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Population-enriched innate
immune variants may identify
candidate gene targets at the
intersection of cancer and
cardio-metabolic disease
Susan Yeyeodu1,2, Donia Hanafi 1, Kenisha Webb3,
Nikia A. Laurie1 and K. Sean Kimbro3*

1Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University,
Durham, NC, United States, 2Charles River Discovery Services, Morrisville, NC, United States,
3Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine,
Atlanta, GA, United States
Both cancer and cardio-metabolic disease disparities exist among specific

populations in the US. For example, African Americans experience the highest

rates of breast and prostate cancer mortality and the highest incidence of

obesity. Native and Hispanic Americans experience the highest rates of liver

cancer mortality. At the same time, Pacific Islanders have the highest death rate

attributed to type 2 diabetes (T2D), and Asian Americans experience the highest

incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by

infectious agents. Notably, the pathologic progression of both cancer and

cardio-metabolic diseases involves innate immunity and mechanisms of

inflammation. Innate immunity in individuals is established through genetic

inheritance and external stimuli to respond to environmental threats and

stresses such as pathogen exposure. Further, individual genomes contain

characteristic genetic markers associated with one or more geographic

ancestries (ethnic groups), including protective innate immune genetic

programming optimized for survival in their corresponding ancestral

environment(s). This perspective explores evidence related to our working

hypothesis that genetic variations in innate immune genes, particularly those

that are commonly found but unevenly distributed between populations, are

associated with disparities between populations in both cancer and cardio-

metabolic diseases. Identifying conventional and unconventional innate

immune genes that fit this profile may provide critical insights into the

underlying mechanisms that connect these two families of complex diseases

and offer novel targets for precision-based treatment of cancer and/or cardio-

metabolic disease.
KEYWORDS

innate immune variants, pleiotropic actions, cancer disparities, cardio-metabolic
disparities, population-enriched variants, candidate protein targets
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1 Introduction

1.1 Double-edged swords: important
factors connecting metabolic disorders
and cancer development

The following perspective was written in response to an invited

Frontiers research topic to explore methods, mechanisms, and

hypotheses that may ultimately identify and exploit biological

processes contributing to complex disease progression and

molecular interactions enabling cross-talk between cancer and

cardio-metabolic disease. Based on our hypothesis that innate

immunity differences contribute to observed population disease

disparities in cancer and metabolic disorders, we apply a functional

genomics approach to identify specific innate immune genes as

potential therapeutic targets at the intersection of these two

complex disease families.
1.2 Framing precision drug target discovery
in the context of health disparities

1.2.1 Defining health disparities
The US National Institute on Minority Health and Health

Disparities (NIMHD) defines health disparities as “a health

difference (compared with the general population), based on one or

more health outcomes (such as the overall rate of disease incidence,

prevalence, morbidity, mortality or survival) that adversely affect

disadvantaged populations.” In the US, such populations include

Blacks/African Americans, Hispanics/Latinos, Asians, American

Indians/Alaska Natives, and Native Hawaiians/other Pacific

Islanders) (1). Diverse sources, from sponsored websites (such as 2

and associated links) to peer-reviewed articles summarizing

disparities in one or more diseases between two or more

populations, provide ample evidence for differences in cancer (3),
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cardio-metabolic disease (4) and overall health risks and outcomes

(5) based on ethnic background/geographic ancestry. By way of

illustration, Tables 1, 2 summarize disparities in cancer incidence

and mortality among US ethnic populations (adapted from 6) and

population differences in overall mortality rates of cancer and cardio-

metabolic diseases (adapted from 7), respectively.

Assessing health differences between populations is complicated

because results may vary depending on the size and granular

composition of the populations being compared. On the one

hand, evaluating larger, more heterogeneous populations

improves statistical reliability, but this approach may mask

disparities among subpopulations. For example, among Asians in

the US (8) and Asia (9), the incidence of liver cancer varies widely

based on geography and/or geographic ancestry. Further, trends in

incidence and/or mortality may change due to cohort variations in

age, exposure to risk, and geographic location, as is the case for liver

(10) and breast cancer incidence (11) in the US and for global

cancer mortality rates (e.g., 12).

Defining/distinguishing populations is a critical aspect of

evaluating health disparities. Many analyses have been based on self-

identified ethnicity; it stands to reason that this approach is likely to

align more closely with social determinants of health. In contrast, a

relatively precise biological assessment of geographic ancestry can be

obtained using genetic markers to identify ethnic origins. In this

approach, selected ancestry informative markers (AIMs) were

initially used to evaluate genetic admixture and geographic ancestry

and provide valuable background information when comparing

individuals representing different populations (13). Improved

methods and more extensive and complete reference datasets have

further refined admixture mapping (14).

For the purposes of this perspective, we will refer to populations

as they are defined by individual authors; populations in Section 3

are defined according to Karczewski (15). The interested reader is

referred to a recent book chapter entitled “Using Population

Descriptors in Genetics and Genomics Research: A New

Framework for an Evolving Field” written by the National
TABLE 1 Ethnic Disparities in US Cancer Incidence and Mortality.

EA AA ASN/PI NA/AN HISP

Cancer Incidence breast prostate stomach colon
kidney
liver
lung
stomach
uterine

uterine

Cancer Mortality lung breast
colon
prostate
uterine

stomach kidney
liver
stomach

liver
adapted from "Table 9. Incidence and Mortality Rates for Selected Cancer by Race and Ethnicity, US" (6).
standard font indicates most frequently occuring cancer among aggregate populations; italics indicate most frequently occuring cancer for a specific ethnic group (not aggregate).
EA, European American, non-Hispanic White; AA, African American, non-Hispanic Black; ASN/PI, Asian American/Pacific Islander; NA/AN, Native American/Alaskan Native; HISP,
Hispanic/Latino.
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Academies of Sciences’ Committee on the Use of Race, Ethnicity,

and Ancestry as Population Descriptors in Genomics Research (16)

for a thorough treatment of this subject.

1.2.2 Past and present challenges to advancing
research in the biology of health disparities

Cancer and cardio-metabolic disease disparities have

multifactorial etiologies, including biological, behavioral,

environmental, and social components. There is ample evidence

that these disparate etiological factors are not adequately

understood in isolation from one another. The interested reader

is referred to reviews on the impact of physical, social, and chemical

environments on the biology of health disparities (17–19) and on

the biological impacts of stress (20), including racism-induced

stress and increased allostatic load (21–23), all of which are

beyond the scope of this perspective.

The relative contribution of biology to cancer and cardio-

metabolic disparities continues to be a matter of debate among

scientists in various disciplines and even among biologists

themselves (24). The hesitation to consider geographic ancestral

differences in biology among some mainstream biomedical

scientists is just one of several obstacles that have hindered a

rigorous study of the biology of health disparities.

Social forces continue to hinder the participation of minority

populations in medical research and to limit their access to medical

care. For example, an entrenched and well-founded mistrust of the

medical establishment in the US exists among minority populations

due to a long history of abuses (25). Limited access to healthcare

and subpar healthcare quality further exacerbate health disparities

in minority populations, leading to lower life expectancy in

American Hispanic and Black populations (26).

Traditional research approaches and the most widely available

resources in the biomedical sciences have also unintentionally

hindered a rigorous characterization of the biological differences

that underlie health disparities. In vitro studies employ samples and

cell lines obtained most often from individuals of European descent

(27, 28) and the majority of clinical trials disproportionately enroll
Frontiers in Endocrinology
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individuals from this same population (29, 30). Thus, at multiple

stages in the drug research and development cycle, biases exist

towards agents optimized for those of European ancestry.

Fortunately, the need to increase the diversity of human samples

and cell lines and to engage diverse study populations in biomedical

research and clinical trials has recently gained the attention and

enthusiastic support of pre-eminent scientists (29, 31–33) and the

NIH (34).

1.2.3 Considering geographic ancestry in the
development of effective treatments

The human genome possesses a high degree of variation.

