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Sleep and circadian rhythm
disturbance in kidney stone
disease: a narrative review
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Yun-Fei Xiao1, Yin Tang1, Jia Wang1 and Yun-Jin Bai1*

1Department of Urology, Institute of Urology, West China Hospital, Sichuan University,
Chengdu, China, 2Department of Urology, Affiliated Hospital of Guizhou Medical University,
Guiyang, China, 3Department of Urology, Affiliated Hospital of North Sichuan Medical College,
Nanchong, China
The circadian rhythm generated by circadian clock genes functions as an internal

timing system. Since the circadian rhythm controls abundant physiological

processes, the circadian rhythm evolved in organisms is salient for adaptation

to environmental change. A disturbed circadian rhythm is a trigger for numerous

pathological events. Recently, accumulated data have indicated that kidney

stone disease (KSD) is related to circadian rhythm disturbance. However, the

mechanism between them has not been fully elucidated. In this narrative review,

we summarized existing evidence to illustrate the possible association between

circadian rhythm disturbance and KSD based on the epidemiological studies and

risk factors that are linked to circadian rhythm disturbance and discuss some

chronotherapies for KSD. In summary, KSD is associated with systemic disorders.

Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are

the major risk factors supported by sufficient data to cause KSD in patients with

circadian rhythm disturbance, while others including hypertension, vitamin D

deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction

need further investigation. Then, some chronotherapies for KSD were confirmed

to be effective, but the molecular mechanism is still unclear.

KEYWORDS

circadian rhythm disturbance, circadian clock, sleep disorder, circadian clock gene,
kidney stone disease
1 Introduction

With the Earth’s planetary rotation, there is a 24-h oscillating light-dark cycle (1). To

adapt to this environmental cycle, all animals and plants have evolved universal internal

circadian rhythms (2). Such rhythms are observed in cellular, physiological, and biological

behavioral processes within a 24-hour cycle. For instance, heart rate and body temperature

increase in the morning and decrease in the evening (1, 3). It is also found in the diet, sleep-

wake cycle, endocrine, absorption, and reproduction (4–7). Hence, circadian rhythm is of

great significance for maintaining homeostasis and normal physiological activities.
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Before artificial light was created, humans adjusted their lives to

a natural day-night alteration cycle (8). With the great development

of technology and society, life patterns have changed greatly, and

the phenomenon of circadian rhythm disorder is now common due

to social jet lag (SJL), shift work, and sleep disruption, which all

contribute to abnormal daily rest/wake cycles and chronically

disrupt endogenous circadian rhythms. The asynchrony between

endogenous circadian rhythm and the sleep-wake cycle is defined as

circadian rhythm disruption (9, 10). Growing epidemiological and

genetic evidence shows that circadian disruption leads to various

diseases, such as insomnia, hypertension, type 2 diabetes (T2D),

chronic kidney disease (CKD), and even cancer (10–12). All of these

factors finally cause immense loss of public health.

Kidney stone disease (KSD) is a common health concern with

increasing incidence during the past few decades and occurs in a

wide range of ages, including children, adolescents, and adults (13).

The prevalence is approximately 10% globally, with a high

recurrence rate of 50% within 5-10 years and 75% within 20 years

(14–16). It causes such a large burden on public health since it is not

only a transient acute symptom but is also linked to cardiovascular

disease (CVD), CKD, end-stage renal disease (ESRD), and renal

cancer (17, 18). An updated meta-analysis signifies that KSD is

associated with an approximately 20%-40% higher risk for coronary

artery disease, transient ischemia/stroke, and arterial disease (19).

Then, the risks of ESRD, renal cell carcinoma, and transient cell

carcinoma are all increased in patients with prior KSD history (18,

20). Although great progress has been achieved in traditional

surgical management to provide better prognosis, the incidence

and recurrence rates are still very high with little breakthrough in

prevention methods (especially drug interventions) (21). Therefore,

it is pivotal to explore the potential pathophysiological mechanisms

of KSD to provide insights for prevention and therapy.

There is plenty of evidence to suggest that a circadian rhythm

disturbance can promote KSD (22, 23). Herein, this review

summarizes the relationship between circadian rhythm

disturbance and KSD and discusses the potential mechanisms by

which circadian rhythm affects KSD.
2 Biological characteristics of the
circadian clock

The central circadian rhythm clock in the suprachiasmatic

nucleus (SCN) is in the anterior part of the hypothalamus. It

synchronizes with Earth’s time and feeds back to the downstream

brain and peripheral regions by sympathetic nervous system

transduction and hormone secretion after light signals from the

light-dark cycle are received by the retina and transmitted to the

SCN as electrical signals (10, 24). Some synchronization factors also

called “time givers” or zeitgebers vary with temperature, diet,

pharmacological manipulation, and social interactions (25).

Additionally, peripheral organs, including the heart, liver, and

kidney, participate in the “peripheral clock” and regulate cyclic

physiological functions by manipulating the transcription of

circadian genes, protein synthesis, energy metabolism, and so on.

Both the central and peripheral clocks essentially share the same
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molecular structure, but the relationship between them remains

unclear (10, 26).

