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Evaluating the influence of
sleep quality and quantity on
glycemic control in adults
with type 1 diabetes

Marta Botella-Serrano1*, Jose Manuel Velasco2*,
Almudena Sánchez-Sánchez3, Oscar Garnica2 and
J. Ignacio Hidalgo2*

1Endocrinology and Nutrition Service, Hospital Universitario Príncipe de Asturias, Madrid, Spain,
2Computer Architecture and Automation Department, Universidad Complutense de Madrid,
Madrid, Spain, 3Education Department, Universidad a Distancia de Madrid, Madrid, Spain
Background: Sleep quality disturbances are frequent in adults with type 1 diabetes.

However, the possible influence of sleep problems on glycemic variability has yet

to be studied in depth. This study aims to assess the influence of sleep quality on

glycemic control.

Materials and methods: An observational study of 25 adults with type 1 diabetes,

with simultaneous recording, for 14 days, of continuous glucose monitoring

(Abbott FreeStyle Libre system) and a sleep study by wrist actigraphy (Fitbit Ionic

device). The study analyzes, using artificial intelligence techniques, the relationship

between the quality and structure of sleep with time in normo-, hypo-, and

hyperglycemia ranges and with glycemic variability. The patients were also

studied as a group, comparing patients with good and poor sleep quality.

Results: A total of 243 days/nights were analyzed, of which 77% (n = 189) were

categorized as poor quality and 33% (n = 54) as good quality. Linear regression

methods were used to find a correlation (r =0.8) between the variability of sleep

efficiency and the variability of mean blood glucose. With clustering techniques,

patients were grouped according to their sleep structure (characterizing this

structure by the number of transitions between the different sleep phases).

These clusters showed a relationship between time in range and sleep structure.

Conclusions: This study suggests that poor sleep quality is associated with lower

time in range and greater glycemic variability, so improving sleep quality in patients

with type 1 diabetes could improve their glycemic control.

KEYWORDS

sleep structure, glycemic control, clustering techniques, glucose behavior prediction,
statistical analysis
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1 Introduction

Poor sleep quality and insufficient amount of sleep are common in

the general population and people with type 1 diabetes mellitus

(T1DM) (1, 2). A shorter duration of the deep sleep phase (3, 4),

subjective quality of sleep, excessive daytime sleepiness (1, 2), and

higher prevalence of obstructive sleep apnea (5) have been

demonstrated in both adults and children with T1DM. The impact

of these disturbances on glycemic control in patients with T1DM is an

area of increasing interest. Previous studies suggest that sleep

disturbances decrease insulin sensitivity, worse glycemic control,

and increase glycemic variability (6). Recently, the American

Diabetes Association recommended the study of sleep patterns as

part of clin-ical evaluation of a patient with T1DM (7). The main

objective of this study is to investigate by machine learning techniques

the relationship among sleep structure, sleep quantity and quality,

and glycemic control in patients with T1DM.

Griggs et al. (2020) (8) found in 38 patients that a higher glucose

variability was associated within-person with more sleep disruptions

or worse sleep. Our work extends theirs by grouping sleep patterns

and analyzing the influence on glucose values during the day. Feupe

et al. (2013) (9) studied the relation-ship between deep sleep duration

and HbA1c level and concluded that they are inversely correlated.

Some previous studies used signal processing techniques to study

the influence of physical exercise during the day on the glucose

evolution during the following night (10). To find coherence between

the patient’s circadian rhythms, they used the cosinor technique (a

technique used in circadian physiology) and wavelets. Another

similar study using the wavelet coherence analysis is Griggs et al.

(2022) (11). Other studies (12–15) found significant relations between

variability in sleep duration and poor glycemic control.

Our study complements these works by including the different

sleep states during the night, grouping them into repetitive patterns,

and studying their influence on different metrics of the following day.

We apply clustering techniques and language processing techniques.
2 Materials and methods

The study was approved by the ethics committee of the Prıńcipe de

Asturias Hospital of Alcalá de Henares, Madrid, Spain. The research was

compliant with the Declaration of Helsinki guidelines. Written consent

was obtained from each participant prior to engagement.
2.1 Inclusion/exclusion criteria

Eligible participants were adults between 18 and 65 years with

T1DM with at least one year of duration, being on treatment with an

insulin pump or multiple doses of subcutaneous insulin per day (MDI),

having the availability of a mobile device capable of reading the sensors

of the FreeStyle Libre system, and giving informed consent for inclusion

in the study. Pre-screened subjects were excluded if they were

diagnosed with a significant psychiatric disorder. Subjects in

treatment with corticoids or patients that have required

hospitalization or surgery on the last six months were excluded.
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2.2 Data gathering and preprocessing

The main objective of this study is to analyze the impact of sleep

disturbances on short-term gly-cemic control, glycemic variability, and

the frequency of hypoglycemia in a group of patients with T1DM. For

this purpose, flash continuous glucose monitoring (performed by

Abbott FreeStyle Libre devices) and a sleep study using wrist

actigraphy (Fitbit Ionic device on the non-dominant wrist) were

carried out simultaneously for 14 days in a group of patients. The

CGM data includes interstitial blood glucose levels recorded during the

entire time the patient wore the sensor, not only during sleep. Fitbit

ionic devices incorporate a light sensor (photoplethysmography, PPG)

and an accelerometer to identify sleep stages. From (16), “Fitbit uses

proprietary sleep-staging machine learning algorithms applied to mo-

tion, heart rate variability, and respiratory rate, with the last two

calculated from heartbeat data sensed by PPG”. Twenty-five patients

were included, although data from three patients had to be discarded,

with a total of 243 nights/days recorded. The study analyzes

interindividual and intraindividual differences in glycemic control

concerning nights with worse or better quality/quantity of sleep.

