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Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of

stress-induced male infertility. However, apart from oxidative stress,

gonadotropin inhibitory hormone (GnIH) plays a major role. The present study

provides a detailed review of the role of GnIH in stress-induced male infertility.

Available evidence-based data revealed that GnIH enhances the release of

corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also

mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine

(T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH

inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the

hypothalamic-pituitary-testicular axis, and by extension testosterone

biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort

testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower

spermatogenesis, and deteriorate sperm quality and function. In conclusion,

GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility.

Suppression of GnIH under stressful conditions may thus be a beneficial

prophylactic and/or therapeutic strategy.
KEYWORDS

fertility, reproductive hormones, hypothalamus, pituitary, stress, testosterone
Abbreviations: CRH, corticotropin releasing hormone; FSH, follicle-stimulating hormone; GnIH,

gonadotropin inhibitory hormone; GnRH, gonadotropin-releasing hormone; HPA, Hypothalamic-

pituitary-adrenal axis; HPG, Hypothalamic-pituitary-gonal axis; LH, Luteinizing hormone; RFRP, RF

amide-related peptides; T3, triiodothyronine; T4, thyroxine.
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GRAPHICAL ABSTRACT

Schematic illustration of the impacts of GnIH on male fertility, Gonadotropin inhibitory hormone (GnIH) promotes the release of corticosteroids by
activating the hypothalamic-pituitary-adrenal axis. GnIH also inhibits the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hy-
pothalamic-pituitary-thyroidal (HPT) axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pi-
tuitary-gonadal (HPG) axis, therefore suppresses circulating luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. More so,
GnIH inhibits kisspeptin release, thus induces a delay in puberty onset. These series of events is accompanied by GnIH-induced degeneration of
germ cells, impairment of spermatogenesis, and deterioration of sperm quality and function.
1 Introduction

Infertility is a global public health issue that impacts an

individual’s social, economic, and personal life (1). According to

WHO (2), infertility is a reproductive system disease defined by the

inability of clinical pregnancy to be achieved after twelve months of

regular unprotected sex. Although infertility does not threaten life,

it is depicted as a radical life-changing problem because it bears

notable psychological trauma and social stigma (3). Infertility is a

very distressful state; the stress associated with it causes a drop in

sexual self-esteem, a decrease in the frequency of sexual intercourse,

and an increase in marital conflict. Infertile individuals often report

feeling less of themselves and inadequate (3). Statistics suggest that

an estimated 48.5 million couples worldwide are not fertile,

accounting for about 15% of all reproductive couples globally (4).

About half of all cases of infertility are contributed by male
Frontiers in Endocrinology 02
conditions (5). It is thought that about one-third of cases of being

unable to give birth are due to male factors, one-third occur as a

result of the female, and the remaining third is due to the

combination of male and female factors. In approximately 30% of

cases, the cause is labeled as idiopathic, and the condition’s origin is

never identified (6). Idiopathic infertility may be explained by the

role of mental disorders, such as stress, depression, sleep disorders,

eating disorders, and addictions (7).

Stress is any change that disrupts homeostasis by inflicting

physical, emotional, or psychological strain (8). Under a stressful

condition, the organism modifies its behavior and physiological

responses to re-establish homeostasis. Psychological stress caused

by a mix of achieving personal targets, hassles, meeting demands,

and deadlines, and frustrations is a major type of stress affecting

individuals globally (9). In the short-term, stress can motivate and

sometimes enhance productivity. The physiologic response to acute
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stress can also assist in maintaining good health, mood, human

relation, and quality of life by stimulating the ‘fight and flight’ to

maintain homeostasis (10). The response to stressors is important

for a sense of well-being, productivity, and socialization. However,

acute stress can become sustained in the presence of some negative

socioeconomic factors such as financial problems, disease outbreaks

(e.g. COVID-19 and Ebola outbreaks), job insecurity, loneliness, or

bereavement. Negative socioeconomic factors could frustrate

individuals and eventually activate the mechanisms responsible

for chronic stress response (9).