At the molecular level, approximately 10% of genes are clock-

controlled genes (CCGs) with circadian oscillations, also called

circadian clock genes. The maintenance of circadian rhythm

depends on a transcription-translation negative feedback loop

formed by a series of interacting clock genes (25, 27, 28) (see

Figure 1). The cycle of potential molecular mechanisms generating

circadian rhythm is approximately 24 hours without synchronizing

input; the central-peripheral network can adapt to a limited range of

day lengths (29, 30). Some genes and regulators that are vital for

initiating and maintaining circadian rhythm have been well

investigated, such as the circadian locomotor output cycles kaput

(CLOCK), a gene encoding the protein related to the length and

persistence of a circadian circle (2); brain and muscle aryl hydrocarbon

receptor nuclear translocator-like protein-1 coding gene (BMAL1),

encoding the basic-helix–loop-helix transcription factor BMAL1

protein (2); the period family (PER1/2/3), key regulators in the cell

cycle (31); cryptochrome 1&2 (CRY1/2), the main part of the negative

feedback loop of the circadian clock and REV-ERBa/b, members of the

orphan nuclear receptor family, which play a key role in regulating the

expression of CLOCK and BMAL1 (32, 33). These circadian clock

genes regulate the day-night cycles by both positive and negative

feedback cycles in the SCN and peripheral tissues and organs (10).
3 Mechanism of KSD

KSD is a common urological disease with a complicated

pathological process. The major types include calcium stones

(calcium oxalate [CaOx] & calcium phosphate [CaP]), uric acid

(UA) stones (UAS), struvite stones (infection stones), and cystine

stones. The biochemical process of stone formation is successive

and complex and involves various physicochemical changes.

Generally, four steps participate in pathogenesis: urinary

supersaturation, crystal nucleation, growth, and aggregation.

Crystal formation from supersaturated urine retained in the

kidney is the driving force (16, 34). Then, the crystals gather

together to grow to a size as further aggregation, which can

interact with intrarenal structures (also called crystal-cell

interaction) to cause renal tubular epithelial cell (RTEC) injury

(34, 35). Crystal-cell interaction leads to the movement of crystals

from the basolateral side of cells to the basement membrane and

results in the retention of crystals in the kidney or collecting duct to

eventually form the clinical stone (34, 36). Furthermore, a plaque of

calcium deposited in the interstitial tissue of the renal papilla

observed by electron microscopy, called Randall’s plaque (RP),

appears to be the origin of urinary stones since it contributes

greatly to crystal retention (37, 38). It should be noted that some

factors are reported to be critical modulators for stone formation,

including promoters and inhibitors. Promoters are receptors or

receptor-like features that play vital roles in crystal−cell interactions

for crystal retention in the kidney, while inhibitors can decrease

crystallization and inhibit crystal aggregation and/or adhesion to

RTECs. For example, serum calcium and vitamin D (vit D) act as

promoters in KSD, while some metallic cations, such as magnesium,
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can inhibit crystal growth and aggregation (16, 39, 40). It is now

widely accepted that stone formation usually depends on the

imbalance between promoters and inhibitors.
4 Epidemiological evidence of
circadian rhythm disruption in KSD

Light is the main zeitgeber that regulates the 24-h circadian cycle.

Sleep and wakefulness can coregulate the circadian rhythm and

maintain sleep homeostasis with light exposure. However, the day-

night circadian rhythm has been altered greatly with the invention of

incandescent lighting (2, 41). Circadian sleep disorder is defined

medically as an inability to sleep at the desired time rather than an

inability to sleep, for instance, staying up late working (night shift

work) and rapidly travelling to new time zones (social jet lag [SJL]).

Both shift work and SJL are popular and involve a large population

and diverse professions (42, 43). Altered sleep-wake cycles disturb the

internal circadian clock. Growing evidence shows that disordered

circadian sleep and sleep insufficiency are closely related to multiple

disorders, including KSD. Yin et al. (44) investigated the relationship

between sleep status and KSD risk in a cross-sectional study and

found that short sleep duration (< 7 h) was associated with a higher

KSD prevalence than normal sleep duration (7-9 h) (odds ratio [OR]

= 1.21, 95% confidence interval [CI]: 1.08 to 1.35). Another large

population-based study obtained similar results, and it estimated the

sleep score to assess sleep quality according to a previous study and
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indicated that a reduced sleep score led to increased KSD risk (hazard

ratio [HR] = 1.07, 95% CI: 1.05 to 1.10) (45, 46). A prospective study

in China measured sleep quality using the Pittsburgh Sleep Quality

Index (PSQI) and KSD prevalence, and the PSQI was positively

correlated with KSD prevalence (OR=1.18, 95% CI: 1.08 to 1.28) (47).

Another sleep disturbance, obstructive sleep apnea (OSA), is

common, with an incidence of 4.0% to 32.8% for middle age and

22.4% for older than 60 years (42), and has been confirmed to be a

risk factor for KSD (HR=1.35, 95% CI: 1.23 to 1.48) (48). A

retrospective study including 127 patients performed a univariable

comparison of 24-h urine components and found that OSA is related

to changes in urinary analytes that promote KSD (49).

Although several studies have elucidated that disturbed

circadian rhythm can induce KSD, the endogenous mechanism is

poorly understood. KSD is a multifactorial systemic disease with

diverse triggers. Based on epidemiological studies, metabolic

syndrome, hypertension, inflammatory bowel disease, microbiome

dysbiosis, parathyroid hormone disorder, and vitamin D deficiency

can induce KSD, and they are related to a disrupted circadian clock

(50–52) (Figure 2).
5 Association between circadian
rhythm disturbance and KSD

Sleep and circadian rhythm disturbance is associated with

alterations in circadian gene expression, and mammals with
FIGURE 1

Molecular mechanism of the circadian rhythm. After cues from Zeitgebers of light, temperature, and feeding are perceived and transmitted to the
SCN as electrical signals, the central circadian clock system will synchronize with geophysical time and feedback to the downstream brain regions
and peripheral organs through the nervous system and hormone release. CLOCK and BMAL1 act as the center transcription factors of a heterodimer
complex and activate the transcription of PER, CRY, REV-ERb and RORa by cis-acting E-box and ROR elements. A multimeric complex formed by
the PER/CRY proteins subsequently enters the nucleus to inhibit CLOCK/BMAL1 activity. Then, REV-ERBa and ROR proteins compete for response
RORa/CLOCK/BMAL1 transcription. REV-ERBa reduces CLOCK/BMAL1 transcription, while RORa induces it. The main circadian genes are
reactivated by the last with a new cycle beginning, and this feedback loop occurs at approximately 24 h.
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specific circadian gene deficiencies or mutations exhibit abnormal

sleep/awake rhythms (1, 53–55). Here, we comprehensively

summarize some potential links between circadian rhythm

disturbance and KSD. The factors related to KSD that are affected

by sleep and circadian rhythm disturbance and the mechanisms are

described as follows.
5.1 Glycolipid metabolism disorder
(metabolic syndrome)

