) 141.91 (21.24) 0.000

DBP (mmHg)b 78.86(12.12) 82.41(12.07) 0.000

RPR (bpm)b 80.31(11.96) 83.67(12.15) 0.000

WC (cm)b 76.34(8.22) 84.30(8.64) 0.000

HC (cm)a 89.00(8.00) 94.00(9.00) 0.000

BMI (kg/m2)b 22.65(2.86) 25.52(3.23) 0.000

Weight gain since age
20 (kg)b

2.22(8.22) 8.78(9.45) 0.000

Weight gain ratio since
age 20b

0.05(0.16) 0.18(0.19) 0.000

WHRb 0.85(0.06) 0.89(0.07) 0.000

WHtRb 0.49(0.05) 0.54(0.05) 0.000

FPG (mmol/L)a 5.59(0.72) 6.12(1.13) 0.000

P2hPG (mmol/L)a 6.70(2.25) 7.76 (3.55) 0.000

HbA1c (%)a 5.50 (0.60) 5.70(0.70) 0.000

FIns (mU/ml)a 5.00(2.70) 10.60(3.80) 0.000

Creatinine (mmol/L)a 65.40(12.20) 66.30(12.70) 0.000

HDL-C (mmol/)b 1.74(0.41) 1.53(0.36) 0.000

(Continued)
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AUPR of 0.705, Brier score of 0.119, accuracy of 0.822, specificity of

0.904, and sensitivity of 0.578, individually (Figures 2D–F; Table 2).
Feature importance evaluation and model
interpretation in LightGBM model
developed for the community and primary
care settings

The SHAP summary plots showed that the top-20 most

important features were WC, BMI, WHtR, number of daughters

born, RPR, et al. in models for community settings (Figure 3A), and

were FPG, WC, BMI, TG, Gender, et al. in models for the primary

care settings (Figure 3B).

The SHAP dependence plots revealed that the points with

SHAP values of zero, were 80cm in WC, 24.4kg/m2 in BMI, 0.50

in WHtR, 6.0mmol/L in FPG, etc. (Figures 3C–F).

Our results indicated that the variables, “ALT/AST=0.56”,

“TG/HDL-C=1.19”, and “FPG=5.3 mmol/L” were the primary

drivers of the prediction towards “high IS” in Participant 1 who

was labeled as “0” (high IS) in the test set (Figure 3G), and the

variables such as “BMI=32.45 kg/m2”, “WHtR=0.62”, and

“WC=97.6 cm” were the key risk factors that prompted the
TABLE 1 Continued

High IS
(HOMA-
IR<2.26)

Low IS
(HOMA-
IR≥2.26)

P-
value

LDL-C (mmol/L)b 2.93(0.81) 3.15(0.82) 0.000

TC (mmol/L)b 5.31(0.97) 5.49(1.00) 0.000

TG (mmol/L)a 1.09(0.72) 1.63(1.15) 0.000

TG/HDL-Ca 0.65(0.54) 1.08(1.01) 0.000

ALT(u/L)a 16.00(9.00) 19.00(12.00) 0.000

AST(u/L)a 24.00(8.00) 24.00(9.00) 0.129

g-GGT(u/L)a 18.00(14.00) 25.00(22.00) 0.000

ALT/ASTa 0.65(0.28) 0.78(0.35) 0.000
IR, insulin resistance; IS, insulin sensitivity; CVD, cardiovascular disease; SBP, systolic blood
pressure; DBP, diastolic blood pressure; RPR, resting pulse rate; WC, waist circumference;
HC, hip circumference; BMI, body mass index; WHR, waist-to-hip ratio; WHtR, waist-to-
height ratio; FPG, fasting plasma glucose; P2hPG, two-hour post-load plasma glucose; HbA1c,
glycosylated hemoglobin A1c; FIns, fasting insulin; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
triglyceride; ALT, alanine aminotransferase; AST, aspartate aminotransferase; g-GGT, g-
glutamyl transpeptidase.
aData were presented as median (interquartile).
bData were presented as mean (standard deviation).
cData were displayed as frequencies (percentages).
B C