Chronic stress may distort the normal metabolic, nervous, and

immune responses (11), thus increasing the susceptibility to

pathological conditions (12). Although stress has been clinically

associated with male infertility, little is known about its possible

effect on spermatogenesis and steroidogenesis compared with it

inflammatory and oxidative stress mechanism. This narrative

review provides compelling shreds of evidence, based on the

available data from the literature, on the role of chronic stress on

male fertility. It also provides information on the role of

gonadotropin inhibiting hormone (GnIH) on male infertility.
2 GnIH

GnIH is a decapeptide hormone that plays a key role in the

neural regulation of reproduction (13). It is one of the major

hypothalamic neuropeptide hormones responsible for

maintaining optimal reproductive functions (14). The novel

hormone was discovered in the quail hypothalamo-hypophyseal

system in the year 2000 and was named based on its inhibitory effect

on the gonadotropic hormones and gonadotropic releasing

hormone (GnRH) (15). This opened another research window in

reproductive neuroendocrinology challenging the belief that GnRH

is the only hypothalamic hormone responsible for regulating

reproductive functions. Subsequently, the hormone was found to

be present in most vertebrates including humans (16), and it has

been established to exert influential activities on sexual behavior

and gonadal functions (16).

GnIH is also referred to as RF amide-related peptides (RFRPs)

in mammals, while it is known as LPXRF-amide in teleosts because

it has LPXRF (X = L or Q) amide motif at the C-termini (14, 17).

The two forms of GnIH found in mammals are RFRP-1 and RFRP-

3, and have been identified to regulate the hypothalamic-pituitary

gonadal (HPG) axis in men (13, 14, 18). GnIH directly inhibits

GnRH since its axon is in contact with GnRH neurons (19, 20).

Apart from its effect on the hypothalamus, it also inhibits the

secretion of follicle stimulating hormone (FSH) and luteinizing

hormone (LH) directly through its release into the hypothalamic–

hypophyseal portal system (21). Furthermore, the presence of GnIH

receptors on the testes of mammals is an indication that it may

directly inhibit testicular functions (spermatogenesis and

steroidogenesis). In fact, exogenous administration of GnIH has

been shown to impair testicular development (22). Hence, GnIH

can impair testicular functions at the level of the hypothalamus,

pituitary, or testes (Figure 1).
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Neurons responsible for the synthesis of GnIH are present in

the mid-ventral continuum from the diagonal band of Broca to the

mediobasal hypothalamus (23), while those regulating the secretion

of gonadotrophic hormones extend to the median eminence to

modulate the synthesis of FSH and LH (13, 24). The released LH

and FSH then regulate the synthesis of gonadal hormones which in

turn send negative feedback to the hypothalamus and anterior

pituitary gland to keep the reproductive axis within the operating

limits required for optimal reproductive functions (25). This closed

loop is called the hypothalamic-pituitary-gonadal (HPG) axis, and

it is known to be solely regulated in the hypothalamus via GnRH

(26) until the discovery of GnIH.
2.1 Physiology of stress

Stress is an important phenomenon for survival that requires

prompt physiological and behavioral responses for an individual to

cope with the different situations in the environment and maintain

body homeostasis (27). Physiologically, stress response can be

categor ized into the fas t response mediated by the

sympathoneural and sympathoadrenomedullary (SAM) axis and

the slow response mediated by the hypothalamic-pituitary-adrenal

axis (HPA) (28).

The sympathoneural and SAM are the first line of stress

response, and their activation stimulates the release of

catecholamine (epinephrine and norepinephrine) from the

adrenal gland into the bloodstream. Also, norepinephrine

becomes elevated in the brain due to its increased secretion and

release from the sympathetic nerves (29). The released epinephrine

and norepinephrine stimulate the alpha (a)- and beta (b)-
adrenergic receptors found in the central nervous system, smooth

muscles, and other organs of the body (30). The released

epinephrine and norepinephrine bind to their specific membrane-

bound G-protein receptors to activate the intracellular cyclic

adenosine monophosphate (cAMP) signaling, which in turn

stimulates various cellular responses (31). The activation of these

receptors leads to an increase in heart rate, blood pressure, cardiac

output, and skeletal muscle blood flow via vasoconstriction of both

the smooth and cardiac muscles (32). They also stimulate an

increase in blood glucose, lipolysis, oxygen utilization, and

thermogenesis, and cause behavioral changes such as enhanced

arousal, alertness, and attention (30).