According to a 2016 meta-analysis of 60,706 individuals of

diverse ancestries, an average of 1 in 8 bases of the coding

sequence were variants, and 72% of these had not been previously

identified and/or characterized (35). Wide genetic variations within

populations are at least as diverse as genetic variations between

populations (36). This finding implies that not all genetic variations

contribute to putative biological differences between populations.

Genetic differences associated with geographic ancestry, such as

AIMs, may result in the uneven among populations distribution of

gene variants. In many cases, these variants are uncommon, and/or

their impact on protein expression, function, or disease is either

insignificant or unknown. However, an intriguing study by Ahsan

et al. (37) identified 65 “minor” drug response alleles that were

present in more than 50% of individuals in at least one population;

in other words, in some populations, the variant was more common

than the wild type/canonical protein. Consistent with this is a body

of clinical evidence that specific drug responses vary according to

geographic ancestry, with outcomes that range from lack of efficacy

to drug-related pathology and death in one or more minority

populations (38–40). Therefore, we sought to identify population-

specific potential therapeutic targets at the intersection of cancer

and cardio-metabolic disease, in part by hand-curating gene

variants with “minor” alleles that were common in at least one

major population (as defined by 15) but that were significantly less

common in at least one other major population.
TABLE 2 Deaths from Cancer, Cardio-Metabolic, and Infectious Diseases in the US as of 2018.

Cause of Death Aggregate EA AA NA/AN ASN PI HISP

heart disease 23.1% 23.4% 23.6% 18.0% 21.3% 23.5% 19.8%

cancer 21.1% 21.2% 20.4% 16.8% 25.1% 21.9% 20.5%

stroke 5.2% 5.1% 5.7% 3.6% 7.6% 6.2% 5.5%

diabetes 3.0% 2.5% 4.5% 5.6% 4.1% 7.3% 4.6%

infection (flu, pneumonia) 2.1% 2.1% 1.8% 2.3% 3.3% 2.2% 2.1%

kidney disease 1.8% 1.6% 2.8% 1.8% 2.1% 2.2% 2.1%

liver disease * 1.4% 1.0% 6.2% 0.9% 1.3% 3.2%

hypertension * 1.1% 1.9% 1.1% 2.1% 1.4% 1.4%
fr
adapted from Tables C & D in "Deaths: Leading Causes for 2018." Heron, M. National Vital Statistics Reports 70(4) (7).
bold indicates highest mortality rate for given cause of death.
italics indicates lowest mortality rate for given cause of death.
*aggregate data were only available for top ten causes of death.
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1.3 Innate immunity as a biological driver
of health disparities

Gene variants that confer protective immunity are retained in

each population to optimize survival. For example, in the case of

those with African ancestry, gene variants retained in the pan-

African genome have been identified that provide defense against

indigenous pathogens such as malaria and trypanosomiasis

(African sleeping sickness/Chagas disease). The selective pressure

imposed by pathogens on gene variation is impressive; in the case of

malaria, variants of at least 40 different genes are thought to protect

against one or more species of Plasmodium (41, 42).

Unfortunately, immune protection frequently involves a trade-

off where protective innate immune variants may introduce new

pathologies. For example, among the gene variants that protect

against malaria, HbS also promotes sickle cell anemia, HbE

promotes thalassemia, G6PD variants promote hemolytic anemia,

and Duffy antigen receptor (DARC) variants are associated with

increased breast cancer metastasis and mortality (43, 44). Similarly,

the same APOL1 variants shown to protect against severe

trypanosomiasis are also associated with nephropathy (45, 46).

Several lines of evidence affirm that innate immune genes are

highly adaptable and optimized to respond to local pathogens. First,

within the human genome, genes associated with immunity are
Frontiers in Endocrinology 04
under the strongest selective pressure (47, 48). Second, selective

pressure on immune genes is pathogen-driven (49, 50). Third, the

geographic distribution of populations bearing the highest

frequency of HbS (51) and DARC (52) gene variants closely

resemble the geographic distribution of the malarial strains they

protect against. Finally, according to their geographical ancestry,

populations differ in their susceptibility to infectious disease (53), in

their immune response to pathogens (54) and even in their

macrophage function and circulating cytokine levels (55–57). All

of these findings indicate that protective innate immune variants are

distributed among individuals based on their geographic ancestry.

It is important to note that genes associated with innate

immunity are structurally and functionally diverse. Some are

well-characterized participants in inflammation, including but not

limited to cytokines, chemokines, and pattern recognition receptors

(lectins, Toll-like receptor (TLR) family members, and NLRs) and

their related pathways. However, as illustrated by the variety of

genes that protect against malaria (summarized in Table 3), others

are pleiotropic, expressed in non-immune tissues and/or frequently

better known for their “day jobs”. Most of the protective variants

listed in Table 3 can be tied directly to immunity. Still, a few (such as

APOE, G6PD, glycophorin (GYP), hemoglobin (HB), and

haptoglobulin (HP)) would be considered unconventional innate

immune genes.
TABLE 3 Innate immune genes that provide protection against malaria (adapted from 41, 42).

Gene Name/Function Expression Association with Disease
(based on titles available in
Google Scholar)

ABO ABO blood group secreted cancer, cardiovascular disease,
diabetes, obesity, NAFLD

APOE apolipoprotein E secreted cardiovascular disease, obesity,
diabetes, NAFLD, cancer

CD36, thrombospondin receptor,
scavenger receptor B3

broad specificity receptor for proteins and lipids adipose, liver, others cardiometabolic disease, cancer

CR1, CD35, C3b/C4b complement receptor,
Knops blood group antigen

erythrocytes,
leukocytes,
glomerular podocytes,
splenic DCs

gallbladder and liver cancer, diabetes,
kidney disease

DARC, FY, ACKR1, CD234, CCBP1 Duffy atypical chemokine receptor erythrocytes,
endothelia

breast cancer, prostate cancer,
cardiometabolic disease

FCGRA2, CD32 low affinity Fc receptor phagocytes breast cancer, cardiovascular events

G6PD glucose-6-phosphatase dehydrogenase
rate-limiting step to pentose-phosphate, NADPH

lymphoblasts,
granulocytes

cancer, diabetes, cardiovascular disease

GYPA,B,C, CD235a,b,c glycophorin A,B,C sialoglycoproteins A broad expression

B,C erythrocytes C leukemia, oral cancer

HBA, HBB hemoglobin, O2/CO2 transport erythrocytes thalassemia, sickle cell anemia

HLA-B component of MHC class I broad expression elimination of infected or
transformed cells

(Continued)
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TABLE 3 Continued

Gene Name/Function Expression Association with Disease
(based on titles available in
Google Scholar)

HLA-DR series (A,B1,3,4,5) components of MHC class II antigen
presenting cells

elimination of infected or
transformed cells

HP haptoglobulin, plasma protein that binds Hb liver, others diabetic nephropathy and coronary
artery disease

ICAM1, CD54 intercellular adhesion molecule 1, receptor for CD11a
or b/CD18 integrins and rhinovrius

immune and
endothelial cells

cancer, diabetes, obesity

IFNAR1,2 interferon alpha (and beta) receptor, subunits 1 and 2 broad expression 1 gastric, colorectal, breast cancer; 2
lung cancer, diabetes

IFNG interferon gamma circulating cancer, diabetes

IFNGR1,2 IFN gamma receptor 1 (CD119), 2 broad expression 1,2 cancer

IL1A/IL1B interleukin 1A, 1B circulating A, B cancer, obesity; B diabetes

IL1RN IL1 receptor antagonist secreted cardiovascular disease, cancer,
obesity, diabetes

IL10 interleukin 10 circulating cancer, obesity,
diabetes, atherosclerosis

IL10RB IL10 receptor, subunit beta broad expression obesity

IL12B interleukin 12, beta subunit circulating diabetes, cancer

IL4 interleukin 4 circulating cancer, diabetes

IRF1 interferon regulatory factor 1 broad expression cancer

MBL2 mannose binding lectin 2, collectin 1 circulating cancer, diabetes, atherosclerosis