Three visits were programmed to complete the collaboration of

the participants. The study was explained to the participants in a first

visit (Pre-screening Visit), and all patients signed an informed consent

form. Participants were also committed to continuing with their usual

treatment. In addition, sociodemographic variables, anthropometric

data, and clinical data were collected from medical records. In a

second visit, Visit 1, participants were given a wristband with

wristwatch actigraphy (Fitbit Ionic device), and a FreeStyle Libre

sensor (first generation, no alarms) was placed for continuous glucose

monitoring for 14 days. The sensor was connected to the Abbot Libre

View platform. Patients self-completed the Pittsburgh Sleep Quality

Index (PSQI) questionnaire to assess habitual self-perceived sleep

quality (1). Visit 1 took place between 1 and 30 days after the pre-

screening visit. Finally, during Visit 2, the glucose sensor and wrist

actigraphy were removed. Visit 2 was programmed to be held 15 days

after Visit 1. During this period, participants could contact the study’s

technical staff to solve any technical concerns.

PSQI examines seven components: sleep quality, latency, habitual

sleep efficiency, sleep duration, sleep disturbances, use of sleep

medication, and daytime dysfunction. With 19 questions,

participants rate the components on a scale of 0 to 3, ranging from

0 to 21, with higher scores indicating worse sleep quality (>5 reveal

poor sleepers).

Recording of blood glucose data was performed through the

Abbott Libre View application. Time-in-range is estimated directly

by the FreeStyle Libre systems. In addition, we calculated it from the

microdata generated by the meter using the Rosendaal method (17),

which assumes a linear progression between two glucose values and

calculates the specific value for each minute (linear interpolation).

The same method was used to calculate time in hypo and

hyperglycemia. The recording of the wrist activity was also

performed automatically and digitized by the Fitbit mobile

application. Microdata is not available directly from Fitbit, so we

adapted the API (Application Program Interface) for recovering

detailed information (1).

Glucose sensors were placed on the arm, and the Fitbit device was

worn on the non-dominant wrist. The Fitbit and glucose data were
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synchronized at the closest multiple of 5 minutes. Once synchronized,

sleep times spent in each stage were added to resynchronize with the

15 minutes used by FreeStyle Libre data. Days with gaps higher than

one hour and a half in glucose were discarded. Fitbit data presented

some outliers in sleeping times, mixing nap and night sleeping times

for some days. Those days were eliminated manually. Heart rate,

steps, and burned calories were collected and synchronized for future

studies. Limitations of Fitbit Ionic devices are discussed in section 5

The glucose monitoring variables analyzed in this study are: time-in-

range 70-180 mg/dl (TR) in percentage, mean blood glucose (mg/dl)

(Mean_glucose), standard deviation (SD), coefficient of vari-ation (CV),

percentage of time spent in level 1 hypoglycemia (55-70 mg/dl) and level

2 hypoglycemia (< 55 mg/dl) (T Hypo), time in hyperglycemia level 1

(180-250 mg/dl) and level 2 (> 250 mg/dl) (T Hyper), number of

hypoglycemia/hyperglycemia episodes with at least 15 min of duration,

Mean Amplitude of Glycemic Excursions (MAGE) and Mean Daily

Glucose Differences (MDGD).
2.3 Methodology

Figure 1 shows the workflow we have used in this study. First, we

recorded the 24-hour time series of blood glucose levels (box B) and

the sleep state sequences during the corresponding nights of the par-

ticipants in the study (box A). After performing the clustering

(subsection 2.4) according to the structure of sleep states (box C),

we consequently grouped the daily time series of glucose levels

corresponding to the nights of each cluster (box D). Then, the

glucose time series were averaged by cluster (box E), and we

obtained the dynamics of the glucose level that characterize each
Frontiers in Endocrinology 03
cluster. As a final phase, the behavior of the clusters is studied in two

different ways: on the one hand, a language processing tech-nique is

applied to find similarities and dissimilarities (subsection 2.5) in the

glucose time series (box F) and, on the other hand, a statistical

analysis (subsection 2.6) is performed to compare the glycemic

characteristics between clusters (box G).
2.4 Analysis of the sequence of sleep states

Throughout the night, the person transits between different sleep

states (wake, light, rem, deep), forming a time series of states or

categories (18). Figure 1 (box A) presents this time series as a

sequence of colors displaying the sleep states. Each sleep state is

represented by a color.

In this study, we want to determine whether there are patterns in

the sleep time series during nights that correlate to patterns of blood

glucose level evolution of the following day. To search for sleep

patterns, we tried different time series clustering techniques (19).

Clustering is a group of machine learning techniques that identify

clusters in the data. A cluster is a group or subset of elements of

a population.

In this work, we applied clustering to group the nights of the

participants based on the sequence of sleep states, i.e., each cluster

includes those temporal sequences that are most similar to each other

(18). Subsequently, we analyzed the evolution of glucose during the

following day for each cluster. Finally, we analyzed specific and

expected behaviors in the diurnal evolution of glucose values for

the different clusters. This last step is explained in more detail in

subsection 2.5.
A B

D E

F

G

C

FIGURE 1

Sequence of steps for the development of our study: recording of sleep states and glucose levels (A, B), clustering (C), characterizing cluster glucose
behavior (D, E), finding specific glucose patterns (F) and comparison of glucose characteristics (G). 1https://python-fitbit.readthedocs.io/en/latest/.
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Figure 1 (box C) illustrates the result of applying clustering to the

sleep data in four clusters, i.e., four sleep behavior patterns of the

study participants.
2.5 Similarity among glucose time series

Figure 1 (box E) shows each cluster’s average glucose time series.