Metabolic syndrome (MetS) is a cluster of conditions that

usually occur together to increase the risk of T2D and CVD,

including hypertension, chronic hyperglycemia (T2D and

impaired glucose tolerance [IGT]), and dyslipidemia (obesity,

decreased high-density lipoprotein [HDL] level, increased low-

density lipoprotein [LDL] or total cholesterol [TC] level), and its

prevalence is approximately 25% of adults with an increasing trend

at advanced ages (56, 57). MetS is confirmed to be an independent

risk factor for KSD (OR=1.49, 95% CI: 1.26 to 1.76) (58, 59). The

pathological mechanism of MetS in KSD mainly consists of insulin

resistance (IR), hyperglycemia, and vascular dysfunction (59, 60).

MetS is significantly associated with circadian rhythm

disturbance. A new concept, circadian syndrome (CirS), was

suggested to indicate MetS related to disrupted circadian rhythm

(61, 62). Xiao et al. first reported the relationship between CirS and

KSD prevalence in a cross-sectional study and obtained similar

results (OR=1.42, 95% CI: 1.06 to 1.91) (23). A longitudinal analysis

from Canada investigated 393 participants for a mean 6-year

follow-up and found that short sleepers were at significantly

higher risk of MetS (relative risk [RR]=1.74; 95% CI: 1.05-2.72)

(63). The large population-based study by Bayon et al. revealed that

shift work was correlated with higher MetS risk (OR=4.45, 95% CI:

1.36 to 14.56) (64). The cross-sectional data from the New Hoorn

Study cohort indicated that SJL was correlated with MetS with a

prevalence ratio of 1.62 (65). Additionally, OSA can cause MetS and
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increased waist circumference (WC) and triglyceride (TG) levels in

MetS can induce OSA (66, 67). Here, we reviewed the effects of

MetS on KSD from two aspects.

5.1.1 Type 2 Diabetes (T2D)
The KSD prevalence was higher in T2D patients than in healthy

controls (21% vs. 8%, p < 0.05), and the recurrence rate was twice as

high (2.1 vs. 1.3, p < 0.05) (68, 69). A cohort study showed that the

population with T2D had a higher KSD risk (OR=2.44, 95% CI: 1.84

to 3.25) (70). IR can hamper the ability of ammonia genesis to

respond to acid load in the kidney, which results in hyperacid urine

and elevated urinary calcium excretion by compensatory

hyperinsulinemia (60, 68). Oxidative stress (OS) is another link

between T2D and KSD; increased reactive oxygen species (ROS)

generated by disordered glycometabolism, oxidative damage of b-
cells in the pancreas, and endothelial dysfunction cause OS and

inflammation in RTECs, resulting in increased levels of superoxide

dismutase and malondialdehyde and decreased levels of

antioxidants (71). These factors eventually lead to KSD.

Glycometabolism is a complicated physiological process and

presents a significant diurnal oscillation. Variations in both the

secretion and sensitivity of insulin display obvious circadian

rhythms, and glucose tolerance (GT) is higher in the morning

than in the evening in healthy people, but this oscillation disappears

in T2D patients and IGT appears when the circadian oscillation is

damaged (72–74). Many studies have revealed that the risk of IR

and T2D is higher in populations with sleep disorders, SJL, and shift

work, and it may be reduced by extended sleep duration and

circadian readjustment strategies (11, 75). Cui et al. investigated

the association between sleep duration and the risk of T2D in a

case-control study and found a U-shaped association (≤ 6 h,

OR = 1.74, 95% CI: 1.01 to 3.01; 8-9 h, OR = 1.46, 95% CI: 1.04 to

2.06) compared to sleep duration of 6-8 h, in which abnormal sleep

duration increased the T2D risk (76). A prospective study including

night workers and day workers with 4 years of follow-up showed

that the risk of obesity and T2D was 5 times higher in night shift
FIGURE 2

Involvement of circadian rhythm disturbance in KSD.
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workers than in daytime workers (77). Then, a meta-analysis

assessed the association between shift work and T2D and revealed

that shift work increased the risk of T2D (RR=1.10, 95% CI: 1.05 to

1.14), and the trend was similar in the population with SJL (78, 79).

The possible relationship between disrupted circadian rhythm

and T2D has been clarified by numerous studies. Rodents with SCN

dysfunction display global or partial circadian gene disruption and

easily developed IGT, hyperglycemia, hyperinsulinemia, decreased

insulin secretion and sensitivity, and b-cell defects in the pancreas

(80–82). Clock mutant mice show hyperglycemia, decreased levels

of expression, and phase shifts of RNA oscillation of genes that

participated in glucose sensing, insulin signaling, islet growth, and

development (83, 84). It also disrupts hepatic glycogen oscillation

and changes the circadian mRNA and protein expression of

glycogen synthase 2 (limiting enzyme in glycogenesis) in mice

(85). Whole-body Bmal1 knockout (KO) obliterates the systemic

insulin sensitivity rhythm to develop increased fasting blood

glucose, glucose intolerance, and hypoinsulinemia (83, 86). Severe

IGT, increased glycemia levels, and decreased insulin secretion are

found in pancreas- or b-cell-specific Bmal1 KO mice (87). The

whole-body Cry1/2 KO severely damages glucose homeostasis with

IGT (88). Another study by Zhang et al. demonstrated that the

hepatic overexpression of Cry1 results in decreased gluconeogenesis

and lower glycemia in diabetic mice (89). Qian et al. investigated

Per1:LUC transgenic rats exposed to light during the night for 10

weeks and showed disruption of islet circadian clock through

impairment in the amplitude, phase, islet synchrony of clock

transcriptional oscillations, and diminished glucose-stimulated

insulin secretion (90). Furthermore, Per2 inhibition decreases

glycemia levels and gluconeogenesis and stimulates insulin

secretion (91). Then, global Rer-erba/b dual KO mice exhibit

hyperglycemia by disturbing the insulin signaling pathway (92).