In addition, the activation of the first line of the stress response

stimulates the slow response, which is mediated by the activation of

the HPA axis to release glucocorticoids (28). Corticotropin-

releasing hormone (CRH) is secreted from the paraventricular

nucleus (PVN) of the hypothalamus and binds to its receptors

(CRH-R1 and CRH-R2). The CRH-R1 is the major receptor for

activating the stress-induced secretion and release of

adrenocorticotropic hormone (ACTH) (30). The release of CRH

into the bloodstream stimulates the release of ACTH from the

anterior pituitary gland into the bloodstream, which in turn

stimulates the release of glucocorticoid from the adrenal cortex.

HPA axis is regulated by the pituitary adenylate cyclase-activating
frontiersin.org

https://doi.org/10.3389/fendo.2023.1329564
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Odetayo et al. 10.3389/fendo.2023.1329564
polypeptide (PACAP) that regulates the release of CRH and

modulates the HPA axis at different levels (33). PACAP also

stimulates the secretion of catecholamines during autonomic

response to stress (33).

The interplay between sympathoneural, SAM, and HPA axis in

response to stress systematically produces metabolic and behavioral

changes that are transient and adaptive (28). However, chronic

sympathetic discharge and elevated levels of glucocorticoid during

prolonged stress are associated with pathological conditions, such

as metabolic disorder and infertility.

2.1.1 Stress and infertility
Chronic stress is a psychological disorder that can lead to

various sexual problems such as loss of libido and erectile and

ejaculatory dysfunction (34). Besides, infertility itself is stressful

because of its attendant complications such as social pressures, low

self-esteem, unfulfilled desire, and a financial burden (35). Stress

may impair testicular functions, which leads to reduced circulating

testosterone, and impaired spermatogenesis and sperm quality (36).

The first available report on the effect of stress on human

spermatogenesis was obtained from death-sentenced prisoners

kept for a long time before execution (37). The study reported

impaired spermatogenesis that was so marked that the only cells

found in the seminiferous tubules were the Sertoli and

spermatogonial cells. In another study, milder stress was reported

to significantly reduce circulating testosterone (37).

Various experimental results show a positive correlation

between chronic stress and erectile dysfunction. Chronic stress

impairs the normal morphology of the penile corpus cavernosum,

which in turn impairs penile erection (34, 38). Additionally, chronic
Frontiers in Endocrinology 04
stress also `impairs endothelial function (39), which is important

for penile erection via the No/cGMP signaling (40).

2.1.2 Stress and GnIH
Chronic stress is positively related to the secretion of GnIH

from the hypothalamus (41). In other to confirm the relationship

between chronic stress and GnIH, adrenalectomy was performed in

male rats, and it was observed that the increase in GnIH secretion

under a stressful condition was abolished (42). Also, the study of

Son et al. (43) revealed that glucocorticoid receptor (GR) is present

in GnIH neurons that are located in the PVN, and treatment with

glucocorticoids significantly increases GnIH secretion. GR is also

expressed in rHypoE-23, which is a GnIH-expressing neuronal cell

line from a rat hypothalamus (43). Stress-induced secretion and

release of norepinephrine is responsible for stimulating the release

of GnIH (44). Interestingly, the expression alpha-2A adrenergic

receptors in GnIH neurons of male quail have been elucidated (44).

Thus, it appears that the effect of chronic stress on fertility vis the

HPA axis is mediated by the upregulation of the expression

of GnIH.

Also, GnIH neurons and those of CRH are in direct contact

with the PVN, and their release triggers the activation of the HPA

axis (45). In addition, the CRH receptor is present in about 13% of

the neurons of GnIH, and its activation upregulates GnIH-RmRNA

(42). GnIH and cortisol are up-regulated in the presence of acute

and chronic stress mediators (45). In agreement with the earlier

findings of Kirby et al. (42), Higuchi et al. (46) demonstrated that

GnIH and cortisol levels were markedly elevated during stress.