To identify specific behaviors of each cluster, we applied techniques

commonly used in language processing (20, 21). To do this, we trans-

form a time series of numerical glucose values into a sequence of

symbols. These symbols are obtained after the time series is

normalized and reduced by obtaining the average of a number n of

glucose values (in this work, n =4) (Piecewise Aggregate

Approximation, PAA) (22). A symbol is assigned to each aver-aged

point within a dictionary based on the statistical distribution

(Symbolic Aggregate approXimation, SAX) (20, 21). Finally, the

symbols are grouped into words of a specific size (12 in this work).

Next, we identify behaviors specific to each cluster and those

familiar to all clusters. Based on the number of occurrences of each

“word” in all the time series of each cluster, we obtain the weight

vectors associated with each word [Term Frequency -Inverse

Document Frequency (23)]. Thanks to the weight vectors, we

calculate the cosine similarity (24) and use this value to know if a

word is specific to a cluster. In the average time series, we show those

cluster-specific segments in cool colors (dark and light blue) and

warm colors (red and orange) the similar segments across all clusters.

The concept is that words with a very high frequency of occurrence in

one cluster and a shallow frequency in the others appear in blue,

whether the word appears a lot in all the clusters appears in orange or

red. If the occurrence in the other clusters is medium, the color is

green or yellow. Hence, we can identify the dynamics of glucose that

characterizes a cluster. In Figure 1 (box F), we present a summary of

the process for words of size
2.6 Statistical methods

In order to find out the possible relationship between the glucose

levels and the quality of sleep, several cluster analyses and

correlational studies were performed using the R language and

related libraries (18, 25). These types of models, together with

language processing techniques taken from the field of artificial

intelligence, make it possible to determine possible patterns

between the different variables selected and the nocturnal sleep

patterns (26).

On the one hand, the K-means algorithm is used in the various

cluster analyses among available data (27): first, considering the

variables associated with sleep alone, then the variables associated

with glucose levels, and finally, the set of all variables. On the other

hand, the correlation analysis takes as a reference Pearson’s

correlation coefficient. These values have been obtained after

processing these glucose records with the R Package gluvarpro (28).

To compare the glycemic characteristics of clusters, we used

Welch’s F-test (29) using the package from Dag et al. (2018) (30).

We performed pairwise tests using Bonferroni’s correction (31, 32)

for the p-values to calculate pairwise differences for each variable
Frontiers in Endocrinology 04
between the scores of each cluster (using the same package as before).

In addition, we used Shannon’s entropy (33) for analyzing the results

of the clustering. Shannon’s entropy provides an idea of how ordered

sleep was. Higher values of entropy indicate higher levels of disorder.
3 Results

3.1 Participant characteristics

Twenty-five subjects participated in this study, of whom fourteen

were female and eleven were male. Table 1 shows the characteristics of

the participants identified by a random ID and including gender

(M=Male; F=Female), age, BMI, HbA1c, diabetes treatment (MDI:

Multiples doses of insulin; CSII: Continuous subcutaneous insulin

infusion), and years of evolution of T1DM.

The mean age is 38.3 years, with an age range of 18-60.8 years,

while the first and third quartiles are 26.4 and 47.9 years. The mean

duration of diabetes is 18.1 years with a range of 0.8-39.5 years, and

the first/third quartiles are 11.2/24.2 years. HbA1c mean is 7.4%

(range 6-9.7%) and 1st/3rd quartiles are 7/7.8%. Body Mass Index

(BMI) mean is 24.4 (range 18.5-32.2) and 1st/3rd quartiles are 22.3/

26.3. Fifteen patients were on continuous insulin pump therapy, and

ten were on multiple daily insulin doses. The CGM shows a mean

blood glucose of 155 mg/dl, high glycemic variability (CV 36), and a

time in hypo and hyperglycemia above target.
3.2 Pittsburgh questionnaire results

Table 2 shows the results of the Pittsburgh questionnaire. The

results of the PSQI give a poor overall sleep quality in 12/23 patients,

being these results concordant with the objective assessment of the

actigraphy. Sleep disturbances contribute most to the high PSQI score

(sudden nocturnal awakenings or other reasons like heat, cold, pain,

nightmares, snoring, coughing, or the need to urinate). This result is

also concordant with the actigraphy results, where the mean duration

of objective nocturnal awakenings (WASO) is 52 minutes. Nine

patients report significant daytime dysfunction (score >1) regarding

drowsiness or poor mood for daily activities. One of the participants

was discarded because he/she worked in shifts.
3.3 Sleep and glycemic control
characteristics

Table 3 presents the values of the sleep monitoring variables for

the participants of the study. Al-though most participants have a sleep

efficiency higher than 90%, there are also 3 cases with a value close to

45% and two others with low-efficiency values (58% and 68%). Sleep

data from some parti-cipants, such as HUPA007 or HUPA008, were

discarded due to inconsistency in the reported data.

Following the consensus on sleep quality assessment of the

National Sleep Foundation (34), three vari-ables were used for

evaluating the sleep quality: the number of awakenings during the

night, WASO or Wake After Sleep Onset and the sleep efficiency (as

the ration of total sleep time to time in bed (35).
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Table 4 shows the sleep characteristics of the participant. Sleep

quality was categorized as poor if at least two of three mentioned

criteria were met, i.e., sleep efficiency < 85% or Wake After Sleep

Onset (WASO) > 40 min or a number of awakenings > 4. The sleep

characteristics of the participants show large inter-individual

differences, and only 48% of the patients have a good overall sleep

quality, although the mean sleep duration is not low (mean of 7.15

hours). Of the 243 nights analyzed, 77% (n = 189) were of poor sleep

quality and 33% (n = 54) of good quality. It should be noted that eight

patients had no night with good sleep quality. The factor that most

determined poor sleep quality was the duration of nighttime

awakenings, with a mean of 52.81 minutes.