MST1, HGFL macrophage stimulating 1, hepatocyte growth
factor like

secreted cancer, diabetes, NAFLD,
cardiovascular disease

NCR3, CD337 natural cytotoxicity triggering receptor 3 NK cells cancer

NOS2A nitric oxide synthase 2 liver, retina, bone,
lung, cartilage, fat

cancer, diabetes

PECAM1, CD31 platelet-endothelial cell-adhesion molelcule 1 immune and
endothelial cells

cancer, cardiovascular disease, diabetes

PSMB9 proteosome 20S subunit beta 9 MHC II
expressing tissues

cancer, diabetes

SCL4A1, CD233, erythrocyte band 3 prot. chloride/bicarbonate exchanger, Diego blood group erythrocytes, kidney,
bone, others

CO2 transport from tissues to lungs, structural protein cardiovascular disease,
colorectal cancer

SELE, CD62E selectin E endothelia cancer

TCRB T-cell receptor, beta subunit T-cells diabetes, cancer

TIRAP, MAL, Myd88-2 TIR domain containing adapter protein broad expression cancer, diabetes, NAFLD

TL4 Toll-like receptor 4 broad expression cancer, obesity, diabetes,
NAFLD, cardiovascular

TAP1, ABCB2 transporter 1, ATP binding cassette, subfamily B broad expression cancer, diabetes

TNF tumor necrosis factor circulating cancer, obesity, diabetes, NAFLD,
cardiovascular disease

TNFSF5 CD40 ligand, CD154, TNF superfamily member 5 circulating diabetes, cancer, cardiovascular
disease, obseity
F
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1.4 Inflammation is a component of cancer
and cardio-metabolic diseases

1.4.1 Cancer and inflammation
Hanahan and Weinberg, in their seminal review, describe six

hallmarks of cancer, many of which are enabled by mechanisms of

immunity, including inflammation (58). Their observations are

particularly relevant to this perspective since further research in

the field has established that reprogrammed energy metabolism and

immune evasion are additional hallmarks (58, 59).

In a previously published perspective, we presented evidence for

an association between breast and prostate cancer disparities in

African Americans (AAs) and classic innate immune gene variants

(interleukins, Toll-like receptors, monocyte activity) more

commonly found in AAs (60). Since 2019, Google Scholar

(accessed 4/18/23) has listed more than 18,000 publications with

titles that include “cancer” and “inflammation,” “infection”,

“immune,” “immunity,” or “innate”; these publications address a

wide range of topics, including immune escape by cancer cells, the

contribution of chronic inflammation to tumor progression, and

immune-based cancer therapies, that are beyond the scope of this

perspective. Notably, less than 40 of these publications (< 0.2%)

include the terms “disparity” or “disparities” in their titles. Among

this small set of publications are descriptions of population

differences in tumor microenvironment and immune signatures

in breast (61, 62), head and neck (63–65), lung (66, 67), and

colorectal (68, 69) cancers, as well as cancer generally (70). Of

particular interest is a recent exploration of the link between racial

differences in mitochondrial metabolism and the tumor immune

microenvironment (71).

1.4.2 Cardio-metabolic disease and inflammation
The constellation of inter-related cardio-metabolic diseases has

been collectively referred to as metabolic syndrome (MetS), and

their cumulative effect on global health is massive (reviewed in 72–

74). Clinical definitions of MetS vary depending on which disease(s)

are of primary interest (reviewed in 75–77). The National Heart

Lung and Blood Institute (NHLBI) lists the following MetS risk

factors as abdominal obesity and/or insulin resistance, elevated

triglycerides and LDL-cholesterol, reduced HDL-cholesterol,

hypertension, elevated glucose and pro-thrombotic or pro-

inflammatory states (78). Several metabolic diseases have been

associated with these risk factors, including hypertension, obesity,

atherosclerotic cardiovascular disease, type 2 diabetes (T2D), non-

alcoholic fatty liver disease (NAFLD), and stroke.

Genetic and environmental factors impact cardio-metabolic

diseases, and their risk, morbidity, and mortality vary with age,

gender, and race/ethnicity (4, 76). Unfortunately, the effects of MetS

are not confined to cardio-metabolic co-morbidities, given that

MetS is also associated with increases in the incidence and/or

mortality of arthritis, chronic kidney disease, schizophrenia,

depression and cancer, as noted in references (79, 80).

Inflammation is a key contributor to MetS and associated co-

morbidities (81–83), just as MetS pathologies impact inflammation
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(c.f. 84). In general, low-grade chronic inflammation evoked during

metabolic disease stimulates the production of pro-inflammatory

cytokines, immuno-modulatory proteins, lipids, and other

mediators of inflammation that impact systemic and/or localized

tissue inflammation (82, 85). Unfortunately, the treatment of

metabolic diseases is complicated by the cross-talk between pro-

and anti-inflammatory mechanisms at work among MetS co-

morbidities (c.f. 77, 86–88). Further, inflammation from one

metabolic disease can also exacerbate other MetS co-morbidities.

As with almost all tissues, organs that regulate systemic

metabolism possess innate immune response capabilities. Notably,

some organs that regulate overall metabolic homeostasis also

impact systemic inflammation. In the case of both adipose tissue

(89–91) and liver (92–94), these organs harbor and partner with

resident macrophages (ATMs and Kupffer cells, respectively) in

inflammation. Further, adipose tissue and liver produce unique

immunologically active biomolecules, such as adipokines (86, 95)

and bile acids (96–99). Perhaps less appreciated are two additional

organs associated with metabolic homeostasis that control systemic

levels of immunologically active biomolecules: the gallbladder

regulates bile acid levels and the pancreas controls insulin, which

levels of insulin, with its known anti-inflammatory effects (100).

Just as mediators of metabolism can impact inflammation,

mediators of immunity can impact metabolism. For example,

innate immune receptors have demonstrated roles in metabolic

disease progression (101), and pro-inflammatory cytokines

produced in the adipose tissue of obese individuals contribute to

the development of T2D (102). Significantly, biomolecules such as

adipokines, insulin, and bile acids mediate metabolism and

inflammation. Further, besides their widely recognized role in

lipid transport and cellular metabolic homeostasis, serum lipids

and lipoproteins also provide innate immune protection (103, 104).
2 A functional genomics approach to
novel target discovery

Using functional genomics, we and others have observed

associations between specific innate immune gene variants and

cancer or metabolic disease risk or outcome that differ according to

geographic ancestry (57, 60, 105). Given that immunity including

inflammation contributes to the progression of both complex

disease families, we have hypothesized that population differences

in genetic (and epigenetic) innate immune programs contribute to

complex disease disparities between populations. Based on this

conceptual framework, this perspective seeks to identify innate

immune gene candidates associated with both cancer and cardio-

metabolic disease that differ between populations.

Genome wide association studies (GWAS) in general (106) and

the Genome Aggregation Database (gnomAD) in particular (107)

provide researchers with the capacity to compare thousands of

complete genomes from individuals among all largely-grouped

populations. These resources catalog gene variations called single

nucleotide polymorphisms (SNPs) across the entire genome of each
frontiersin.org
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individual. SNPs are located not only in protein coding genes

(including coding exons as well as non-coding introns and

remote, up-, down-, and mid-stream regulatory sites), but also

across regions associated with short and long non-coding RNAs,

chromosomal architecture, and other essential functions that have

been previously underappreciated and mislabeled as “junk DNA”

(108). The number of genes and the percentage of the human

genome they occupy varies depending on their definition (109).

Notably, most SNPs associated with disease states or changes in

phenotype (95%) are located outside coding exons (110).