D E F

A

FIGURE 2

Evaluation of predictive models based on seven algorithms (LR, RF, Extra trees, LightGBM, XGBoost, CART, SVM). The receiver operating
characteristic curve, precision-recall curve, and calibration curve of the models using 70 non-laboratory variables for the community settings (A–C)
and the models employing 70 non-laboratory and 17 laboratory variables for the primary care settings (D–F), and LightGBM demonstrated the best
performance among the seven algorithms in the models for community and primary care setting, individually. LR, Logistic Regression; RF, Random
Forest; ExtraTrees, Extremely randomized trees; LightGBM, Light Gradient Boosting Machine; XGBoost, eXtreme Gradient Boosting; CART,
Classification and Regression Tree; SVM, Support Vector Machine.
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model to classify Participant 2 as low IS, who was labeled as “1”

(low IS) in the test set (Figure 3H).
Evaluation performance of streamlined
models using the top ranked-5, 8, 10, 13,
15, and 20 variables in the community and
primary care settings

The performance of the LightGBM model developed for the

community is higher in that using the top-20 non-laboratory

features (AUROC of 0.791, AUPR of 0.563, the lowest Brier score

of 0.146, accuracy of 0.783, sensitivity of 0.433 and specificity of

0.900, individually), compared to those using the top 5, 8, 10, 13 or

15 variables (Figures 4A, B), which was very close to that of

LightGBM model using all 70 non-laboratory variables (AUROC

0.794, AUPR 0.575, Brier score 0.145, accuracy 0.785, specificity

0.900, and sensitivity 0.441, respectively).

The LightGBM model created for primary care adopting the

top-20 variables (including laboratory variables) performed better

(AUROC 0.863, AUPR 0.692, Brier score 0.124, accuracy 0.820,

specificity 0.900, and sensitivity 0.581, individually) when compared

to those using the top 5, 8, 10, 13, or 15 features (Figures 4C, D),

indicating a performance similar to that of the LightGBM model

using all 87 variables (AUROC 0.867, AUPR 0.705, Brier score

0.119, accuracy 0.822, specificity 0.904, and sensitivity 0.578).
Model development for males/females and
analysis of the importance of features

Our results evaluating the performance of LightGBM models

created for male and female populations separately demonstrated that

the models for males achieved slightly higher or non-significantly

inferior AUROC (0.799 vs. 0.760 with non-laboratory and 0.867 vs.

0.857 with laboratory features), AUPR (0.590 vs. 0.538 using non-

laboratory and 0.705 vs. 0.684 using laboratory variables), Brier score

(0.155 vs. 0.151 using non-laboratory and 0.128 vs. 0.127 using

laboratory variables), sensitivity (0.493 vs. 0.391 using non-

laboratory and 0.590 vs. 0.570 using laboratory features), accuracy
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(0.796 vs. 0.777 using non-laboratory and 0.820 vs. 0.822 using

laboratory features) and specificity (0.898 vs. 0.905 with non-

laboratory and 0.898 vs. 0.906 with laboratory features) compared

to those for females (Figures 5A, B).

Further feature importance analysis revealed that in the

LightGBM models with all 86 variables, the top-10 ranked

features for males were FPG, BMI, TG/HDL-C, WHtR, ALT/AST,

WC, Education, P2hPG, DBP, and Creatinine (Figure 5C), while the

top-10 ranked contributors for females were FPG, WC, g-GGT, TG,
ALT/AST, number of daughters born, BMI, Weight, Creatinine,

and number of sons born (Figure 5D).
Discussion

In the present study, our findings revealed that the model

developed using LightGBM for insulin sensitivity assessment in the

community and primary care settings showed superior performance

to those created by LR, RF, SVM, ExtraTrees, XGBoost, and CART.

Additionally, the performance was great for the prediction of insulin

sensitivity in the models developed using non-laboratory variables for

the community and the models established using non-laboratory

combined with laboratory features for primary care, although the

performance of the latter seemed to outperform the former.

Moreover, the streamlined LightGBM model for the insulin

sensitivity estimation using the 20 top-ranked variables had a

similar performance to the model created with all features.

Noteworthy, the performance of the models developed for men

using LightGBM was better than that developed for women.

In our study, the LightGBM model exhibited superior

performance in terms of accuracy, specificity, AUROC, AUPR,

and Brier score compared to LR, suggesting that the LightGBM

model demonstrates higher predictive accuracy and calibration.