Table 5 shows the percentages of time spent in sleep phases of

Light, REM and Deep. Light phases percentage ranges from 45% to

60.8% with an average of 54.14%. The average time spent in the Deep

phase is 15.08%, with a maximum of 20.19% and a minimum of
Frontiers in Endocrinology 05
11.72%. Finally, participants spent an average of 18.49% of the time in

bed in the REM phase, ranging from 8.62% to 27.24%.

Table 6 shows the overnight glycemic characteristics of the

participants. Patients presented low values of time in range, with an

average of 59.97 ± 14.74%, which is an indication of poor glycemic

control. The high values of the average CV (36.45 ± 8.76) and

standard deviation of the mean glucose (55.85 ± 14.) are also

concordant with this appreciation.
3.4 Association between sleep quality and
blood glucose

In Figure 2, the upper triangular view of the correlation matrix for

different variables recorded in this study is displayed as a correlogram.

Red/blue colors for showing negative/positive correlation, and low/

high intensity indicating the absolute value of the correlation. In

addition to the expected correlations, we can point out several facts.

Both poor and good sleep qualities have no significant correlation

with any other variable. A positive correlation of 0.8 was found

between the standard deviation of sleep efficiency and the standard

deviation of mean blood glucose. In addition, the standard deviation

of sleep efficiency has a positive correlation (0.66/0.62/0.65/0.61) with

the standard deviation of glucose, the coefficient of variation, the time

in range, and the time in hyperglycemia. There is a positive

correlation (0.55) between the coefficient of variation and the mean

time spent in hypoglycemia.

As mentioned, we used the clustering techniques to find patterns

in sleep behavior. We experi-mented with a different number of

clusters, having found k =4 to be the best option, showing a clear

relationship between sleep structure and glucose variables. With k =3,

we have a cluster with very broad glucose patterns, whereas, with k =5,

the relationship between sleep structure and the different glucose

variables is confirmed with no additional information, remaining the

main clusters the same. With k =4, the number of nights grouped in

each cluster was: 33, 78, 41 and 91.

In the left column of Figure 3, we can see the four sleep clusters,

while the right column shows the average glucose dynamics in the

days corresponding to each cluster. Remind that in the right column,

the specificity of the glucose patterns is shown with intense blue color,

while the patterns common to all clusters are shown in red. Because

we take glucose level samples every 15 minutes, we have 96 samples

per day. In the horizontal axis, we mark the main hourly

correspondences. In order to correctly compare the sleep clusters,

we show a total of 44 possible states per night (horizontal axis, on the

left column).

We calculated the Shannon’s entropy for the four clusters

resulting in the following order (from highest entropy to lowest):

1,3, 2, and 4. Figure 4 shows the results of the main glucose variables

for each cluster. On the one hand, the four clusters have slightly

different sample sizes. On the other hand, we cannot assume that the

clusters will have the same variance. The result of Welch’s F-test

indicates that we can reject the null hypothesis that each cluster has

the same mean value.

After the statistical tests with Bonferroni’s correction, we obtain

several observations. Regarding time in Range, there is statistical

significance between Cluster 1 and Cluster 4. We found significant
TABLE 1 Characteristics of the participants: ID, Gender (M, Male; F, Female;
Sex assigned at birth coincides with gender identity for all participants), Age,
BMI, HbA1c, Treatment (MDI, Multiples doses of insulin; ISCI, Infusion
Subcutaneal continuous of insulin); Years of evolution of T1DM.

ID Gender Age BMI HbA1c Treatment Years
T1DM

HUPA001 F Q4 Q2 Q4 ISCI Q3

HUPA002 M Q4 Q2 Q2 ISCI Q4

HUPA003 F Q3 Q1 Q2 ISCI Q2

HUPA004 M Q2 Q4 Q3 ISCI Q1

HUPA005 F Q1 Q2 Q1 ISCI Q4

HUPA006 M Q1 Q3 Q3 ISCI Q2

HUPA007 M Q2 Q4 Q1 ISCI Q1

HUPA008 F Q1 Q4 Q4 ISCI Q1

HUPA009 F Q3 Q2 Q3 ISCI Q4

HUPA010 F Q3 Q1 Q1 ISCI Q2

HUPA011 F Q2 Q2 Q3 ISCI Q4

HUPA014 F Q4 Q3 Q4 MDI Q2

HUPA015 F Q3 Q1 Q1 MDI Q1

HUPA016 F Q2 Q3 Q1 ISCI Q3

HUPA017 F Q1 Q1 Q4 MDI Q3

HUPA018 F Q2 Q1 Q2 ISCI Q4

HUPA019 M Q1 Q3 Q2 MDI Q1

HUPA020 M Q3 Q3 Q4 MDI Q2

HUPA021 F Q4 Q3 Q3 MDI Q1

HUPA022 M Q4 Q2 Q1 ISCI Q2

HUPA023 M Q1 Q1 Q3 MDI Q1

HUPA024 M Q3 Q4 Q4 MDI Q4

HUPA025 M Q2 Q4 Q1 ISCI Q3

HUPA026 F Q4 Q4 Q2 MDI Q3

HUPA027 M Q1 Q1 Q2 MDI Q3

Average F:14/25 38.3 24.4 7.4 ISCI:15/25 18.1
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TABLE 2 Results of Pitsburg questionnaire.