Nevertheless, in this perspective, we will focus on widely occurring

gene variants that code for changes in the canonical amino acid (aa)

sequence, also referred to as missense variants or nonsynonymous

SNPs, as a first step towards accelerating the development of optimally

safe and active drugs that target understudied protein variants widely

found in patients with diverse geographical ancestries. Importantly,

nonsynonymous SNPs have the potential to impact protein

conformation, activity and/or protein-protein interactions, potentially

altering disease states and phenotypes. For simplicity, we have also

excluded synonymous SNPs (exonic point mutations that do not alter

aa sequence), in spite of mounting evidence that suggests they can

function in isoform selection (protein size and sequence), transcript

expression levels and stability, translational folding rate, overall

conformation, and posttranslational modifications, all of which

possess potential functional consequences on cell behavior and

disease risk (111–113).

This perspective identifies conventional and unconventional

innate immune genes (summarized in Section 3) that meet the

following criteria. First, there is evidence that each gene participates

in, is a target of, or is associated with innate immunity including

inflammation. Second, there is evidence that each gene is associated

with at least one form of cancer and at least one cardio-metabolic

disease. Finally, each gene occurs among the global population as at

least one population-enriched variant, which we define as a widely

occurring missense variant distributed unevenly among populations.

We have employed a hand-curated discovery process to identify

population-specific innate immune genes at the intersection of

cancer and metabolic disease. From the primary and secondary

literature, gene lists associated with innate immunity (49, 114, 115),

cancer (116, 117), or cardio-metabolic disease (118, 119) were

vetted for the following characteristics:
Fron
1) Evidence in the primary or secondary literature (accessed

through Google Scholar) indicated that the candidate

gene was involved in all three disease categories:

innate immunity/inflammation, cancer, and cardio-

metabolic disease.

2) Indication in gnomAD that the candidate gene occurs as at

least one nonsynonymous SNP/missense variant with
tiers in
a. a high minor allele frequency (MAF ≥ 0.2 in at least

one of the six major populations defined by 15):

African/African American (AFR/AA), East Asian (E

ASN), non-Finnish European (EUR), Latino/Latina

(LAT), Middle Eastern (MID E), and South Asian

(S ASN),
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b. a difference in MAF among significant populations

of ≥ 0.2 from the highest to lowest frequency.
Note that among genes with missense variants, we chose only

those with common variants that occur widely among individuals in

one or more populations, i.e., missense variants that occurred in at

least 20% of individuals in one or more populations (by definition,

having a minor allele frequency (MAF) ≥ 0.20 and varying widely in

the frequency of their occurrence among populations. This

approach was based on our rationale that variants selected and

retained in the human genome provide a survival benefit for the

population(s) in which they occur, even as they may also

paradoxically contribute to complex disease as discussed above

for HbS and APOL1 variants (see Section 1.3).
3 Candidate innate immune genes at
the intersection of cancer and cardio-
metabolic disease disparities

Among the candidate innate immune genes that we identified at

the intersection of cancer and cardio-metabolic disease, we found both

“conventional” innate immune genes, such as cytokines and cytokine

receptors, pattern recognition receptors, and other genes that have

widely acknowledged roles in immune cell function, and

“unconventional genes” with pleiotropic functions that include innate

immunity, such apolipoproteins, biomolecule transporters, and

transcription regulators. Using the approach described in Section 2,

three lists of innate immune genes implicated in cancer and cardio-

metabolic disease were generated. Each gene listed in the three tables

below possesses at least one population-enriched variant with an amino

acid replacement that differs in its distribution among populations,

suggesting its potential role in both cancer and cardio-metabolic

disparities. The 52 genes identified provide a representative but not

exhaustive list of candidate genes, thus serving as preliminary data for

further investigation.

Section 3.1 summarizes conventional innate immune genes and

their corresponding population-enriched variants previously shown to

impact disease or biological function. Similarly, Section 3.2 summarizes

unconventional innate immune genes (better known for their non-

immune functions) and their corresponding population-enriched

variants that have been previously shown to impact disease or

biological function. Finally, Section 3.3 summarizes genes associated

with innate immunity, cancer, and cardio-metabolic diseases and their

corresponding population-enriched variants whose impact on disease

or biological function has not yet been established.
3.1 Conventional innate immune genes
with previously characterized population-
enriched variants

Table 4 includes 14 genes best known for their roles in

immunity, including inflammation, that are present as at least

one population-enriched variant shown to impact biological
frontiersin.org
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function. Among these are cytokines and cytokine receptors,

including macrophage inhibitory cytokine 1 (MIC-1/GDF15),

interleukin 3 and the alpha subunit of its receptor (IL3 and

IL3RA), along with subunits for interleukin 4, 6 and 7 receptors

(IL4R, IL6R, and IL7R), and the leptin adipokine receptor (LEPR).

Additional immune receptors include the soluble receptor for MHC

I antigens I (leukocyte Ig-like receptor A3, LILRA3/CD85E) and two

pattern recognition receptors, the intracellular pattern recognition

receptor nucleotide-binding oligomerization domain containing 2

(NOD2) and the five transmembrane stimulator of interferon

response CGAMP interactor 1 (STING1/TMEM173). Also

included were the catalytic enzyme in the rate-limiting step of the

kynurenine pathway during inflammation indoleamine 2,3-

dioxygenase 2 (IDO2), the temperature-sensitive cation channel

TRPM8, and two adhesion molecules, one expressed in lymphocytes

(integrin alpha L, ITGAL/LFA-1/CD11A) and the other expressed in

leukocytes (junctional adhesion molecule-like, JAML/AMICA).

3.1.1 Interleukin 3 and interleukin 3 receptor
alpha chain

IL-3 is a growth factor produced by activated T-cells (129) that

regulates the growth of hematopoietic progenitor cells and activates

mature neutrophils and macrophages (208). IL-3 is also implicated

in priming (131) and activating (130) basophils. Intriguingly,

increased serum levels of IL-3 have recently been associated with

the onset of type 2 diabetes in African American women as

determined by serum levels of glucose and HbA1c (133). Genetic

variations in IL3 have been noted in colon and rectal cancers (132).

The Pro27Ser variant (5-132060785-C-T) has been associated with

protection against malaria (134) but also with an increase in

miscarriages following in vitro fertilization (IVF) in women of

various populations (209).

The interleukin 3 receptor is a heterodimer comprised of an

interleukin 3-specific alpha chain (IL-3RA, CD123) and the common

cytokine beta chain CSF2RB, another candidate listed below in Section

3.3, that also forms dimers with the alpha chains of both GM-CSF and

IL-5 receptors. High-affinity IL-3 binding induces hetero-dimerization

of IL-3RA and CSF2RB, and subsequent disulfide linkage of these

receptor chains is required for receptor activation and CSF2RB

phosphorylation (210). IL-3RA expression varies among CD34+

hematopoietic cell types, with negative/low expression in primitive

hematopoietic cells and little or no surface expression in early erythroid

progenitors, but high expression in B-lymphoid and myeloid

progenitors (135). The X-chromosome-linked IL3RA Val323Leu

variant (X-1378751-G-C) was associated with non-complete response

to neoadjuvant chemotherapy against locally advanced rectal cancer in

Hong Kong patients (138).

3.1.2 Interleukin 4 receptor alpha chain
The IL-4R alpha chain (IL4R, CD124) forms heterodimers with

at least two partners. Type 1 IL-4 receptors are composed of IL-4R

complexed with the common cytokine receptor gamma chain

(IL2RG, CD132), which may alternatively dimerize with IL-2, IL-

7 and IL-21 cytokine receptors, so that IL-2, IL-7, and IL-21
Frontiers in Endocrinology
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receptors compete with IL-4R for binding to IL2RG. Type 2 IL-4

receptors are composed of IL-4R complexed with IL-13RA1

(IL13Ra1, CD213A1). Thus, IL-4 activates both Type 1 and Type

2 IL-4 receptors, while IL-13 activates Type 2 IL-4 receptors. Both

IL-4 and IL-13 signaling through the IL-4R mediate type 2

(humoral, as opposed to type 1 cellular) immunity against

helminths, toxins and tropical parasites such as plasmodium

(malaria) and trypanosomes (African sleeping sickness/Chagas

disease) (139–141, 211). Both IL-4Ra and IL13-Ra1 have also

been implicated in cancer progression and were recently

identified as prognostic indicators in soft-tissue sarcoma patients

when present in the nucleus. IL-4 regulates lipid metabolism (143),

and (142) recent findings highlight an intriguing relationship

between non-hematopoietic IL-4Ra activation of a non-canonical

signaling pathway that regulates a high-fat, high-carbohydrate diet-

driven induction of obesity and impacts the severity of obesity-

associated sequelae in mice (212). Numerous genetic

epidemiological studies have also shown that IL4 and IL4R and

their gene polymorphisms play important roles in asthma in various

populations. Notably, individuals carrying one or two copies of the

IL4R Glu400Ala (16-27362551-A-C) minor allele were at higher

risk to suffer from allergy (145) and asthma (144, 213).