Meanwhile, Rev-erba mutant mice fed a chow diet have slight

hyperglycemia without IR, which can be explained by REV-ERBa
affecting glycemia by regulating glucose-6-phosphatase and

phosphoenolpyruvate carboxylase (93).

In summary, primary findings indicated that a disturbed

circadian rhythm leads to T2D mainly by regulating enzymes and

insulin in glycometabolism. However, direct evidence about how

circadian disorders affect T2D and KSD remains unclear.
5.2 Lipid abnormalities and obesity

Lipid metabolism disorders are common in KSD patients. A

retrospective study enrolled 2242 patients with KSD and found that

high TC levels were significantly associated with higher UAS risk

(p=0.006), and the 24-h urine analysis presented a significant

positive correlation between low HDL levels and lower urine pH

and higher urinary oxalate and uric acid levels (94, 95). A

demonstrably increased KSD risk in the obese population was

observed in a cohort study, and in particular, an increased level of

visceral adiposity was a risk factor for hypercalciuria and UAS

(OR=3.64, 95% CI: 1.22 to 10.85) (96, 97). Obesity promotes

systemic inflammation and OS, leading to tissue immune cell

infiltration and contributing to stone formation. It facilitates the
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expression of adipokines and some inflammatory molecules, such as

tumor necrosis factor-a and interleukin-6, which were detected in

the renal tissue and urine of KSD patients (98). Furthermore,

calcifications by lipid deposition within the hyperosmotic

turbulent vasa recta erode into the nearby collecting system and

interstitium to promote RP formation, which is further confirmed

by the presence of cholesterol identified in stones and renal

papillary (95).

Lipid metabolism is precisely regulated by the circadian clock.

Plasma lipids present a day-night variation within a narrow range

independent of food intake, with the peak level of HDL in the early

rest phase and a decrease in the active phase (99, 100). Circadian

rhythm disturbance causes lipid abnormalities and obesity. A study

investigated the association between sleep duration and obesity in

children and adolescents and revealed that short sleep duration

increases the risk of obesity (OR=1.69, 95% CI: 1.25 to 2.29) and

elevated WC (OR=1.49, 95% CI: 1.13 to 1.97), which is similar to

the study by Brocato et al. (101, 102). Another longitudinal

investigation including 815 workers showed that workers with

greater SJL are more likely to be obese (OR=1.20, 95% CI: 1.00 to

1.50) (103). In addition, circadian rhythm disturbance alters the

plasma lipid profile by increasing the levels of cholesterol, TGs, and

LDL and decreasing the level of HDL (104, 105).

Clock gene expression alteration has been comprehensively

verified in both human and animal models. Vieira et al. analyzed

the 24-h pattern of clock gene expression in an obese population

and showed that the expression of CRY2 and REV-ERBa was

upregulated in obese participants. A positive correlation was

observed between REV-ERBa expression and body mass index

and WC in the obese population. The expression of CLOCK was

positively correlated with LDL and RORa with HDL levels. Obese

people with MetS presented a positive correlation between PER2

expression and LDL, while REV-ERBa was correlated with WC.

CRY2 and REV-ERBa are considered clock genes upregulated in

obesity (106). Hepatic PER2, PER3, and CRY2 showed lower

expression in the obese groups than in the normal control group

(107). In animal experiments, the diurnal feeding rhythm is

significantly impaired in homozygous Clock mutant mice, and

they are more likely to develop hyperphagia, obesity,

hyperleptinemia, and hepatic steatosis (80, 83). Microsomal TG

transfer protein levels in the enterocytes of ClockD19/D19Apoe−/−

mice are higher, and enterocytes secret more chylomicrons.

ClockD19/D19 protein enhances intestinal cholesterol absorption, as

well as the secretion of chylomicrons and cholesterol (108). The

Bmal1 KO mice display ectopic body and liver fat formation,

hyperlipidemia, increased circulating leptin levels, and the

absence of glucose fluctuation, also presenting earlier signs of

obesity under a high-fat diet (HFD) (86, 109). In liver-specific

and global Bmal1−/− mice, an elevation of circulating free fatty acids

and higher TG formation is detected and can be reversed by Bmal1

overexpression (110). Adipose-specific Bmal1−/− mice show

increased weight gain and fat formation with increased calorie

intake during the daytime (84). Per1/2/3 triple-deficient mice are

more likely to be obese, suggesting a potential role in body weight

regulation (111). Moreover, PER1 is identified to bind with major

hepatic enzymes in bile acid synthesis, and Per1 expression can be
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enhanced to increase fat absorption and accumulation in mice

(112). Per2 KOmice gain an altered lipid profile and downregulated

triacylglycerol levels, while Per2 deficiency in fibroblasts can

promote adipocyte differentiation via the direct interaction with

PPARa/g and their target genes (113, 114). Per3 KO promotes

adipogenesis in vivo by a clock output pathway in which PER3 and

BMAL1 directly affect transcription factor Klf15 expression in

adipocyte precursor cells (115). In addition, Cry1/2 double null

mice have abnormal serum and hepatic TG levels (88).

Furthermore, Rev-erba deficiency increases plasma lipid levels

and decreases hepatic cholesterol and TG levels (116).