tion Di dysfunction Global Subjective hours sleep

3 13 6

2 6 7

2 12 5

2 7 8

0 5 7

2 6 6.3

1 5 7

1 6 5

2 5 6.3

3 16 4

1 4 7.3

0 10 7

1 4 6.3

0 3 7.3

3 15 4.3

1 8 5

0 3 10

1 4 6.3

0 12 6

1 NV 6

0 3 8.3

0 7 5

0 5 6

1 10 8

0 3 7.5

0.32 1,29 7.09
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n
tie
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rg

0
6

ID Quality Latency Duration Efficiency Disturbances Medica

HUPA001 3 3 1 0 3 0

HUPA002 0 1 1 0 1 1

HUPA003 3 2 3 0 2 0

HUPA004 0 1 0 0 1 3

HUPA005 1 1 1 0 2 0

HUPA006 0 1 1 1 1 0

HUPA007 0 1 1 0 1 1

HUPA008 0 1 2 0 1 1

HUPA009 0 1 1 0 1 0

HUPA010 2 3 3 3 2 0

HUPA011 1 1 0 0 1 0

HUPA014 2 2 1 3 2 0

HUPA015 1 0 0 0 1 0

HUPA016 1 1 0 0 1 0

HUPA017 2 1 3 3 2 0

HUPA018 2 1 1 1 1 0

HUPA019 1 1 0 0 1 0

HUPA020 0 1 0 0 1 0

HUPA021 3 3 1 1 2 0

HUPA022 0 NV 0 NV NV 0

HUPA023 0 2 0 0 1 0

HUPA024 0 3 2 1 1 0

HUPA025 0 0 1 2 1 1

HUPA026 1 1 0 0 2 3

HUPA027 1 1 0 0 1 0

Average 0.91 3.8 1.38 1,19 0.57 1.33
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TABLE 3 Sleep States: Average duration with standard deviation (in minutes).

Participant
ID

Efficiency
%

Asleep
(min)

Light
(min)

Deep
(min)

REM
(min)

Awake
(min)

Bed
(min)

HUPA001 94±2 366.08±114.66 218.08±49.39 53.38±30.51 94.62±43.92 42.38±13.93 419±128

HUPA002 97±2 390.73±74.93 216.27±69.91 84.36±19.82 90.09±23.34 33.36±14.53 424±87

HUPA003 93±3 335.75±98.39 228.50±83.39 46.75±16.27 60.50±20.89 45.25±22.80 350±98

HUPA004 96±2 333.00±43.97 207.00±29.39 67.30±16.93 58.70±30.56 40.10±7.75 376±44

HUPA005 58±14 350.88±54.08 211.38±25.62 69.12±24.19 70.38±23.13 50.38±10.68 401±58

HUPA006 47±33 384.17±49.01 233.67±27.35 66.17±13.35 84.33±20.3 68.33±22.44 467±57

HUPA007 94±2 325.46±38.89 204.38±38.82 54.62±15.08 66.46±23.48 37.92±7.76 100±74

HUPA011 91±3 386.46±41.92 255.23±30.75 56.15±10.67 75.08±26.24 55.92±11.84 442±43

HUPA014 93±2 481.92±98.54 293.67±60.12 78.58±23.78 109.67±44.29 86.75±35.94 569±127

HUPA015 94±1 417.46±90.13 250.08±74.14 72.92±17.64 94.46±30.54 54.23±21.19 476±106

HUPA016 97±2 416.69±40.41 255.85±36.96 62.54±14.31 98.31±20.66 53.08±16.17 474±48

HUPA017 90±3 404.85±54.43 245.62±55.28 61.85±15.73 97.38±24.81 66.00±19.94 471±66

HUPA018 47±5 408.82±37.31 205.91±33.48 76.27±20.58 126.64±35.54 51.64±9.64 403±24

HUPA019 93±2 363.50±37.44 253.50±23.93 72.00±30.01 38.00±24.98 60.33±19.25 424±52

HUPA020 46±9 319.90±80.52 202.50±67.91 57.00±18.37 60.40±19.73 48.70±19.97 369±94

HUPA021 69±2 387.00±20.65 240.75±26.79 61.00±18.23 85.25±27.62 56.88±13.29 444±28

HUPA022 94±3 303.86±81.22 204.07±56.36 38.71±17.51 61.07±30.62 41.86±13.4 346±92

HUPA023 96±1 421.00±72.27 275.90±44.03 73.40±15.64 71.70±28.29 55.10±9.35 509±43

HUPA024 92±4 298.00±68.25 213.00±55.61 34.33±9.00 50.67±16.63 56.17±16.34 170±138

HUPA025 92±3 383.50±51.79 232.00±42.67 72.75±13.50 78.75±20.05 55.75±13.14 80±103

HUPA026 61±6 437.06±36.85 241.50±33.85 82.81±17.17 112.75±26.56 55.88±12.10 325±219

HUPA027 93±2 345.31±48.17 189.23±29.65 77.77±13.74 78.31±19.97 45.85±11.12 449±73

Average 83±5 375.52±60.63 230.82±45.25 64.54±17.82 80.16±26.46 52.81±15.57 391±119
F
rontiers in Endocrinol
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 front
TABLE 4 Participants characteristics Sleep quality was categorized as ’poor’ if at least two of three criteria were met, i.e., sleep efficiency < 85% or WASO
> 40 min or number of awakenings > 4, based on the National Sleep Foundation’s consensus recommendations for sleep quality assessment.