3.1.3 Interleukin 7 receptor alpha chain
The integral membrane interleukin 7 receptor (IL-7R) transmits

pro-inflammatory signals initiated by IL-7 at the cell surface. The

functional IL-7 receptor is a heterodimer comprised of the IL-7

receptor alpha chain (IL7R, IL7Ra, CD127) and the same common

cytokine receptor gamma chain (IL2RG, CD132) that dimerizes with

the IL-4R alpha chain. The assembled IL-7R recognizes not only IL-7

but also thymic stromal lymphopoietin (TSLP), both cytokines with 4

a-helical strands (214). Multiple transcriptional and post-

transcriptional mechanisms exist to regulate expression of the IL-7R

protein (215). Some of these mechanisms are homeostatic, molecular

and cytokine-mediated, where IL7Ra transcription decreases in CD4+

and CD8+ cells once naïve T cells become activated. Notably, IL-7

binding to IL-7R activates the Janus kinase (JAK/STAT) pathway,

which plays an essential role in lipid metabolism (216). However,

peripheral blood mononuclear cells (PBMCs) in breast cancer patients

show defects in STAT5 phosphorylation and altered expression of IL-

7Ra that ultimately impacts memory T cell development (156).

Notably, compared to the canonical gene, the IL7R variants 5-

35874473-C-T (rs6897932), 5-35860966-T-C (rs1494558) and 5-

35871088-G-A (rs1494555) alter the pathology of autoimmune and

infectious diseases due to their impact on IL7R expression and

alternative splicing (155). Further, all three population-enriched

missense variants of IL7R identified in Table 4 show an association

with cardio-metabolic disease: Ile66Thr (5-35860966-T-C,

rs1494558) with post-transplantation diabetes (158); Val138Ile (5-

35871088-G-A, rs1494555) with body mass index (BMI) in

lymphoma patients (161), and Ile356Val (5-35876172-A-G,

rs3194051) with severe liver disease (162). However, to date only

Val138Ile has been associated with increased cancer risk, both in

lung (160) and stomach (159).
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Associated w/ Metabolic Disease Ref

120 stress, metabolic and cardiovascular disease 121

121 deficiency protects against atherosclerosis 123

126 NAFLD 118

128

132 T2D in obese AA women 133

137 ligand IL3 implicated in T2D in obese AA women 133

138

wed
142

IL-4 dysregulation caused decreased lipid
metabolism, decreased lipolysis and increased
adipogenesis leading to diseases such as obesity
and Type 2 Diabetes

143
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Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/ Immunity Ref

Associated
w/ Cancer Ref

GDF15

growth
differentiation factor
15, macrophage
inhibitory cytokine 1

induced by HCV 120 regulates hepatocellular
carcinoma genes

MIC-1 mediates tissue tolerance 122 pro- and anti-
tumor activity

19-
18386331-T-
A
(rs1059369)

2 (2) Ser48Thr 0.38 E ASN to
0.14 MID E

systemic lupus erythematosus
(SLE) risk in Chinese population

124

IDO2
indoleamine 2,3-
dioxygenase 2

immunomodulator 125 multiple cancers

8-39982715-
A-
G
(rs4736794)

3 (2) Ile140Val (2 of
4 transcripts)

E ASN 0.34 to
0.03 AFR/AA

major depressive
disorder symptoms

127

8-40005362-
C-
T
(rs10109853)

3 (2) Arg248Trp (2 of
4 transcripts)

S ASN 0.54 to
0.25 E ASN

multiple myeloma risk in
a small Japanese cohort

IL3

interleukin 3 hematopoietic growth factor,
mast-cell growth factor,
multipotential colony
stimulating factor

129
130
131

colon cancer risk

5-
132060785-
C-
T (rs40401)

1 (1) Pro27Ser AFR/AA 0.53 to
0.22 EUR

protection against malaria 134

IL3RA
interleukin 3
receptor, CD123

production and differentiation of
hematopoietic progenitor cells

135 leukemia 136,

X-1378751-
G-
C
(rs17883366)

2 (2) Val323Leu MID E 0.26 to
0.06 AFR/AA

colorectal cancer
treatment response

IL4R

interleukin 4
receptor, CD124,
IL4RA, IL13 receptor

ligand IL4 provides protection
against malaria, schistosomiasis
and helminths

139–
141

IL4R overexpressed on
the surface of multiple
cancer types (breast,
lung, etc.)
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TABLE 4 Continued

f Associated w/ Metabolic Disease Ref

146 type I diabetes? yes: 147
no: 148, 149

51, 152 cardiometabolic disease 153

154

156 type I diabetes 157

post-transplantation diabetes 158

59, 160 BMI in lymphoma patients 161

severe liver disease 162

63, 164 bioinformatic assn w aortic valve calcification in
metabolic syndrome

165

166

167

51, 170 diabetic nephropathy 171, 172
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Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/ Immunity Ref

Associated
w/ Cancer R

16-
27362551-A-
C
(rs1805011)

5 (3) Glu400Ala 0.53 AFR/AA to
0.06 S ASN

allergy, asthma 144,
145

lung cancer response
to radiation

IL6R
IL6 receptor,
CD126, Gp80

receptor for pleiotropic
cytokine IL6

150 lung and other cancers 1

1-
154454494-
A-
C
(rs2228145)

3 (2) Asp358Ala 0.49 LAT to
0.14 AFR/AA

liver cancer

IL7R
interleukin 7
receptor,
CD127, IL7RA

variants involved in
autoimmunity and
infectious disease

155 reduced in breast cancer

5-35860966-
T-
C
(rs1494558)

5 (4) Ile66Thr 0.75 AFR/AA to
0.42 E ASN

5-35871088-
G-
A
(rs1494555)

3 (3) Val138Ile 0.87 AFR/AA to
0.48 E ASN

gastic cancer in EUR,
increase lung cancer

1

5-35876172-
A-
G
(rs3194051)

3 (1) Ile356Val 0.34 AFR/AA to
0.07 E ASN

ITGAL
integrin alpha L,
LFA-1, CD11A

lymphocyte function
associated antigen

renal cancer, gastric
cancer
prognostic marker

1

16-
30506720-G-
C
(rs2230433)

6 (3) Arg791Thr 0.66 S ASN to
0.14 E ASN

protection against renal
cell carcinoma

risk of IDC breast
carcinoma in
Han women

JAML
junctional adhesion
molecule-
like, AMICA

regulates inflammatory
cell migration

168,
169

lung cancer 1
e
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TABLE 4 Continued

ef Associated w/ Metabolic Disease Ref

regulation of fat metabolism, obesity 174, 175

177 NAFLD 86

178 early atherosclerosis 179

obesity in Pacific Islanders 180

182 elevated plasma HDL 183

185 downregulated in obesity, metabolic syndrome 186

14, 189 deficiency promotes diabetes and NAFLD in mice 190, 191

192

93, 195 cardiovascular and metabolic disease 196

(Continued)
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Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/ Immunity Ref

Associated
w/ Cancer R

11-
118198037-
T-
C
(rs2298831)