Lately, it has been reported that LightGBM is considered an

advanced algorithm for developing gestational diabetes risk

predictive models using electronic health records (38), which is

consistent with our results. LightGBM is one of the most recent

successful research findings among ML approaches based on

Gradient Boosting Decision Tree (GBDT) implementation with

Gradient-based One-Side Sampling and Exclusive Feature
TABLE 2 Performances of ML models using all features for the community and primary care settings.

LR SVM RF ExtraTrees LightGBM XGBoost CART

Models for Community Settings

Accuracy 0.701 0.708 0.779 0.777 0.785 0.781 0.697

Sensitivity 0.715 0.730 0.469 0.413 0.441 0.439 0.454

Specificity 0.697 0.701 0.883 0.899 0.900 0.895 0.778

Models for Primary Care Settings

Accuracy 0.754 0.739 0.811 0.814 0.822 0.820 0.734

Sensitivity 0.742 0.746 0.604 0.534 0.578 0.575 0.547

Specificity 0.758 0.736 0.881 0.907 0.904 0.902 0.796
ML, machine learning; LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; ExtraTrees, Extremely randomized trees; LightGBM, Light Gradient Boosting Machine;
XGBoost, eXtreme Gradient Boosting; CART, Classification and Regression Tree.
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Bundling, which largely reduces the training and computation cost,

and speeds up the training process of conventional GBDT by up to

over 20 times while achieving almost the same accuracy. It has been

used for many different types of data mining tasks such as

classification, regression, and ranking (39). Recent studies indicate

that GBDT-based models, such as XGBoost, outperform logistic

regression (LR), K-Nearest Neighbor (KNN), decision tree (DT),

support vector machines (SVM), artificial neural networks (ANN)

and deep neural network (DNN), in predicting insulin resistance,

supporting the superior predictive accuracy of GBDT-based models

(40, 41), which might be an important explanation of our findings

that the LightGBM model is a better choice in developing models

for insulin sensitivity in the community and primary care settings.

Our results indicated that the performance was great for the

insulin sensitivity assessment in the models developed using non-

laboratory features easily obtained for the community and the
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models established using non-laboratory combined with

laboratory variables for primary care. It is reported that excellent

performance was achieved using non-laboratory with or without

laboratory variables (AUROC greater than 0.80) in a diabetes

prediction model based on the gradient boosting machine (GBM)

algorithm (42) and in hypertension risk prediction models based on

XGBoost (43). These findings are consistent with our results,

implying great performances in insulin sensitivity and insulin

resistance-related disease prediction models developed by

machine learning using non-laboratory with or without

laboratory features. In our study, non-laboratory variables mainly

including WC, BMI, WHtR, RPR, etc., and laboratory variables

comprising lipid profile, liver enzymes, etc., are well-known risk

factors of low insulin sensitivity (18, 22), which may be one of the

important explanations for the eminent performances of our

models for the insulin sensitivity assessment developed for the
B
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FIGURE 3

SHAP values-based interpretation of the LightGBM models in the general population. The contribution of the top-20 features is arranged in
descending order of LightGBM model developed for the community and primary care settings. Red points indicate higher feature values and blue
points indicate lower values (A, B). The relationship between SHAP values and the levels of the top-ranked 3 features in the models for the
community settings (WC, BMI, WHtR) (C–E) and the primary care settings (WC, BMI, FPG) (C, D, F). Personalized prediction of low insulin sensitivity
for two participants randomly from the validation set of the data. The color red indicates positive SHAP values, which increase the predicted value,
while blue indicated negative SHAP values, which decrease the predicted value. Each arrow represents how a specific feature increases (red) or
decreases (blue) the participant’s risk for low IS. If f(x) is greater than zero, the participant has a higher risk of low insulin sensitivity relative to the
background population (G, H). “Gender=1” means “female”, “Snore=0” means “the participant never snored”, and “Education=0” means “education
levels were less than six years”. WC, waist circumference; BMI, body mass index; WHtR, waist-to-height ratio; RPR, resting pulse rate; WHR, waist-
to-hip ratio; SBP, systolic blood pressure; FPG, fasting plasma glucose; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; g-GGT, g-glutamyl transpeptidase.
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community setting using non-laboratory features and established