However, like most neuroendocrine responses, sustained

stimulation of the CRH receptor by chronic stress may lead to its
FIGURE 1

Schematic illustration of the HPG axis and the inhibitory effect of GnIH. ─ is inhibitory effect while ┼ is stimulatory effect.
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desensitization, disrupting the HPA axis (47). Thus, it has been

speculated that CRH-sensitive GnIH cells might also become

desensitized by sustained chronic stress (48), thereby interrupting

the GnIH-GnRH neuronal pathway. These pieces of experimental

evidence show that CRH and GnIH are positively correlated since

CRH can directly stimulate some parts of GnIH neurons, thereby

increasing GnIH sensitivity via the upregulation of the GnIH-R.

Furthermore, chronic stress has been revealed to be associated

with hypothyroidism by directly inhibiting the activities of the

hypothalamic-pituitary-thyroidal (HPT) axis (49). Stress-induced

secretion of glucocorticoids has been linked with hypothyroidism

by inhibiting the conversion of thyroxine (T4) to triiodothyronine

(T3). This is in agreement with the study of Kakucska et al. (50),

which showed that the administration of dexamethasone and

corticosterone led to a significant decrease in the expression of

TRH mRNA within the hypothalamus (51). These observed stress-

induced hypothyroidism might be accountable for the surge in

GnIH following chronic stress. According to the study of Kiyohara

et al. (52), transient hypothyroidism led to GnIH mRNA

upregulation and delayed puberty onset in young female rats,

these observed hypothyroidism-induced reproductive dysfunction

was completely reversed in animals with genetic loss of GnIH.

Similarly, Rodrigues et al. (53) reported that the regulatory effect of

thyroid hormone on the HPG is via its effect on GnIH secretion.

They reported that hypothyroidism is a potent stimulator for the

release of GnIH which in turn decreased Kiss1 mRNA expression,

and eventually inhibited the release of gonadotropins. This is in

tandem with the study of Santos et al. (54) that also reported

negative relationship between thyroid hormone and Kiss 1.

Additionally, the presence of thyroid hormone receptors and

response elements (52) further shows the direct relationship

between thyroid hormones and GnIH. In fact, thyroid hormone

regulates chromatin modifications of GnIH promoter to either

stimulate or inhibit GnIH expression by H3acetylation and

H3K9tri-methylation respectively (55). Hence, it is tempting to

conclude that another possible mechanism underlying chronic

stress-induced elevated GnIH could be due to its inhibitory effect

on thyroidal function since hypothyroidism has been linked with

elevated GnIH secretion and release.

Another possible mechanism of action responsible for stress-

induced increase in GnIH secretion is via a leptin-dependent

pathway. Chronic stress has been shown to increase leptin

secretion (56), a peptide hormone that is produced and

synthesized by the white adipose tissue (57). Leptin is a satiety

hormone and has been established to play a role in reproduction by

maintaining metabolism in the reproductive axis (58). Different

animal studies have described the role of leptin in maintaining the

HPG axis. The presence of about 15-20% of GnIH neurons on the

long form of the leptin receptor (LepRb), suggests a possible

relationship between GnIH and adiposity via leptin and feed

intake (45). In fact, a significant decline in GnIH synthesis has

been reported in the leptin-deficient ob/ob mice (59). This

relationship could be traced to the pro-inflammatory activities of

leptin. Increased circulatory leptin is positively related to the

production of inflammatory cytokines and resistin (60). Leptin-

induced inflammatory response could stimulate the secretion on
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GnIH, which in turn suppresses the HPG axis activities. This claim

is supported by the study of Iwasa et al. (61) that reported the

stimulatory effect of lipopolysaccharide on GnIH secretion. Hence,

it is plausible that the observed increase in GnIH during chronic

stress could be mediated via stress-induced increase in

leptin secretion.
2.2 GnIH and HPG axis

The HPG axis is a crucial endocrine pathway that links the

hypothalamus, pituitary, and gonads in the body (62). HPG is

integral in the establishment and maintenance of normal

physiological processes related to reproduction, such as sexual

maturation, steroidogenesis, and spermatogenesis. It is

responsible for the production of essential reproductive

hormones, such as those involved in fertility and sexual

maturation. Anatomically, The HPG axis is made up of the

hypothalamus, that housed the KNDy and GnRH-producing

neurons, the anterior pituitary, where the gonadotropes produced

LH and FSH, and the gonads, responsible for sex steroids and

gametes production.