8 (5) Ile322Met 0.36 AFR/AA to
0.07 S ASN

steroid interaction with
Duchenne muscular dystrophy in
a multi-center European cohort
(n=301 cases)

173

LEPR

leptin receptor,
CD295, OBR

required for lymphopoiesis

leptin (ligand) produced by
lymphocytes, NK
cells, monocytes

176 susceptibility to HBV
induced
hepatocellular carcinoma

1-65570758-
A-
G
(rs1137100)

7 (6) Lys109Arg 0.81 E ASN to
0.10 MID E

colorectal cancer risk

1-65592830-
A-
G
(rs1137101)

7 (6) Gln223Arg 0.88 E ASN to
0.34 MID E

LILRA3

leukocyte Ig-like
receptor A3, CD85E

soluble receptor for MHC
I antigens

181 benign prostatic
risk hyperplasia

184 lymphomagenesis risk

19-
54803504-A-
C
(rs6509862)*

3 (3) Leu107Arg 0.79 AFR/AA to
0.12 EUR

statin intolerance 187

NOD2

nucleotide binding
oligomerization
domain containing 2,
CARD15, NLRC2,
BLAU, IBD1

immune response, inflammation 188 triple negative breast
cancer, therapeutic target

1

16-
50710713-C-
T
(rs2066842)

7 (4) Pro241Ser 0.28 MID E to
0.01 E ASN

assn with follicular
lymphoma survival

TMEM173
STING1, stimulator
of interferon
genes, MPYS

activates IFN innate immune
response genes

193,
194

multiple cancers 1
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Ref
Associated
w/ Cancer Ref Associated w/ Metabolic Disease Ref
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197–
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198

ion 197,
198

ation, 200,
201

multiple cancers 202, 203 obesity, blood pressure 204, 205

iveness 206 blood lipid profile, BMI in Russian population 207

st one variant in the human genome that occurs in at least 20% (Minor Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants
P cluster ID), and amino acid location numbers and identities of the original and coded replacement. Populations are defined by Karczewski 2020
le Eastern (MID E), and South Asian (S ASN). The number of affected transcripts listed include total transcripts (first number) and transcripts with
es.

Y
e
ye

o
d
u
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
3
.12

8
6
9
79

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

12
Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/ Immunity

5-
139477397-
C-
T
(rs7380824)

17 (4) Arg293Gln 0.41 E ASN to
0.14 EUR

LOF, decreased response t
bacterial ligands, poxvirus

5-
139478340-
C-
G
(rs78233829)

18 (4) Gly230Ala 0.41 E ASN to
0.14 EUR

altered c-di-GMP
lid conformation

5-
139481493-
C-
T
(rs11554776)

16 (5) Arg71His 0.41 E ASN to
0.03 AFR/AA

large effect on loss of func

TRPM8
transient receptor
potential
cation channel

immune response, inflamm
temperature regulation

2-
233955144-
G-
A
(rs7593557)

4 (2) Ser419Asn 0.55 AFR/AA to
0.05 EUR

cold-induced hyperrespon
in bronchial asthma

Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at le
are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number (reference S
(15): African/African American (AFR/AA), East Asian (E ASN), non-Finnish European (EUR), Latino/Latina (LAT), Mid
missense mutations (in parentheses) that contain the gene variant, but do not include transcripts of any overlapping ge
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3.2 Unconventional innate immune genes
with previously characterized population-
enriched variants

Table 5 includes 18 genes representing several classes of

proteins primarily associated with non-immune functions that

occur as population-enriched variants shown to impact biological

function. These genes include transport membrane proteins,

consisting of the multidrug resistance pump (ABCB1), the

Niemann-Pick cholesterol transporter 1 (NPC1, SLC65A1), and

the Na+-dependent multivitamin transporter (SLC5A6). Among

the class of regulatory metabolic enzymes are alcohol

dehydrogenase (ADH1C), mitochondrial dihydroorotate

dehydrogenase (DHODH ) , hydroxys te ro id (17-be ta)

dehydrogenase 4 (HSD17B4) involved in peroxisomal fatty acid

beta-oxidation, and glycogen phosphorylase B (PYGB) involved in

regulating glycogen mobilization. Among the genes that participate

in signal transduction are the membrane glycoprotein signaling co-

receptor neuregulin (NRG1), phosphodiesterase 10A (PDE10A,

which regulates cAMP concentrations), along with the small

bioactive neuropeptide neuromedin B (NMB). Transcription

factors and/or nucleic acid binding protein genes coded as

population-enriched variants include hypoxia-inducible factor 2A

(EPAS1, HIF2A), Iroquois homeobox 2 (IRX2), mismatch repair

MutL homolog 3 (MLH3), the novel intracellular and extracellular

ribonuclease T2 (RNASET2) and the SURP and G-Patch domain

containing 1 (SUGP1) splicing factor. Also included are the lipid

transport protein apolipoprotein B (APOB), the triacylglycerol

lipase patatin-like phospholipase domain containing 3 (PNPLA3),

and the adhesion cadherin family member desmoglein 2 (DSG2).

3.2.1 Multidrug resistance gene
The ATP binding cassette subfamily B member 1 (ABCB1) gene

is commonly known as the first of two multidrug resistance (MDR1)

genes in humans and is one of 48 ABC family members (217).

ABCB1 functions at the plasma membrane as a 170 kDa monomer

with 12 transmembrane domains (TMs), is glycosylated on the first

extracellular loop (between TM1 and TM2), and has two

intracellular ATP binding sites (one located between TMs 6 and

7, and the other in the carboxy terminus downstream of TM12).

ABCB1 is expressed in a wide range of tissues (such as intestine,

colon, placenta, liver, and blood-brain barrier) to protect against the

intracellular build-up of xenobiotic molecules in vulnerable cells

and organs by expelling toxins, including chemotherapeutics, from

the cell interior. Thus, ABCB1 has become a widely-known source

of and marker for chemoresistance (c.f. 219). ABCB1 also functions

as a broad specificity lipid translocase (326). In a Chinese cohort, a

variant in the ABCB1 promoter showed pleiotropic effects related to

T2D and lipid metabolism (221). Notably, the ABCB1 Ser893Ala

variant (7-87531302-A-C, rs2032582) has been correlated with

obesity in a Japanese population (220) and with increased

susceptibility to lung cancer in a Spanish cohort (223). This

ABCB1 variant occurs in 91% of Africans/African Americans, but

in only 35-62% of other populations (gnomAD) and was shown to
Frontiers in Endocrinology 13
impact drug (etanercept) efficacy in the treatment of Chinese Han

patients with ankylosing spondylitis (222).

3.2.2 Mismatch repair protein MutL homolog 3
MLH3 is a homolog of the mismatch repair protein MutL. DNA

mismatch repair (MMR) proteins play a vital role in maintaining

genome integrity and in antibody maturation during class switch

DNA recombination and somatic hypermutation (276). In cases of

microsatellite instability, tumors often display somatic mutations in

MLH3, while hereditary nonpolyposis colorectal cancer type 7

(HNPCC7) has been associated with germline mutations in the

same gene (276, 327). Further, reduced MLH3 expression was

observed in individuals diagnosed with grade II and III breast

cancer, suggesting MLH3 may serve as a reliable susceptibility

marker (278, 328). There was no correlation between the MLH3

Pro844Leu variant (14-75047125-G-A, rs175080, predominantly

found in the Middle East) and susceptibility to colorectal cancer

in a predominantly white cohort (279). However, in Chinese

patients this variant was associated with both cervical cancer

(280) and hepatocellular carcinoma (281).

3.2.3 Apolipoprotein B
Lipoproteins enclose otherwise insoluble lipid particles (made

up of a central core of cholesterol esters and triglycerides and an

outer layer of phospholipids, free cholesterol, and apolipoproteins)

for transport through the blood to various tissues (329).