for primary care using non-laboratory combined with laboratory

variables. Lee et al. develop an IR prediction model for a population

with chronic kidney disease (44). Tsai et al. train a predictive model

for IR in the non-diabetic populations (41). Park et al. develop an

insulin resistance index model in the Ansan/Ansung cohort with

metabolic diseases were excluded (40). In our present study, we

tried to develop predicting models based on machine learning-

augmented algorithm in general population in China for insulin

sensitivity assessment in the community setting using non-

laboratory features and in the primary care setting using non-

laboratory combined with easily-obtained laboratory variables.

Our results indicated that the inclusion of laboratory variables

in the prediction models significantly improved the performances

compared to the models developed exclusively with non-laboratory

variables, suggesting the considerable role of laboratory variables in

the insulin sensitivity assessment models developed by machine

learning. These results seemed consistent with the findings in

previous research that the inclusion of laboratory variables such

as urinary glucose, urinary vitamin C, and FPG improves the

accuracy of diabetes prediction models developed by GBM or

LightGBM (42, 45). Noteworthy, the laboratory features (e.g.,

fasting glucose, serum lipids, liver enzymes, etc.) included in our

study were all routinely accessible in primary care, and the

predictive models developed with non-laboratory variables can be

used instead as a primary screening approach in case that these

laboratory features mentioned above are not available.

Additionally, our results showed that the streamlined

LightGBM models utilizing the top-20 ranked variables exhibited
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comparable performances to the models constructed with all

features. Likewise, our previous study indicated that the

streamlined diabetes prediction model utilizing the top 20

variables developed by the LightGBM algorithm, exhibited great

performances similar to that of the model using all variables (45),

which is consistent with the findings in the present study. Moreover,

it is reported that the simplified model for gestational diabetes

prediction using 9 variables based on LightGBM demonstrates only

a modest reduction in predictive accuracy compared to its full

variable model (38). Importantly, these top 20 variables involved in

our simplified model including FPG, WC, BMI, WHtR, TG, and

GENDER, etc. are readily obtainable in the community and primary

care settings, rendering the simplified model highly convenient and

applicable in these scenarios.

Our findings suggested that the LightGBM model demonstrates

extraordinary discriminative capability and calibration in the

general population, as well as in the male and female sub-

populations. Interestingly, the models developed for the male

population exhibited slightly better performances than those for

the female population, suggesting that it seems necessary to develop

relatively specific models for targeted populations to improve the

predictive efficacy of the model. The reason for these variations

seems unclear and further research is necessary, although they

might be relevant to the differences in sex hormone levels, fat

distribution (46), etc., between males and females.

The SHAP analysis revealed that features such as obesity, adult

weight gain, less exercise, impaired glucose tolerance,

hypertriglyceridemia, hypertension, TG/HDL-C ratio, and

snoring, were strongly associated with an increased risk of low
B

C D

A

FIGURE 4

Performances of simplified LightGBM models. The value of accuracy, sensitivity, specificity, AUROC, AUPR, and Brier score of models using 5, 8, 10,
13, 15, and 20 top-ranked features in the community (A, B) and primary care settings (C, D).
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insulin sensitivity, which is consistent with the findings of previous

studies analyzed using traditional statistical methods (18, 20, 47–

49). Moreover, our SHAP analysis showed that the number of

daughters born, ALT/AST, creatinine, and RPR were risk factors for

low insulin sensitivity. It is reported that female fetuses are

associated with a higher risk of maternal IR during pregnancy

(50), which might be an important explanation for the increased

risk of low sensitivity in women who gave birth to more daughters

in our study. Anyhow, the detailed mechanism needs to be further

investigated. Additionally, it is illustrated that the ALT/AST ratio

was the most reliable surrogate measurement for IR in Japanese

non-obese people (22), which is consistent with that ALT/AST was

a risk factor of low insulin sensitivity in our study. Furthermore,

Niu, Y. and colleagues reported that an increase in creatinine

elevates the risk of NAFLD (51), which was consistent with the

findings of our study since NAFLD is closely related to IR.