Participant Total Sleep Quality Sleep Time Sleep Efficiency WASO Awakenings

ID Nights Good Poor Avg (hours) Avg (%) Avg (min) Avg per night

HUPA001P 13 3 10 6.81±2.11 94.08±2.14 42.38±13.93 5.00±2.24

HUPA002P 11 8 3 7.07±1.45 97.45±1.63 33.36±14.53 2.73±1.90

HUPA003P 12 7 5 6.35±1.99 93.08±2.81 45.25±22.8 3.25±1.76

HUPA004P 10 6 4 6.22±0.75 95.80±1.81 40.10±7.75 3.20±1.40

HUPA005P 8 0 8 6.69±0.97 58.50±14.41 50.38±10.68 3.50±1.51

HUPA006P 6 0 6 7.54±0.98 47.67±33.68 68.33±22.44 6.33±3.33

HUPA007P 13 8 5 6.06±0.68 94.08±2.10 37.92±7.76 2.69±1.49

HUPA011P 13 1 12 7.37±0.72 90.92±3.43 55.92±11.84 4.23±1.83

HUPA014P 12 1 11 9.48±2.12 92.67±2.39 86.75±35.94 5.08±2.50

HUPA015P 13 3 10 7.94±1.76 93.69±1.55 54.23±21.19 3.69±1.49

HUPA016P 13 2 11 7.91±0.80 96.54±2.22 53.08±16.17 0.15±0.38

(Continued)
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differences for Cluster 1 and Cluster 2, versus Cluster 3 and Cluster 4 in

time in hypoglycemia, and for Cluster 3 versus Cluster 2 and Cluster 4

in time in hyperglycemia. Cluster 1 and Cluster 4 are also significantly

different in terms of CV. For the mean of glucose values, despite

Welch’s F-test, the pairwise tests found no significant differences. One

explanation could be that the applied Bonferroni’s adjustment was too

severe (36, 37). Another variable related to glucose variability, the

standard deviation of glucose levels, presented significant differences for

Cluster 1 and Cluster 3 versus Cluster 2 and Cluster 4. So, from these

statistical results and the parallel observation of Figures (3 and 4 several

conclusions arose. Clusters 1 and 2 (Figures 3A, C) have the longest

sleep state sequences, the highest nocturnal glucose levels and a

maximum peak around noon. Clusters 3 and 4 (Figures 3E, G), with

the shortest sleep state sequences have the lowest nocturnal glucose

levels and a maximum peak around sunset. In addition, these are the

two clusters with the lowest time in hypoglycemia (Figure 4B). In the

case of Cluster 3, this is mainly because this cluster has the longest time

in hyperglycemia (Figure 4C), while Cluster 4 is the cluster with the

longest time in range (Figure 4A). Cluster 1, with the highest Shannon’s

entropy and the longest sequence of states (40), has as distinctive

characteristic a very pronounced drop in glucose levels prior to the

night and, at the same time, the most accentuated nocturnal rise

(displayed in dark blue in Figure 3B). In addition, it is the cluster

with the lowest time in range (Figure 4A), the highest time in

hypoglycemia (Figure 4B), coefficient of variation (Figure 4D) and

standard deviation (Figure 4F). Cluster 3, with the shortest sleep

sequence (16 states), has the unique characteristic of a pronounced

drop in glucose level during the night (Figure 3F). It is also the cluster

with the highest time in hyperglycemia (Figure 4C) and, therefore, the

highest mean level of glucose (Figure 4E). In Figure 4F, we can see that

the lowest standard deviation corresponds to clusters 2 and 4. This

could be related to the fact that these two clusters have the sleep state

sequences with the lowest Shannon’s entropy. The shortest time in

hyperglycemia and therefore lower mean glucose level (Figures 4C, E)
TABLE 4 Continued

Participant Total Sleep Quality Sleep Time Sleep Efficiency WASO Awakenings

ID Nights Good Poor Avg (hours) Avg (%) Avg (min) Avg per night

HUPA017P 13 1 12 7.85±1.11 90.31±3.35 66.00±19.94 4.85±1.68

HUPA018P 11 0 11 7.67±0.69 46.91±5.49 51.64±9.64 4.09±1.14

HUPA019P 6 0 6 7.06±0.87 93.00±1.67 60.33±19.25 6.17±5.00

HUPA020P 10 0 10 6.14±1.57 46.50±9.16 48.7±19.97 3.70±1.25

HUPA021P 8 0 8 7.40±0.47 69.38±2.20 56.88±13.29 4.62±1.85

HUPA022P 14 8 6 5.76±1.54 93.93±2.97 41.86±13.40 3.50±1.56

HUPA023P 10 0 10 7.93±1.33 95.50±1.18 55.10±9.35 4.80±1.40

HUPA024P 6 1 5 5.90±1.38 92.00±4.47 56.17±16.34 1.17±2.86

HUPA025P 12 1 11 7.32±1.01 92.08±3.00 55.75±13.14 4.17±2.52

HUPA026P 16 0 16 8.22±0.71 60.75±5.86 55.88±12.10 5.31±1.82

HUPA027P 13 4 9 6.52±0.81 93.38±2.33 45.85±11.12 3.23±1.54

Overall 243 54 189 7.15±1.17 83.1±4.99 52.81±15.57 3.88±1.93
TABLE 5 Sleep States: Ratio over Total Sleeping Time.