The HPG axis is active in the human fetus till one year after

birth, after which it goes quiescent till 10 years postnatal life when it

becomes active again (63, 64). This is about the time for the onset of

puberty. It is occasioned by an increase in GnRH secretion in a

pulsatile way, leading to increased gonadotropin secretion as well

(63, 64). Reduction in melatonin secretion due to the regression of

the pineal gland, together with the increase in leptin and other

hormones, contribute favorably to the reactivation of the HPG axis

before puberty onset (65). Since melatonin is positively correlated

with GnIH (66, 67), it can be speculated that a decline in the

secretion of GnIH following melatonin reduction, has a role to play

in the reactivation of the HPG axis during the pubertal stage.

The HPG axis is key in the regulation of reproductive functions

in vertebrates (64, 65). While the two main hormones at the

anterior pituitary level of the HPG axis, luteinizing hormone

(LH) and follicle-stimulating hormone (FSH), stimulate gonadal

functions (steroidogenesis and spermatogenesis) (68);, the release of

these hormones is mainly regulated by neurons at the hypothalamic

level that produces GnRH (15, 69). Pulsatile GnRH secretion can be

triggered by environmental and tactile cues like food availability,

photoperiod, rainfall, and the presence of a mate (70).

GnRH is a decapeptide hormone discovered to stimulate the

release of LH and FSH from the pituitary gland of mammals (71).

Early findings referred to GnRH as the Luteinizing Hormone-

Releasing Hormone (LH-RH), until it was widely referred to as

GnRH because of it stimulatory effect on not just LH, but also on

FSH. While GnRH stimulates LH and FSH, its stimulatory effects

on both secretions are not similar (72). Compared to LH, FSH

secretion is more irregular in humans, which could be due to the

pulsatility and different stimulatory effects of GnRH (73). This

could also be a result of the existence of different gonadotropes

subpopulations or different response times to GnRH (74). To

support this claim, findings from an ovariectomized sheep

administered GnRH antisera, revealed a complete inhibition of
frontiersin.org
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LH secretion (LH became undetectable within 24 hours), while FSH

release fell slowly and remain detectable (75). Furthermore, the rate

of GnRH input has been shown to selectively maintain the

transcription of gonadotropin subunit gene. For example, rapid

GnRH pulse rates upregulate a and LH-, while the slow pulse

frequency increases FSH-b gene transcription (74, 76).

The gonadotroph cells located in the anterior pituitary are

responsible for the production of LH and FSH. These cells are

made up of large round cell bodies with pronounced Golgi

apparatus and endoplasmic reticulum. These cells constitute

about 10 to 15% of the functional anterior pituitary cell mass.

The LH and FSH produced from these cells are from similar genes

which accounted for their similar properties. LH and FSH are

glycoproteins consisting of alpha and beta subunit. The alpha

subunit is similar while the beta subunit of each hormone is

different. The difference in the beta subunit gave each hormone

its biological specificity. The alpha subunit of LH and FSH consist of

92 amino acids, while the LH beta sub unit is made up of 120 amino

acids and FSH is made up of 118 amino acid (77). Additionally, LH

consist of one-two sialic acid residues, which account for its shorter

half-life, while FSH is madeup of 5 sialic acid residues, accounting

for its longer half-life of 3-4 minutes. LH and FSH are responsible

for maintaining gonadal functions. LH is majorly responsible for

stimulating the Leydig cells to produce testosterone from the testis,

while FSH is responsible for maintaining the Sertoli cells to

maintain spermatogenesis. They both also maintain GnRH

production via negative feedback mechanism.

Testosterone and its metabolite (dihydrotestosterone) are the

androgen in the testis, and are the major male reproductive

hormones in mature male mammals. Testosterone is required for

maintaining spermatogenesis, and the production of mature sperm

is intimately dependent on androgen action within the testis. In fact,

the maintenance of optimal sexual and erectile function depends on

the effective testosterone secretion (78, 79). Testosterone is also

responsible for different biological processes and is important for

the development and maintenance of male secondary

characteristics. Testosterone is also responsible for maintaining

the HPG axis via its negative feedback mechanism to the pituitary

gland and hypothalamus.