Although circadian genes in lipid abnormalities have been

extensively studied, the pathological process in KSD deserves

further research.
5.3 Hypertension

The kidney is the central organ that regulates blood pressure

(BP). Poorly controlled BP results in kidney diseases and influences

BP regulation in positive feedback (117). According to historical

clinical investigations, hypertension (HTN) may correlate with

KSD. Cappuccio et al. recruited 688 male workers in a cross-

sectional study and found the relative risk of hypertensive

participants having a history of KSD was twice that of the normal

group (OR=2.11, 95% CI: 1.17 to 3.81), which is similar to the larger

cohort study based on U.S. population by Hill et al. (RR=1.79, 95%

CI: 1.19 to 2.71) (118). Data from a prospective cohort proved this

finding (119, 120). A study confirmed that HTN can be an

independent predictive determinant for recurrent KSD, especially

in non-obese SFs (121). Inconsistently, the studies published by

Madore et al. showed that the KSD incidence was comparable in

both the hypertensive population and normal population (OR=

0.99, 95% CI: 0.82 to 1.21), and similar results were obtained when

limited to middle-aged women (122, 123). The inconsistency of

diagnostic criteria for HTN can lead to opposite results, and it is

essential to remeasure the association in new criteria. Considering

the widespread popularity of HTN and the link between HTN and

metabolism, it cannot be ignored. Currently, the etiology of HTN in

KSD consists of an alteration of urine components, IR,

inflammation, and OS (124). Increased urine calcium excretion is

caused by central volume expansion (the ‘central blood volume’

theory), and higher excretion levels of oxalate and uric acid were

detected in hypertensive patients (119, 124, 125). Furthermore, ROS

overgeneration by the activated renin-angiotensin-aldosterone

system (RAAS) promotes RTEC injury and crystal formation

(124, 126).

BP in healthy individuals exhibits precise daily variation, which

is characterized by an increase after awakening followed by a

decrease at night during sleep (1, 127). Disturbed circadian

rhythm eliminates the diurnal rhythm of BP, resulting in elevated

BP that transfers to HTN (127–129). Grandner et al. analyzed more

than 700,000 adults from two large cohorts to illustrate that the

HTN risk was higher in sleep deficiency compared to 7 h (≤ 4 h:

OR=1.86, ≤ 5 h: OR=1.56, ≤ 6 h: OR=1.27, p < 0.0005 for all) (130).

A dose-response meta-analysis found a higher HTN risk for shorter
Frontiers in Endocrinology 06
sleep duration, and previous meta-analyses reported similar results

to strengthen this association (47, 131). For OSA patients, the HTN

risk was higher than that in healthy controls (OR=2.84, 95% CI:

1.70 to 3.98) and was positively correlated with the OSA grade

(132). Additionally, night shift workers have a higher HTN risk

than normal controls, which increases with an increasing frequency

of night shift work (133). Although there is no significant

association between SJL and HTN in historical studies, it is worth

noting that a recent study presented a morning BP surge caused by

acute SJL (134, 135).

The underlying mechanism of disturbed circadian rhythm in

HTN is complicated. First, in OSA patients, sympathetic nervous

system overactivity, disruption by OS, and inflammation in vascular

structure and functions contribute to the abnormal diurnal pattern

of BP (132, 136). Intermittent hypoxia (IH) and negative pressure

against obstruction activate adrenal, renal, and peripheral

chemoreceptors to increase the circulating levels of hormones

such as renin and catecholamine and decrease nitric oxide (NO)

synthesis, leading to upregulated sympathetic system activity (136,

137). The interactions between the sympathetic system and the

kidney secondarily activate RAAS to increase BP (138).

Additionally, IH disrupts endothelial NO expression by

promoting ROS generation. Endothelial dysfunction is mainly

caused by inhibited NO bioactivity and bioavailability impairs

vascular vasodilation and enhances vasoconstriction (25, 136).

Circadian gene abnormalities also trigger HTN. Clock mutation

represses the expression level of Atp1b1, which encodes the b1
subunit of the Na+/K+-ATPase to elevate BP (139). In hypertensive

rodents, myeloid-specific deficiency of Bmal1 exacerbates vascular

remodeling and accelerates HTN formation by influencing the

profibrotic macrophage phenotype (140). A human study showed

a higher level of Per1 mRNA in the renal medulla in the

hypertensive group than in the normal control group, suggesting

a role for Per1 in the regulation of BP by renin (141). Doi et al.

examined BP regulation in global Cry1/2 double null mice and

revealed that Cry1/2 KO mice developed salt-sensitive HTN

compared to wild-type (WT) mice (142). Surprisingly, KO or

mutation of circadian genes also causes the absence of diurnal

rhythm in BP and significantly decreased BP (127, 128, 143). To

explain this, glycolipid metabolism disorders should be considered

due to the close link between HTN and MetS (143, 144). Moreover,

the relationship between circadian genes and the proteins

expression in the local kidney that play roles in water and

electrolyte balance is inspiring. The sodium chloride (NaCl) co-

transporter (NCC) is involved in sodium reabsorption and BP

maintenance and Richards et al. proved that Per1 inhibition

reduces NCC expression and results in lower BP in mice (145).

Zuber et al. also investigated the intrinsic circadian rhythm system

and found that Clock mutant mice exhibit significant alterations in

the renal expression of several key regulators of water or sodium

balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4,

epithelial sodium channel), which functionally leads to

dysregulation of sodium excretion rhythms and a significant

decrease in BP (146). In addition to circadian genes, serum- and

glucocorticoid-induced kinase 1 (SGK1) in renal tubules, a clock-

controlled and glucocorticoid receptor- and mineralocorticoid
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receptor-induced gene was recently shown to participate in BP

circadian regulation. Staub et al. generated a tubular-specific Sgk1

KO model and found that Sgk1 deletion elevates pulse pressure by

increasing the circulating aldosterone level and disrupts the BP

rhythm (147).