Participant ID Light% Deep% REM%

HUPA0001P 54.85 12.49 22.23

HUPA0002P 50.23 20.19 21.88

HUPA0003P 59.51 12.68 16.36

HUPA0004P 55.71 17.98 15.47

HUPA0005P 53.25 16.93 17.19

HUPA0006P 51.74 14.55 18.74

HUPA0007P 56.18 15.01 18.33

HUPA0011P 57.72 12.72 16.85

HUPA0014P 52.26 14.00 18.88

HUPA0015P 52.07 15.76 20.00

HUPA0016P 53.85 13.26 20.88

HUPA0017P 51.83 13.51 20.76

HUPA0018P 45.00 16.56 27.24

HUPA0019P 60.80 16.55 8.62

HUPA0020P 54.46 15.25 17.30

HUPA0021P 54.44 13.65 19.17

HUPA0022P 59.13 11.72 17.05

HUPA0023P 58.11 15.43 14.81

HUPA0024P 59.81 10.19 14.20

HUPA0025P 52.66 16.63 18.07

HUPA0026P 49.04 16.83 22.83

HUPA0027P 48.32 19.87 19.94

Average 54.14 15.08 18.49
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corresponds to Cluster 2, which has a low level of Shannon’s entropy

and a medium length of the sleep state sequence (Figure 3C).
4 Discussion

This study shows that in adults with T1DM, subjective and

objectively assessed sleep quality is poor, as occurs in 77% nights

analyzed with actigraphy and 52% patients report Pittsburgh index >

5. In a previous epidemiological study using the Pittsburgh survey to

measure subjective sleep quality (1) in a sample of 222 patients,

authors found that 41% have poor sleep quality (Pittsburgh index >5).

According to our study’s observational data, sleep quality variability

in adults with type 1 diabetes is associated with more significant

variability in nocturnal blood glucose levels.

Similar findings have been reported in a group of adolescent

patients using actigraphy and CGM, where sleep fragmentation,

earlier awakening, and longer duration of WASO are associated

with greater glycemic variability and longer time in hypoglycemia (8).

To our best knowledge, this is one of the first studies using

machine learning techniques to analyze the relationship between
Frontiers in Endocrinology 09
sleep structure and times in normo-, hypo-, and hyperglycemia and

to show that better sleep structure is associated with longer time in the

glycemic range during that day. Our results confirm those of a

previous study in 20 adult patients (38), showing that poor sleep

quality is associated with greater glycemic variability. However, they

found no association between sleep quality and time in range. This

study only analyzes the relationship between sleep quality and

glycemia with a linear mixed-effects model. The application of

machine learning clustering reveals that nights with a higher

disorder of the sleep structure presented lower time in range and a

higher percentage of time in hypoglycemia. Increased time in the deep

sleep phase was correlated with lower HBA1c and less time in

nocturnal hypoglycemia in a previous study (9).

Other previous studies that do not use continuous glucose

monitoring also suggest that sleep disturb-ances worsen glucose

control. In particular, patients with short sleep duration (<6.5

hours) reported higher HbA1c than patients with longer sleep

duration (>6.5 hours) (14). Social jet lag (major changes in the

duration and timing of sleep between weekdays and holidays) was

associated with worse chronic metabolic control (39). Some studies

demonstrate the influence of sleep quality or duration on glycemic
TABLE 6 Overnight glycemic characteristics in individual participants.

Participant ID Nights Mean glucose
mg/dl

SD CV TR T Hyper
%

T Hypo
%

HUPA001P 13 181.71±32.27 67.12±10.97 37.27±5.07 54.21±13.77 43.54±14.74 2.25±3.13

HUPA002P 11 113.68±30.59 50.18±15.85 44.72±11.52 60.94±16.59 15.00±17.30 24.07±18.09

HUPA003P 12 139.88±22.85 55.38±16.57 38.98±5.56 69.66±12.53 22.69±14.68 7.65±7.24

HUPA004P 10 178.75±44.75 74.15±23.86 44.07±14.86 44.37±19.36 43.70±22.39 11.93±13.73

HUPA005P 8 151.06±23.74 43.05±14.68 29.29±11.12 69.09±16.96 27.21±18.19 3.70±4.45

HUPA006P 6 212.05±97.73 62.41±36.48 35.97±20.23 46.76±28.69 48.68±29.74 4.56±5.55

HUPA007P 13 173.64±29.53 73.14±14.31 42.53±8.47 46.28±17.35 45.07±17.61 8.65±8.49

HUPA011P 13 159.30±19.37 54.00±8.38 34.09±4.97 65.47±10.23 31.96±11.56 2.57±3.52

HUPA014P 12 186.47±19.12 68.55±22.54 36.68±11.00 44.96±10.21 50.83±11.34 4.20±3.77

HUPA015P 13 165.90±20.72 65.03±10.67 39.33±5.08 57.68±12.01 38.60±13.38 3.72±3.22

HUPA016P 13 157.32±45.81 67.24±20.44 43.51±12.62 51.16±18.54 36.10±22.75 12.74±10.33

HUPA017P 13 198.39±27.38 62.06±16.51 31.67±8.14 37.39±16.94 60.25±18.30 2.35±3.36

HUPA018P 11 144.12±35.97 62.64±17.93 43.60±5.62 49.73±11.83 31.77±18.56 18.50±14.91

HUPA019P 6 159.97±17.59 54.82±5.05 34.40±2.64 59.14±11.14 36.85±11.92 4.01±2.24

HUPA020P 10 193.99±29.73 72.11±18.31 37.23±7.74 44.92±14.04 51.29±15.31 3.78±3.88

HUPA021P 8 141.27±14.84 44.83±5.46 31.92±4.32 74.07±9.15 22.78±10.68 3.14±5.71

HUPA022P 14 111.12±23.51 31.58±7.55 29.00±6.96 79.57±11.25 5.01±8.62 15.42±13.42

HUPA023P 10 132.89±21.29 38.98±7.22 29.53±4.81 78.92±12.69 18.05±14.39 3.03±4.47

HUPA024P 6 157.51±31.58 56.53±18.80 37.25±14.74 57.63±9.82 35.17±15.25 7.19±10.08

HUPA025P 12 113.51±14.56 36.46±9.21 32.09±7.44 79.58±11.24 7.42±6.85 12.99±8.94

HUPA026P 16 133.64±24.60 57.68±20.78 42.86±11.98 60.70±21.91 22.25±17.37 17.05±13.76

HUPA027P 13 121.24±21.16 30.73±8.24 25.82±7.92 87.04±18.09 8.36±18.09 4.60±4.91

Overall 243 155.79±29.49 55.85±14.99 36.45±8.76 59.97±14.74 31.94±15.86 8.10±7.60
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control in children. However, the findings among the different