GnIH is another hormone responsible for maintain the

activities of the HPG axis. It is the first hypothalamic

neuropeptide found to have an anti-gonadotrophic effect on all

vertebrate species by directly inhibiting GnRH via the 2 G-ptotein

coupled receptors - GPR147 and GPR74 which have been

recognized as GnIH receptors (GnIH-R) of which GPR147 cDNA

are found in the brain and pituitary while GPR74 cDNA are

conveyed in some tissues. It is important to note that GPR147 is

considered the principal GnIH receptors because of its higher

binding affinity as compared to GPR74 (55). GnIH also acts by

downregulating mRNA levels of luteinizing hormone beta-subunit

(LHb) and inhibiting its release from the anterior pituitary gland

(16, 80). GnIH can also inhibit LH synthesis via its stimulatory

effect on prolactin secretion (81), which is a potent inhibitor of LH

secretion (82). Its action on follicle-stimulating hormone beta-

subunit (FSHb) is not clear since its studies in quail have shown

no effect on mRNA levels or FSH release. Whereas, in cockerels and
Frontiers in Endocrinology 06
other avian species, LH and FSH were suppressed (83–85). In

mammals, it is less evident and controversial, particularly in its

correlation with puberty (83).
2.3 GnIH and kisspeptin

Apart from the direct inhibitory effect of GnIH on the HPG

axis, it also inhibits the secretion of kisspeptin, which stimulates the

release of GnRH from the hypothalamus. Kisspeptin is made up of

52-54 amino acid which cleaves from its precursors and amidation

occurs in the C-terminals. While C-terminals 10 amino acids (Kp-

10) are similar in mice, rats, cattle, sheep and pigs, in humans

tyrosine in the C-terminals is substituted with phenylalanine (86).

Kisspeptin together with its receptor (GPR54/Kiss-1r) are

responsible for controlling reproduction and puberty in mammals

through their direct stimulatory effect on the GnRH neurons (87,

88). In fact, the gain and loss of function in KISS1/KISS1R genes

mutations led to precocious puberty and hypogonadotropic

hypogonadism respectively, in human and animal models (89).

This is associated with the precocious stimulation or impairment of

the HPG axis at the level of the hypothalamus. The presence of

Kiss1R on GnRH-secreting neurons membrane further substantiate

the direct relationship between kisspeptin and the hypothalamus

(90). Aside the direct effect of kisspeptin on the HPG-axis at the

hypothalamic level, kisspeptin also modulate the HPG-axis

activities at the pituitary and gonadal level. This is supported by

the fact that kisspeptin neurons are also intermediate in the sex-

steroid mediated feedback mechanisms on reproduction (90). In

fact, environmental cues such as environmental toxicants, stress,

and diet interferes with HPG-axis activities via Kiss-secreting

neurons consisting of kisspeptin/neurokinin B/dynorphin A

(KNDy neurons) (89). KNDy neurons are proposed to form the

long elusive GnRH/LH pulse generator (91). These neurons are

responsible for modulating gonadotropin release and reproductive

functions based on peripheral signals (92). In tandem with this

claim, KNDy neurons have been shown to maintain reproductive

and non-reproductive functions such as negative feedback control

of gonadotropin release (93), metabolism (94), stress-induced cues

on fertility (95);, and thermoregulation (96).

Although kisspeptin maintains reproductive functions via its

modulatory effect on the HPG-axis, it’s effect on the peripheral

organs cannot be overlooked. Kisspeptin system has been identified

in the testis (97), suggesting its possible autocrine and paracrine intra-

testicular communications activities, testosterone synthesis, and sperm

production and quality. In fact, kisspeptin, but not GnRH has been

identified in the plasma, and the amount was dependent on fertility

status (98). Intriguingly, gonadotropin stimulation is not always

sufficient in ameliorating the impaired steroidogenesis and

spermatogenesis in clinical cases of KISS1R inactivating mutations

(89, 99). Additionally, the specific reactivation of the Kiss1R gene in the

GnRH secreting neuron of KISS1R−/− knockout mice does not

successfully ameliorate the associated impaired spermatogenesis

(100). These above pieces of information support our claim that

testicular Kiss1R signaling is also important for maintaining

steroidogenesis and spermatogenesis.
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Based on the above importance of kisspeptin, it is plausible to