Together, these studies indicated that circadian rhythm

disturbance can disrupt BP homeostasis bidirectionally. However,

since epidemiological studies focused on KSD and HTN are full of

controversies, this hypothesis needs further verification.
5.4 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is an autoimmune disease

characterized by chronic intestinal granulomatous inflammation

and includes two main types: Crohn’s disease (CD) and ulcerative

colitis (UC) (148, 149). KSD is one of the most frequent

extraintestinal manifestations of IBD, with a higher prevalence in

IBD patients than in normal controls. In the cohort from

Mississippi, 6% and 6.7% of CD and UC patients developed KSD,

respectively, which is similar to the data in Switzerland (150–152).

An observational study revealed that UC was a risk factor for KSD

(OR = 4.2, 95% CI: 1.1-15), and the KSD prevalence in UC and CD

was comparable (153). The pathological process of IBD in KSD was

exhaustively reviewed by Corica et al. (152). Briefly, UA

supersaturation by low urine volume and pH, hypercalciuria by

bile salt malabsorption, increased colonic epithelium permeability

to oxalate, and decolonization of Oxalobacter formigenes (O.

formigenes) are radical.

IBD is strongly affected by circadian rhythm disturbance. The

IBD incidence was significantly higher in patients with shorter sleep

durations than in normal controls (HR = 1.51, 95% CI: 1.10 to 2.09)

in a 10-year follow-up analysis (154). A retrospective study enrolled

115 IBD subjects and 76 healthy controls to measure chronotype,

SJL and sleep debt (SD), which showed that later chronotype was

negatively correlated with severe IBD (r = -0.209, p < 0.05) and that

SJL was higher in the IBD group than in the controls (1.32 h ± 1.03

vs. 1.05 h ± 0.97, p < 0.05), while SD was also elevated in the IBD

group compared to the controls (21.90 min ± 25.37 vs. 11. 49 min ±

13.58, p < 0.05) (155).

In IBD patients and animals, abnormal expression and status of

clock genes are considered initial manifestations. Weintraub et al.

analyzed clock genes in peripheral blood and intestinal mucosa and

found that the expression levels of clock genes (CLOCK, BMAL1,

CRY1, CRY2, PER1, and PER2) were significantly lower in both

inflamed intestinal mucosa and leukocytes than in healthy controls,

which was also reported in different tissues (peripheral blood

monocytes, colon) (156–158). Rodents with artificially induced

colitis displayed decreased Per2, Cry1, Rev-erba, and Npas2 levels

and increased Rora in colon tissue (159). Kyoko et al. measured the

tight junction proteins occludin and claudin-1 in Clock mutation

((Clock△19/△19) mice to show that mice lacking Clock have

persistently low levels of these two proteins and were more

susceptible to intestinal injury (160). Similarly, Bmal1 KO mice

show worse UC and the absence of time-dependent variation in

disease activity compared to Bmal1+/+ controls, and epithelial
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proliferation in the colon presents a daily rhythm in Bmal1+/+

controls but is absent in the Bma1 KO group, resulting in poor

regeneration (161). Mice lacking Rora or Bmal1-driven Lnc-UC (a

long noncoding RNA that is associated with colitis, particularly by

reducing Rev-erba expression) are more likely to have colitis than

the control group. Lnc-UC deactivates the activity of NLR family

pyrin domain (NLRP) 3, which is essential in the induction of

proinflammatory cytokines (159, 162, 163). Bmal1 KO also leads to

a lower level of regulatory B cells in the intraepithelial region, which

expresses highly programmed death ligand 1 to alleviate colitis

severity (164). Then, colitis is more severe in Per1/2 KO mice than

in WT mice, with decreased Paneth cells, goblet cells, lysozyme

transcripts, and lysozyme proteins (165). Oh et al. presented that

intestinal epithelial-specific Rora KO leads to severe inflammation

by reducing the level of Ki67, a cell proliferation marker, and p-

DRP1, a molecule active in ATP production (162). All the evidence

indicates that IBD is related to abnormal expression of

circadian genes.

All these studies demonstrated that circadian rhythm

disturbance can promote KSD via IBD. However, further research

is necessary to better clarify the internal molecular pathways in the

process of KSD.
5.5 Microbiome dysbiosis

Microbiomes coexisting with humans are important in

maintaining health and causing diseases. The gut microbiome

(GMB) is a large set of microorganisms that colonize our

digestive tract, and the diverse mixture of bacteria within the

genitourinary tract (often at low levels) is defined as the urinary

microbiome (UMB) (166–168). Dysbiosis of GMB and UMB

contributes greatly to KSD (168). The colonization rate of O.

formigenes in CaOx stones has attracted great attention. Several

studies have proven that the colonization rate of O. formigenes is

lower in SFs than in controls (169–171). Stern et al. studied the

distinct GMB in SFs and non-SFs and revealed that Bacteroides was

3.4 times more abundant in SFs than in non-SFs (34.9% vs. 10.2%, p

= 0.001), and Prevotella was 2.8 times more abundant in non-SFs

than in SFs (34.7% vs. 12.3%, p = 0.005). In urinary analysis,

Eubacterium was negatively correlated with oxalate levels, and

Escherichia tended to have an inverse correlation with citrate

levels (172). Compared to GMB, UMB in KSD is underexplored

due to dramatic variation (168, 173). A case-control investigation

profiling the UMB in male patients with calcium-based stones

found that the UMB diversity was markedly lower than that in

healthy controls, and the components were also different in the two

groups (p < 0.001). The taxa at the genus level that significantly

differentiated the two groups were Prevotella in the normal group

and Acinetobacter in the KSD group (174). A meta-analysis

including 8 studies indicated that the abundance of Bacteroides,

Lactobacillus, and Prevotella showed the most significant difference

in GMB between KSD patients and healthy controls (175). In UMB,

Escherichia coli (E. coli), Lactobacillus , Staphylococcus ,

Streptococcus, and Klebsiella are considered vital in KSD based on

evidence in vivo and in vitro (166, 168, 176–178). The pathogenic
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mechanism of GMB is poorly understood, oxalate accumulation by

oxalate degradation dysfunction and related metabolic disorders is

widely recognized (166, 179). Meanwhile, urease enzymes and

inflammation are also important (16, 180).