Moreover, it is demonstrated that resting heart rate was

independently associated with first-phase insulin secretion and

negatively associated with insulin sensitivity in a non-diabetic

population (52), which might be an important explanation that

RPR was a risk factor for low insulin sensitivity in the present study.

These findings suggest that these features are of utmost importance

in the prediction of low insulin sensitivity, and more attention
Frontiers in Endocrinology 10
should be paid to them in the prevention and management of IR-

related diseases.

Remarkably, our results indicated that personalized predictors

could be identified in selected samples, suggesting that ML models

combined with SHAP analysis can help screen out key predictors of

low insulin sensitivity for specific individuals, and subsequently

provide early warning information to get personalized health advice

and take more precise measures to alleviate risk of low insulin

sensitivity and/or prevent IR-related diseases for them.

Noteworthy, the majority of the features (FPG, WC, BMI,

WHtR, etc.) used in the ML models were regularly collected in

clinical practice in China, and those features adopted in the ML

models which were not routinely collected by medical practitioners

(the number of daughters born, number of sons born, education,

etc.), can be promptly obtained through easy-to-use electronic

questionnaires or open-access web pages. Moreover, the ML

models could be further developed and presented in open and

accessible web pages to make them easier and more available for

residents in communities or clinical practitioners in the setting of

primary care to evaluate the risk of low insulin sensitivity, and the

information increasingly inputted in the ML model would be

extremely helpful to improve the performance of the prediction

models in turn, which is one of the biggest advantages of ML (45).
B

C D

A

FIGURE 5

Performances of LightGBM model for males and females and SHAP values-based interpretation of the models. Evaluation of LightGBM model for
males (A) and females (B). The contribution of the 20 top-ranked features are arranged in descending order of LightGBM model developed for males
and females (C, D). The vertical coordinate (y-axis) shows the features in decreasing order of importance, while the horizontal coordinate (x-axis)
displays the average absolute SHAP value of each feature. Red points indicate higher feature values, while blue points represent lower values.
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However, it should be noted that although HOMA-IR is commonly

used as a surrogate indicator for insulin sensitivity assessment in clinical

and epidemiological studies (16), we were unable to use the gold

standard - the hyperinsulinemic-euglycemic clamp, to determine

insulin sensitivity in this study, so the findings of the current study

should be interpreted with caution and further research would be

necessary. Additionally, we have not yet explored the predictive

efficiency of the model in prospective research, and we plan to

perform it in a follow-up study in the near future. Furthermore, the

models were developed using data from only one study center, and the

participants were over 40 years old. Actually, OGTT-derived methods

could be very helpful in the assessment of insulin sensitivity, especially in

combination with the determination of plasma glucose and insulin

levels using multiple blood samplings and potentially more efficient if

they could be integrated in MLmodels. Regrettably, we were not able to

perform OGTT with multiple time points for some practical reasons.

Anyhow, we hope that we could do it in the further research in the near

future. Moreover, the data used in the present study were obtained from

the Han Chinese population in Hubei Province in central China, and

herein the generalizability of our models needs further testing with data

from more regions and ethnic groups. We would try to develop these

ML models into user-friendly web pages or applications that are

accessible to the general public and primary care providers, getting

more input information and feedback to optimize our models, which is

virtually a significant advantage of ML (53). Furthermore, the sensitivity

is not as good as the specificity in our LightGBM models, which might

be attributed to methodological reasons such as the variables included

and/or the algorithms used. Although seven ML algorithms were

employed in the present study, there may be other algorithms with

better performance available currently or to be developed. It would be

necessary for us to further iterate models with more promising

algorithms to improve the predictive performance of the models in

the future.

Notwithstanding these limitations, the ML models using the

LightGBM algorithm, are efficient in predicting insulin sensitivity in

the community and primary care settings accurately. Thus, we

tentatively put forward that the ML-augmented algorithm might

potentially become an efficient and practical tool for insulin

sensitivity assessment in community and primary care settings.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by Ethics

Committee of Tongji Medical College, Huazhong University of

Science and Technology. The studies were conducted in accordance

with the local legislation and institutional requirements. The
Frontiers in Endocrinology 11
participants provided their written informed consent to

participate in this study. Written informed consent was obtained

from the individual(s) for the publication of any potentially

identifiable images or data included in this article.
Author contributions

HZ: Methodology, Writing – original draft, Conceptualization,

Data curation, Formal analysis, Investigation, Project

administration, Supervision, Writing – review & editing. TZ: Data

curation, Formal analysis, Investigation, Supervision, Writing –

review & editing. JYZ: Data curation, Formal analysis,

Investigation, Supervision, Writing – review & editing. JZ: Data

curation, Formal analysis, Investigation, Supervision, Writing –

review & editing. JM: Conceptualization, Data curation, Formal

analysis, Investigation, Supervision, Writing – review & editing.