infer that GnIH inhibit gonadotropin secretion via its inhibitory

effect on kisspeptin. Coincidentally, the presence of GnIH-Rs in

approximately 9-16% of RP3V kisspeptin neurons in rats (101), and

5- 10% of the anteroventral periventricular nucleus (AVPV) and

25% of ARC Kiss1 neurons in mice (102), further substantiate the

direct relationship between GnIH and kisspeptin. Also, GnIH fibers

and Kiss 1 neurons are closely located, suggesting that GnIH might

be inhibiting reproduction via its direct inhibitory effect on

kisspeptin neurons (52). Furthermore, GnIH-R and GPR54

knockout mice displayed a disrupted LH secretion; however, the

disruption was prominent in GPR54 knockout mice. In addition,

Kiss1 mRNA was observed to be unregulated in GnIH-R knockout

mice, while about 33% increase in GnRH neurons was also observed

(45, 103, 104). These pieces of information suggest multiple

pathways for GnIH inhibitory effect on the HPG axis. Hence,

GnIH can inhibit the HPG axis by inhibiting GnRH and/or

kisspeptin neuron expression.

2.3.1 GnIH and steroidogenesis
GnIH and its receptor have been reported to be expressed in the

hypothalamus and gonads (105). This may infer that GnIH does not

only inhibit the HPG axis at the level of the hypothalamus and

pituitary gland, but also the level of the gonads (45). Aside from the

presence of GnIH receptor in the gonads, GnIH mRNA transcripts

have also been found to be synthesized in the testis and localized

interstitium (106, 107). This reveals that GnIH may inhibit

testosterone production by suppressing the HPG axis or eliciting

a direct inhibitory effect on the testis. GnIH treatment has been

found to significantly disrupt testicular functions by directly

impairing testosterone production from the testis (107).

Testosterone production is a de novo synthesis that involves the

transportation of cholesterol from the outer mitochondrial

membrane to the inner part, which is a rate-limiting step in the

biosynthesis of testosterone. This intra-mitochondrial transport is

regulated by the steroidogenic acute regulatory (StAR) protein. In

humans, the administration of GnIH down-regulated steroidogenic

acute regulatory (StAR) activities, while the administration of GnIH

antagonists up-regulated StAR activities (105). Outside

steroidogenic enzymes, GnIH has also been shown to impair

glucose homeostasis which stimulates the uptake of cholesterol,

which is the precursor of steroid hormones (108, 109). Decline

cholesterol and StAR activities may mediate GnIH-induced

suppression of testosterone synthesis.

2.3.2 GnIH and spermatogenesis
Spermatogenesis is the process of producing sperm cells from

spermatogonial cells. This process starts during puberty and

continues throughout a man’s life. Spermatogenesis is regulated

by a complex interplay of hormones and signaling molecules,

including GnIH. Recent findings have revealed that GnIH plays a

negative role in spermatogenesis by disrupting the HPG axis (110),

which is responsible for the control of gonadal function, including
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the regulation of spermatogenesis, sperm quality, and sperm

function. RFRP-3 is considered to be similar to GnIH in terms of

its effect on gonadotropin secretion in mammals and has been

observed to exert both autocrine and paracrine action on the gonads

where it directly inhibits testicular functions. Bentley et al. (106)

reported that GnIH is synthesized in the seminiferous tubules and

interstitial cells in birds, while McGuire et al. (111) reported that it

inhibited testosterone synthesis in avian testicular cell culture.

Bentley et al. (106) also identified the expression of GPR 174 -

RFRP-3 receptors - in the epididymis, and vas deferens of birds.