Microbiomes have been found to follow a strict circadian

rhythm (167, 181). Up to 60% of the total microbial composition

oscillates rhythmically, which translates to diurnal fluctuations in

20% of commensal species of the GMB in mice and 10% in humans.

The GMB abundance of ad libitum-fed mice under a strict light-

dark cycle was measured at the changing point, and significant

diurnal fluctuations were identified in the abundance of more than

15% of the GMB (182). Circadian misalignment disrupts GMB

homeostasis and causes diseases. Smith et al. explored the

correlation between GBM diversity and sleep physiology to show

that diversity was positively correlated with sleep efficiency and

duration. Sleep duration reduction can significantly decrease GBM

diversity (183, 184). Additionally, exposure to SJL exacerbated

GBM and metabolite homeostasis in the jejunum and colon of

mice and was also detected in humans (181, 185).

Studies support that clock gene expression alterations

contribute to GMB dysbiosis. Compared to WT mice, Clock

mutant (ClockD19/D19) mice have a decreased Firmicutes/

Bacteroidetes ratio, especially when paired with alcohol

consumption or HFD (186). Liang et al. constructed Bmal1 KO

mice and found that Bmal1 KO abolishes the oscillation and

composition of GMB with a decreased abundance of Prevotella

and an increased abundance of Bacteroides (187). In Per1/2-

deficient mice, Bacteroides and Lactobacillus lost oscillations in

relative abundance (182). Furthermore, in the interaction between

GBM and MetS, dysbiosis significantly promotes the development

of MetS. A high-sugar diet and HFD can aggravate the impact of

circadian disorganization on GBM and further disturb glycolipid

metabolism (188–190). In UMB, studies are limited. The diurnal

oscillation in Streptococcus pneumoniae (S. pneumoniae) is driven

by external clues, such as temperature (191). Per1 mutant flies are

more sensitive to S. pneumoniae, and the elevated infection

sensitivity can be a consequence of the circadian regulation

disturbance of phagocytosis in these fly mutants (192, 193). In E.

coli, circadian rhythms are driven by special genes, including radA

and KaiC (194). Furthermore, a red and blue photoreceptor was

contained in E. coli to adapt to the day-night cycle, which may

provide evidence for dysbiosis in abnormal light exposure by

circadian disturbance (195).

These studies provide a preliminary indication of the

correlation between MB and KSD. However, data from mammals

are still necessary, and since there is an interaction between GMB

and UMB, further research is needed.
5.6 Other factors

5.6.1 Parathyroid gland hormone disorder
Disordered calcium metabolism contributes greatly to KSD.

Goodman et al. concluded that the risk of hypercalcemia was 9

times higher in KSD patients than in normal controls (196).

Parathyroid hormone (PTH) is essential to enhance calcium
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reabsorption and inhibit phosphorus reabsorption in the kidney

(197) . Elevated PTH with hypercalcemia in primary

hyperparathyroidism (PTHP) is a well-recognized reason for KSD

(198). An observational study revealed that parathyroidectomy was

effective in the therapy of KSD recurrence by idiopathic

hypercalciuria and that stone activity significantly decreased after

surgery (0.05-0.15 vs 0.50-0.75, p < 0.001) (199, 200).

The PTH level exhibits a bimodal pattern over 24 hours, with a

maximum peak in the afternoon and a small peak at night (201).

Circadian impairment leads to abnormal PTH levels. Higher serum

PTH level was observed in patients with moderate OSA and severe

OSA than in healthy controls (63.11 ± 36.11 and 53.16 ± 25.29 vs

43.71 ± 24.45, p < 0.05) (202). Then, Sleep disturbance is common

in PTHP patients, but the causation is unclear (203, 204).

Clock genes in the parathyroid gland (PTG) were explored, and

their disturbance caused parathyroid gland dysfunction (205).

Normal circadian clock operation was confirmed in animal

models with a periodicity of 24 hours and was significant for

Bmal1, Npas2, Per1,2,3, Cry1,2, and Rev-Erba. In hyperplastic

PTG tissue, circadian genes were deregulated, with significant

upregulation of Per1,2 and Rev-Erba and downregulation of

Npas2 (206). Egstrand et al. investigated the alteration of

circadian genes during a 24-h cycle in murine PTG and found

rhythmic expression of parathyroid signature genes, and this

rhythm is essential for PTG function regulation. Mice with PTG-

specific Bmal1 knockdown (PTHcre;Bmal1flox/flox) were created,

and a global decrease in circadian genes was observed, including

Clock, Npas2, Cry1,2, and Per1,2,3. Compared to WT, PTHcre;

Bmal1flox/flox shows a higher parathyroid cell proliferation response

and led to PTHP (205). The identification of transcriptional

patterns in human PTG tissues presents that the transcript

expression levels of PER1 and CRY1/2 are significantly lower in

PHPT tissue than in healthy tissue (207).

Taken together, these studies indicate that circadian gene

disturbance leads to PTG disorder and is a risk factor for KSD.

However, more investigations are needed.

5.6.2 Vitamin D Deficiency
Vitamin D (vit D) participates in maintaining calcium

homeostasis, and vit D deficiency (VDD) is defined as a serum

25-hydroxyvitamin-D [25(OH)D] concentration less than 30 ng/ml

(208). VDD affects a large population globally and is more prevalent

in KSD patients (209). The investigation by Elkoushy et al. showed

that more than 80% of KSD patients have VDD, which is consistent

with a multicenter study (210, 211). A case-control study in Spain

including 366 participants found that calcium SFs had lower levels

of Vit D (25.7 vs. 28.4 ng/ml, p = 0.02) and a higher percentage of

VDD than non-SFs (28.0% vs. 15.7%, p = 0.009) (212). Vit D is a

fundamental regulator of systemic inflammation, OS, and

mitochondrial respiratory function. Based on current studies, cell

injury by OS and inflammation by overproduced ROS are the

cardinal pathogenic factors for KSD in VDD (213, 214).