MP: Data curation, Investigation, Supervision, Writing – review &

editing. GL: Data curation, Formal analysis, Investigation,

Supervision, Writing – review & editing. XZ: Data curation,

Formal analysis, Supervision, Writing – review & editing. YW:

Investigation, Project administration, Resources, Writing – review

& editing. KQ: Investigation, Project administration, Resources,

Writing – review & editing. ST: Formal analysis, Investigation,

Resources, Writing – review & editing. XL: Investigation,

Methodology, Supervision, Validation, Writing – review &

editing. HH: Project administration, Resources, Writing – review

& editing. MS: Methodology, Supervision, Validation, Writing –

review & editing. PW: Conceptualization, Methodology,

Supervision, Validation, Writing – review & editing. XH:

Conceptualization, Data curation, Investigation, Methodology,

Project administration, Supervision, Validation, Writing –

original draft, Writing – review & editing. LC: Conceptualization,

Data curation, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Supervision, Writing – original

draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This research was supported by grants from the National Natural

Science Foundation of China (82170822, 82173517, and 81900734)

and the Ministry of Science and Technology of the People’s

Republic of China (2016YFC0901200 and 2016YFC0901203).
Acknowledgments

The authors thank all the staff, partner hospitals, and

participants of the REACTION Study for their contributions to

the research.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1292346
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1292346
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.

Publisher’s note
All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Endocrinology 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material
The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2024.1292346/

full#supplementary-material
References
1. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol
(2019) 15(5):288–98. doi: 10.1038/s41574-019-0176-8

2. International Diabetes Federation. IDF Diabetes Atlas, 10th edition. Brussels,
Belgium: International Diabetes Federation (2021). Available at: http://www.
diabetesatlas.org/.

3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP,
et al. Heart disease and stroke statistics-2019 update: A report from the american heart
association. Circulation (2019) 139(10):e56–e528. doi: 10.1161/CIR.0000000000000659

4. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular
disease development. Nat Rev Endocrinol (2014) 10(5):293–302. doi: 10.1038/
nrendo.2014.29

5. Guerra JVS, Dias MMG, Brilhante A, Terra MF, Garcia-Arevalo M, Figueira
ACM. Multifactorial basis and therapeutic strategies in metabolism-related diseases.
Nutrients (2021) 13(8):2830. doi: 10.3390/nu13082830

6. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and
outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and
meta-analysis. Lancet Gastroenterol Hepatol (2019) 4(5):389–98. doi: 10.1016/S2468-
1253(19)30039-1

7. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al.
Harmonizing the metabolic syndrome: a joint interim statement of the International
Diabetes Federation Task Force on Epidemiology and Prevention; National
Heart, Lung, and Blood Institute; American Heart Association; World Heart
Federation; International Atherosclerosis Society; and International Association
for the Study of Obesity. Circulation (2009) 120(16):1640–5. doi: 10.1161/
CIRCULATIONAHA.109.192644

8. Lorenzo C, Wagenknecht LE, D’Agostino RB Jr., Rewers MJ, Karter AJ, Haffner
SM. Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a
multiethnic population: the Insulin Resistance Atherosclerosis Study. Diabetes Care
(2010) 33(1):67–72. doi: 10.2337/dc09-1115

9. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global,
regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J
Am Coll Cardiol (2017) 70(1):1–25. doi: 10.1016/j.jacc.2017.04.052

10. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge
AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and
projections for 2045. Diabetes Res Clin Pract (2018) 138:271–81. doi: 10.1016/
j.diabres.2018.02.023

11. Freeman AM, Pennings N. Insulin Resistance Vol. 2022. Treasure Island (FL:
StatPearls Publishing (2022).
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