Rats (112), sheep (113), mice (105), Syrian hamsters (114), pigs

(115), primates and humans (107, 111) can produce RFRP-3 in

their gonads. Zhao et al. (114) and Ubuka and Tsutsui (116) also

identified RFRP-3 and its receptors in spermatocytes and

spermatids through immunohistochemistry and in situ

hybridization and recorded an increase in the expression of

RFRP-3 and GPR147 in late spermatocytes, signifying RFRP-3’s

role in the maturation of sperm. Anjum et al. (117) studied the

expression of GnIH in the testis of mice and correlated it with

serum testosterone levels from birth to senescence and found that

RFRP-3 may cause pubertal activation of senescence in mice testis.

In 118 and his team studied the impact of the GnIH homolog

RFRP-3 on the production of sperm and steroids in mice and

discovered that treatment with RFRP-3 caused a significant decrease

in the levels of circulating steroids, and testicular activity in the mice. It

also caused dose-dependent changes in spermatogenesis, such as a

decrease in cell proliferation and survival markers, and an increase in

markers of cell death in the testes. Both in vivo and in vitro studies

showed that RFRP-3 had an inhibitory effect on testosterone

production in the testes. RFRP-3 also suppressed the expression of

the LHCGR receptor, StAR protein, and enzymes involved in steroid

synthesis (CYP11A1 and 3b-hydroxysteroid dehydrogenase) in the

testes, leading to dose-dependent suppression of testosterone secretion

that is an important factor in spermatogenesis. Testosterone is required

for processes that are critical for spermatogenesis including

maintaining the BTB, supporting the completion of meiosis, the

adhesion of elongated spermatids to Sertoli cells, and the release of

sperm (119).

Sperm quality refers to the number, motility, viability, and

morphology of sperm cells (78, 120, 121). Factors such as age,

lifestyle, ejaculatory abstinence length, and genetic background can

affect sperm quality (120). Recent findings have revealed that GnIH

may alter sperm quality (122). Marques and Boguszewski (122)

demonstrated that GnIH exposure reduces sperm count, motility,

and morphology in an animal model. GnIH has also been shown to

induce oxidative stress and inflammation, which may contribute to

a decline in sperm quality (123).

In addition, GnIH has been reported to affect sperm function

(112). GnIH and its regulation of the HPG axis have been associated

with several pathologies and disorders related to reduce sperm

function (124). GnIH has been found to impair capacitation and

acrosome reactions (124). Also, studies have shown that GnIH

reduces the fertilizing ability of sperm cells in animals (114, 116).
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3 Conclusion and future perspective

In conclusion, stress causes GnIH-induced degeneration of

tes t icu lar ce l l s and impaired tes t icu lar and adrenal

steroidogenesis, spermatogenesis, and sperm quality through the

activation of the hypothalamic-pituitary-adrenal axis, inhibition of

the hypothalamic-pituitary-thyroidal axis, leptin hypersecretion,

and suppression of the hypothalamic-pituitary-testicular axis and

kisspeptin release. More studies exploring the roles and associated

mechanisms of GnIH in male infertility are recommended. Also,

suppression of GnIH may likely be a beneficial preventive and

therapeutic strategy to avert the negative effects of GnIH, especially

during exposure to stress.
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28. González CR, González B. Exploring the stress impact in the paternal germ cells
epigenome: can catecholamines induce epigenetic reprogramming? Front Endocrinol
(2021) 11:630948. doi: 10.3389/fendo.2020.630948

29. Carter JR, Goldstein DS. Sympathoneural and adrenomedullary responses to
mental stress. Compr Physiol (2014), 119–46. doi: 10.1002/cphy.c140030

30. Chu B, Marwaha K, Sanvictores T, Ayers. Physiology, stress reaction, in:
StatPearls (2022). Treasure Island (FL: StatPearls Publishing. Available at: https://
www.ncbi.nlm.nih.gov/books/NBK541120/ (Accessed Updated 2022 Sep 12).

31. Choi ME, Yoo H, Lee HR, Moon IJ, Lee WJ, Song Y, et al. Carvedilol, an
adrenergic blocker, suppresses melanin synthesis by inhibiting the cAMP/CREB
signaling pathway in human melanocytes and ex vivo human skin culture. Int J Mol
Sci (2020) 21(22):8796. doi: 10.3390/ijms21228796

32. Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological function
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