Vit D status is significantly influenced by a circadian rhythm in

which serum Vit D presents a significant diurnal rhythm with a

nadir in the morning and is followed by a rapid increase to a plateau

during the day (215). VDD is widespread in populations with
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abnormal light exposure or insufficient sleep (216). Piovezan et al.

indicated that short sleep duration showed an independent

association with VDD (OR = 1.61, 95% CI: 1.25 to 2.26) (217).

Then, shift workers are more likely to develop VDD. An

investigation in Italy measured serum 25(OH)D in workers and

observed that the level was lower in night shift workers than in daily

workers (13.4 ± 5.3 ng/mL vs. 21.9 ± 10.7 ng/mL, p < 0.001)

(218, 219).

Endogenous vit D is synthesized in the skin from the

cholesterol-like precursor (7-dehydrocholesterol) present in

epidermal cells by exposure to ultraviolet B (UV-B) from sunlight

(220). Therefore, a lack of UV exposure reduces vit D levels and

exacerbates OS in RTECs, which leads to KSD (129, 218). Moreover,

research on the interaction between VDD and circadian genes is

limited. Kwai et al. created an intestinal Bmal1 KO model

(Bmal1Int-/- mice) and found that the vit D receptor (VDR)

target genes in the intestine are disrupted. The expression of VDR

and Vdr peaks at ZT8 (zeitgeber time [ZT]: light on, ZT0–ZT12;

lights off, ZT12–ZT24) in the control group but disappears in

Bmal1Int-/- mice. The experiment in Caco-2 cell lines also reveals

that the BMAL1 KO reduced VDR and VDR expression (221).

However, other circadian genes are still unclear in VDD, which is

worth more analysis.

5.6.3 Renal Tubular Damage or Dysfunctions
The combination of urinary supersaturation and renal tubular

damage is vital in stone formation. Renal tubular damage is related

to sleep disorders, especially OSA (222, 223). The high oxygen

demand of renal tubules makes them vulnerable to hypoxia by

chronic IH in OSA and easily advanced to renal tubular injury

(223). However, such a theory needs to be backed up by more

research, and its relationship with KSD should be further elucidated

based on direct evidence.

Distal renal tubular acidosis (dRTA) syndrome is a condition

caused by the acidification defect in the collection tubule and the

inability of the distal nephron to maximally increase the urinary

secretion of protons ([H+]) in the presence of metabolic acidosis,

characterized by a persistent hyperchloremia, normal plasma anion

gap and metabolic acidosis with a relatively normal glomerular

filtration rate. Patients with dRTA have elevated urinary calcium,

recurrent CaOx or CaP stone formation, and nephrocalcinosis (224,

225). In addition to inherited dRTA, secondary dRTA is caused by

numerous triggers, including autoimmune diseases, nephrotoxins,

and miscellaneous aetiologies. Currently, there are insufficient

epidemiological and basic studies to confirm the relationship

between dRTA and circadian rhythm disturbance.
6 Future perspective

Growing evidence indicates that some therapeutic strategies

enhancing circadian clock function or circadian gene expression

may be beneficial for the prevention of KSD. First, feeding time is

one of the most important external Zeitgebers in peripheral tissues,

and unhealthy feeding time promotes diseases. A systematic review
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suggested that fasting results in altered urine metabolites and

density, although this did not transfer to clinical outcomes. Safe

fasting practices are vital for high-risk patients to prevent KSD

(226). For OSA patients, continuous positive air treatment

significantly reduces tubular damage, which may decrease the

KSD risk (223). Moreover, melatonin (Mel), a hormone released

from the pineal gland against SJL and sleep disorders with anti-

inflammatory and antioxidative functions, can prevent crystalluria

and kidney damage caused by crystal formation and aggregation

(227, 228). Song et al. found that Mel has protective effects on

oxalate-induced endoplasmic reticulum stress and apoptosis via the

activation of the adenosine 5’-monophosphate-activated protein

kinase pathway in HK-2 cells (229). In addition, BMAL1 is a

therapeutic target in vitro. BMAL1 overexpression stimulated the

OS-related NRF2/HO-1 pathway to reduce CaOx stone formation.

This suggests that maintaining normal rhythms and properly

intervening in some related circadian genes and downstream

antioxidant pathways may benefit the prevention of CaOx stones

(230). According to current limited studies, it can be speculated that

artificial interventions in sleep status and circadian rhythm have the

potential to prevent KSD. However, more clinical and basic research

is needed.
7 Conclusions

Since KSD is a major challenge for global health, its potential

mechanism should be investigated. Increasing convincing evidence

has elucidated that a disordered circadian clock is a putative factor

for KSD. This review summarizes the biological characteristics of

the circadian rhythm, the mechanism of KSD, and the putative

mechanism of the circadian rhythm disturbance in KSD. Existing

clinical and basic studies have indicated that circadian rhythm-

based interventions have potential clinical value in the management

of KSD, but the specific and accurate mechanism of KSD caused by

circadian rhythm disturbance is still unclear. KSD is not an isolated

kidney disease, but a systemic disorder affected by various factors.

Understanding the relationship between circadian rhythm and

systemic multi-organ and multi-system health status is essential.

In addition, both behavioral and pharmacological interventions

related to rhythm modification deserve more research. A

comprehensive and in-depth exploration of the mechanism of

KSD caused by sleep and circadian rhythm disturbance and the

efficacy of chronothrapies for KSD are necessary and can provide a

new strategy for the clinical management of KSD.
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