Apolipoprotein B (APOB) serves as the primary carrier for

several classes of serum lipid particles, including chylomicrons,

low-density lipoprotein (LDL), very low-density lipoprotein

(VLDL), intermediate-density lipoprotein, and lipoprotein. In

LDL particles, APOB interacts with the apoB/E (LDL) receptor,

facilitating the removal of LDL cholesterol from the circulation via

cellular uptake followed by intracellular LDL breakdown. In a small

Japanese study correlating variants of genes related to lipid

regulation (including apolipoproteins), the population-enriched

missense APOB variant 2-21002409-C-T (rs1042034) correlated

with HCV infection (235) variant has an allele frequency of 0.85

in African American populations but only 0.26 in East Asian

populations (gnomAD). Another population-enriched missense

APOB variant, 2-21008652-G-A (rs676210) (present in 73% of

East Asians vs. 15% of Africans/African Americans (gnomAD))

correlated with the occurrence of initial non-cardioembolic

ischemic stroke in a small European cohort (239). A third

population-enriched missense APOB variant, 2-21028042-G-A

(rs679899) (present in 85% of East Asians vs. 17% of Africans/

African Americans (gnomAD)) and was protective against acute

coronary syndrome in a Mexican population (238). This was

associated with both hypertension and chronic kidney disease in a

cohort of 3696 Japanese individuals (240).

Functional effects of additional APOB missense variants have

also been reported. The Arg3638Gln variant (2-21005955-C-T,

rs1801701), which is present in no more than 10% of any

population, was associated with survival outcomes in non-small

cell lung cancer (NSCLC) patients (236). Additionally, two
frontiersin.org
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TABLE 5 Candidate Unconventional Innate Immune Genes at the Intersection of Cancer and Cardio-Metabolic Disease.

Associated w/ Metabolic Disease Ref

, 219 Japanese obesity, diabetes and serum lipids
in Chinese

220, 221

223

, 226 endogenous substrate bile acids involved in lipid,
glucose and energy metabolism and impact
metabolic syndrome

227, 228

229

, 232

233

234

236 variants in Asian population associated with
metabolic syndrome

237

protective against acute coronary syndrome in
Mexican population

238

stroke 239

chronic kidney disease risk among Japanese
with hyptertension

240

, 245 glucose metabolism, insulin resistance 246, 247
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Gene (SNP)
Affected
Transcripts Name/Function

Population
MAF Range Associated w/ Immunity Ref

Associated
w/ Cancer Ref

ABCB1
MDR1, P-glycoprotein 1, ATP
binding cassette B1

multidrug resistance,
xenobiotic protection

217 gallbladder
carcinoma,
drug resistance

218

7-87531302-
A-
C (rs2032582)

5 (3) Ser893Ala 0.91 AFR/
AA to 0.35
S ASN

drug efficacy 222 increased lung
cancer risk

ADH1C

alcohol dehydrogenase 1C (class
I), gamma

downregulated during
inflammation in
ulcerative colitis,

224 liver cancer 225

increased expression
reduces IL-6 and IL-
8 secretion

224 colorectal cancer

substrates (estrogen, bile
acids) impact
innate immunity

96, 230 lung cancer 231

4-99339632-
T-C (rs698)

1 (1) Ile350Val 0.52 EUR to
0.08 E ASN

increased cancer risk
in Africans
and Asians

4-99342808-
C-
T (rs1693482)

Arg272Gln 0.52 EUR to
0.08 E ASN

Japanese upper
aerodigestive
tract cancer

APOB
apolipoprotein B HCV infection 235 variants associated

with NSCLC survival

2-21002409-
C-
T (rs1042034)

1 (1) Ser4338Asn 0.85 AFR/
AA to 0.26
E ASN

HCV infection 235

2-21008652-
G-
A (rs676210)

1 (1) Pro2739Leu 0.73 E ASN
to 0.15
AFR/AA

2-21028042-
G-
A (rs679899)

3 (2) Ala618Val 0.85 E ASN
to 0.17
AFR/AA

DHODH

dihydroorotate dehydrogenase defense against bacteria,
viruses and protozoa

241–243 multiple cancers,
pro-
inflammatory
ferroptosis

244

16-72008783-
A-
C (rs3213422)

4 (4) Lys7Gln 0.75 E ASN
to 0.34
MID E

rheumatoid arthritis
drug response

248–250
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Associated w/ Metabolic Disease Ref

252 pancreatic islet function, insulin resistance 253, 254

cardiomyopathy in Yi population 255

, 258 dyslipidemia and NAFLD 259

262 peroxisomal fatty acid oxidation 263

264 lipid and bile acid metabolism 265

267

268

271,
ewed
272

VEGF altered in ischemic stroke and atherosclerosis reviewed
in 273

274

present in 5/10 Indian congenital heart defects 275

277 mutations only found in breast cancer patients with
metabolic disease

278

(Continued)
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15
Gene (SNP)
Affected
Transcripts Name/Function

Population
MAF Range Associated w/ Immunity Ref

Associated
w/ Cancer Ref

DSG2
desmoglein 2 receptor for selected

adenovirus serotypes
251 multiple cancers

18-31542836-
G-
A (rs2278792)

1 (1) Arg773Lys 0.48 E ASN
to 0.08
AFR/AA

EPAS1
endothelial PAS domain protein
1, HIF2A, hypoxia-inducible
factor 2A

IL31 induction in CD4+
T cells

256 non-small cell lung
cancer,
colorectal, others

257

2-46382433-
A-
C
(rs59901247)

2 (1) Thr766Pro 0.41 AFR/
AA to 0.01
S ASN

N-acetylaspartate levels in
elite athletes

260

HSD17B4

hydroxysteroid (17-beta)
dehydrogenase 4, DBP, MFE-2,
MPF-2, SDR8C1

peroxisomal
multifunctional
protein (detox)

261 overexpressed in
prostate cancer

downregulated in
non-small cell
lung cancer

5-119475838-
G-
A (rs25640)

18 (7) Arg131His, Arg106Pro or His LAT 0.56 to
AFR/
AA 0.17

homozygous D-bifunctional
peroxisomal protein disease

266

5-119525243-
T-
C
(rs11539471)

20 (7) Trp536Arg AFR/AA 0.3
to 0.00
E ASN

protective against
endometrial cancer

5-119526018-
A-
G (rs11205)

21 (7) Ile584Val LAT 0.53 to
0.29 S ASN

testicular germ cell
tumor risk

IRX2

Iroquois Homeobox 2 mediates expression of
immune regulators MMP9
and VEGF

269, 270 sarcomas,
breast, leukemia rev

i

nasopharyngeal
cancer marker

5-2748943-C-
A
(rs76906087)

2 (1) Glu255Asp 0.28 S ASN
to 0.03
AFR/AA

MLH3
mutL homolog protein 3,
mismatch repair, HNPCC7

Ig class switch 276 colorectal cancer
microsatellite
instability
i
n
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ef Associated w/ Metabolic Disease Ref

279

280

281

283 highly expressed in adipose, variants related
to obesity

284

obesity 284

286 obesity 287, 288

type 2 diabetes 290

obesity 291

cardiovascular disease (Iranian) 292

294 regulates insulin sensitivity 295

300 diabetes, diet-induced obesity, insulin sensitivity 301

(Continued)
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16
Gene (SNP)
Affected
Transcripts Name/Function

Population
MAF Range Associated w/ Immunity Ref

Associated
w/ Cancer

14-75047125-
G-
A (rs175080)

4 (3) Pro844Leu 0.52 MID E
to 0.15
E ASN

no assn w CRC in
white population

susceptibility to
cervical cancer
in Chinese

hepatocellular
carcinoma in Han

NMB
neuromedin B innate immune response to

influenza A virus
282 cervical and

other cancers

15-84657289-
G-
T (rs1051168)

2 (2) Pro73Ala 0.37 MID E
to 0.05
AFR/AA

NPC1

Niemann Pick cholesterol
transporter, SLC65A1

NKT cell development 285 breast cancer

endosomal entry receptor
for ebolavirus

289

18-23540480-
T-
C (rs1805082)