authors are not the same: it has been reported that a longer

duration of the light sleep phase is associated with higher mean

daily blood glucose, more episodes of hyperglycemia, and higher

HbA1c (4), and that increased nocturnal awakenings (40) correlate

with high glycemic variability.

Most of these studies have limitations in that they were conducted

on a small number of patients, some only used subjective sleep

assessments, and only two studies in adults simultaneously

performed continuous glucose monitoring and polysomnography.

There are several possible mechanisms involved in poorer glycemic

control (41). Decreasing the duration of the REM phase would produce

lower nocturnal glucose consumption, given that in the cerebral REM

phase, glucose consumption is similar to awake. In contrast, in the

cerebral non-REM phase, glucose consumption is much lower. In the

general population and patients with diabetes, sleep deprivation,

fragmentation, and decreased deep sleep are associated with

decreased insulin sensitivity, possibly mediated by increased cortisol

and Growth hormone (GH) levels. In patients with T1DM, higher

nocturnal levels of growth hormone, adrenaline, ACTH, and cortisol

than in the control population have been reported (3). In an

experimental study, the partial restriction of a single night of sleep (4

hours) de-creased peripheral insulin sensitivity measured by the

hyperinsulinemic-euglycemic clamp in patients with T1DM (42).

Although it has been proposed that continuous glucose

monitoring may alter sleep quality due to hyper-or hypoglycemia

alarms, in this study, the CGM did not have alarms, so the likelihood

of inter-ference of the CGM on sleep quality is very low. Finally, sleep
Frontiers in Endocrinology 10
disturbances could worsen glycemic control by an indirect

mechanism related to patients’ behavior and cognitive functions.

An association has been described in children and teenagers

between a shorter duration of sleep and a decrease in the frequency

of self-monitoring and insulin bolus administration (43).
5 Limitations

The use of Fitbit devices is controversial. The previous generation

of Fitbit devices was equipped only with body movement sensors and,

therefore, were unsuitable for recording sleep stages. How-ever, new

generations incorporated heart rate recording and a light sensor, so

the Fitbit Ionic models greatly improved the ability to identify sleep

stages. In fact, they are considered sleep-staging models (16).

However, the data is not available directly from the web. Instead,

programming an API is necessary to obtain the data. Although the

code was tested thoroughly, a deeper validation with other wrist

devices of higher complexity would be beneficial. Recently evaluations

of several commercial sleep technologies during sleeping concluded

that Fitbit ionic measured with greater accuracy and limited bias Total

sleep time (TST), total wake time (TWT), and sleep efficiency (SE).

Regarding sleep, stages were reported poor for the time spent in REM

sleep and with lower error in the other two stages (44). We did not

find other validation studies for Fitbit Ionic. The sample size of n=22

should be considered when evaluat-ing the results and conclusions

presented in this work. Although all of the participants are adults and

sleep recommendations are not different throughout adulthood, it
FIGURE 2

Correlation matrix for all the variables recorded in this study.
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would be necessary to study better the differences on sleep patterns

based on age.

This study did not look at possible differences between patients

treated with MDI or CSII. Separating patients by treatment would

further reduce the number of nights used to analyze each group as we

clustered by night rather than by patient. Future work should include

larger samples to investigate such possible relationships.
Frontiers in Endocrinology 11
6 Conclusion

To our best knowledge, our work is the first study that, using

artificial intelligence and statistical techniques, has found a

relationship between sleep structure and times in normo-, hypo-,

and hypergly-cemia. Our main conclusion is that better sleep

structure is associated with a longer time in the glycemic range.
A B

D

E F

G H

C

FIGURE 3

Analysis of specific patterns for each cluster. (A) Sleep States for cluster 1 (33 nights) (B) Average glucose behavior for cluster 1. (C) Sleep States for
cluster 2 (78 nights) (D) Average glucose behavior for cluster 2. (E) Sleep States for cluster 3 (41 nights) (F) Average glucose behavior for cluster 3.
(G) Sleep States for cluster 4 (91 nights) (H) Average glucose behavior for cluster 4.
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Future studies are needed to confirm these findings in a larger patient

population and investigate the mechanisms involved in the decreased

time in range and increased glycaemic variability caused by poor sleep

quality. We believe that sleep disturbances should be a factor to be

assessed in the clinical practice of patients with type 1 diabetes and

that strategies should be designed to treat these disturbances. As

future work, we are considering conducting a study to investigate

further the relationship between sleep and glycemia by age group.

Intuitively, variables affected by age, such as habits, responsibilities,

social influences, etc., may produce significant differences in sleep

patterns and diabetes outcomes.
Frontiers in Endocrinology 12
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FIGURE 4

Main glucose related results for four clusters in Figure 3. (A) Time in Range (B) Time in Hypoglycemia. (C) Time in Hyperglycemia (D) Coefficient of
variation. (E) Mean level of Glucose (F) Standard Deviation of glucose levels.
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