3 (2) Ile858Val 0.63 E ASN
to 0.30
MID E

18-23560468-
T-
C (rs1805081)

2 (1) His215Arg 0.41 EUR to
0.08
AFR/AA

NRG1
neuregulin macrophage response

to yeast
293 NRG1 gene fusions

drive multiple
solid tumors

8-32595840-
G-
A (rs3924999)

21 (17) Arg30Gln 0.77 E ASN
to 0.11
AFR/AA

susceptibility to
schizophrenia in
Chinese Han

296

Fin susceptilibity to reward
dependence in
major depression

297

PDE10A
phosphodiesterase 10A mediator of lung and

vascular inflammation
298, 299 ovarian cancer target

6-165654841-
C-
G (rs880121)

10 (2) Glu15Asp 0.63 MID E
to 0.04
E ASN

sporadic Parkinson's in
Chinese Han

302
R
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r Ref Associated w/ Metabolic Disease Ref
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307–309 carbohydrate metabolism 310
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FAP)
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ressor in

cers

151, 313 myocardial lipotoxicity in obesity 314

er 317 lymphocyte metabolic programming 318

serum levels of glucose (during fasting)
and pantothenate

319, 320

322 NAFLD 118

waist-hip ratio
fasting insulin and glucose

324
325

curs in at least 20% (Minor Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants
bers and identities of the original and coded replacement. Populations are defined by Karczewski 2020

N). The number of affected transcripts listed include total transcripts (first number) and transcripts with
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17
Gene (SNP)
Affected
Transcripts Name/Function

Population
MAF Range Associated w/ Immunity Ref

Associate
w/ Cance

PNPLA3
Patatin Like Phospholipase
Domain Containing 3, adipnutrin

platelet and
monocyte levels

303 hepatic ca
(European
Han Chin

22-43928847-
C-
G (rs738409)

4 (2) Ile148Met (2 of 4 transcripts) 0.42 LAT to
0.14
AFR/AA

hepatic ca

PYGB
glycogen phosphorylase B TCR activation stimulates

PYGB-
dependent glycogenolysis

306 prostate, g
non-small
lung cance

20-25278370-
G-
T (rs2228976)

1 (1) Ala303Ser (1 transcript) 0.34 E ASN
to 0.08
AFR/AA

present in
desmoid tu
in familial
adenomato
polyposis

RNASET2
ribonuclease T2, RNASE6PL degrades microbial RNAs

for recognition by TRL8
312, 313 tumor sup

lung and
ovarian ca

6-166938616-
C-
A (rs3777722)

14 (1) Arg226Met 0.4 E ASN
to 0.04
AFR/AA

putative association with
preterm birth

315

SLC5A6

Na+ dependent
multivitamin transporter

anti-inflammatory in
murine gut

316 gastric can

B lymphocyte maturation 318

2-27201768-
G-A (rs1395)

7 (2) Ser481Phe 0.86 E ASN
to 0.24
AFR/AA

SUGP1
SURP And G-Patch Domain
Containing 1, Splicing Factor 4

altered splicing in
innate immunity

321 pan-cance

19-19302283-
C-
T
(rs17751061)

8 (1) Arg290His (1 of 8 transcripts) 0.26 MID E
to 0.00
E ASN

serum IgE levels 323

Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at least one variant in the human genome that o
are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number (reference SNP cluster ID), and amino acid location nu
(15): African/African American (AFR/AA), East Asian (E ASN), non-Finnish European (EUR), Latino/Latina (LAT), Middle Eastern (MID E), and South Asian (S A
missense mutations (in parentheses) that contain the gene variant, but do not include transcripts of any overlapping genes.
n
s
e

n
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nonsynonymous variants unique to the Asian population, namely

2-21006289-G-A (rs144467873, MAF = 0.001253 and 0.0003594 in

East and South Asians, respectively, but < 0.00008 for all other

populations (gnomAD v2.1.1) and 2-21029662-G-A (rs13306194,

MAF = 0.1343 in East Asians, MAF < 0.007 in all other populations)

were evaluated for their association with lipid profiles, metabolic

syndrome and risk of diabetes in a large Taiwan Biobank study

(237). Both variants were independently associated with total, LDL,

and non-HDL cholesterol levels, whereas rs144467873

(Arg3527Trp) was associated with elevated lipid levels and

metabolic syndrome, while rs13306194 (Arg532Trp) was linked

with serum triglyceride levels.

3.2.4 Dihydroorotate dehydrogenase
Dihydroorotate dehydrogenase (DHODH), which catalyzes the

initial and rate-limiting step of the de novo pyrimidine pathway, is

positioned on the inner mitochondrial membrane (330). DHODH

has been a therapeutic target for the treatment of rheumatoid

arthritis, psoriasis, autoimmune disorders, and Plasmodium,

bacterial and fungal infections (241). For over five decades,

elevated DHODH expression has been known to promote tumor

progression. De novo pyrimidine synthesis becomes essential during

increased demands for nucleic acid precursors in rapidly dividing

cells making cancer cells highly dependent on DHODH and

suggesting that this enzyme is a strategic target for cancer therapy

(245). Recently, DHODH was also shown to protect against

mitochondrial ferroptosis by preventing the lipid peroxidation

that triggers this phenomenon (244). Notably, cancer cells exhibit

low levels of glutathione peroxidase 4 (GPX4) and inhibition of

DHODH hinders respiration, boosts glycolysis and enhances

GLUT4 translocation to the plasma membrane (246). This is

further supported by the activation of the tumor suppressor p53,

which elevates the levels of GDF15/MIC1 (another candidate listed

in Table 4), a cytokine known for its appetite-reducing effects and

ability to extend lifespan. DHODH inhibition that depletes

pyrimidine ribonucleotides is also thought to be responsible for

reduced RNA virus replication and decelerated growth in rapidly

dividing cells, such as activated T cells and, as just mentioned,

cancer cells (243). Interestingly, uridine, a pyrimidine nucleoside

present in RNA, has been shown to modulate insulin activity and

glycogen synthesis through its interaction with uridine diphosphate

(UDP)-glucose (247). The base sequence of the DHODH gene is

remarkably conserved, with one exception being a prevalent

Lys7Gln missense polymorphism (16-72008783-A-C, rs3213422)

found in its first exon (248). This variant is found in 75% of

individuals in East Asia vs. 34% of individuals in the Middle East

(gnomAD) and has been linked with drug (leflunomide) response

to rheumatoid arthritis (248–250).
3.3 Population-enriched variants with
unknown/uncharacterized function

No known effect on gross phenotype or evidence of association

with disease has yet been reported among the population-enriched
Frontiers in Endocrinology 18
variants identified with the 20 genes listed in Table 6. However, a

newly released resource, GWAS Central (457), was accessed to

provide phenotype associations with a subset of variants in Table 6.

Further, disease disparities related to the parent gene and/or other

variants of the gene were identified and/or the predicted impact of a

population-enriched variant on the coded change in protein

function were evaluated and listed in Table 6.

3.3.1 Understudied genes SIPA1L2 and TVP23C
Among the 20 genes in Table 6, six of these remain

understudied, including the exosomal CCDC105/TEKTL1, the

putative protein disulfide isomerase CRELD2, the FAM131C

protein with unknown function, the putative immune checkpoint

ITPRIPL1 membrane protein, the presumptive neural GTPase

activator SIPA1L2, and the putative vesicular protein transporter

TVP23C. Notably, evidence of an impact on function does exist for

one of two population-enriched variants of SIPA1L2 and one of

three population-enriched variants of TVP23C. In the case of

SIPA1L2, both characterized and uncharacterized variants occur

at the same high frequency (MAF = 0.48) in East Asians, but

Gly1639Ser increases the number of potential phosphorylation

sites, whereas Thr1322Ala reduces them, which may result in

different functional outcomes (e.g. changes in activation status

and/or protein-protein interactions). In both SIPA1L2 variants,

eight of nine possible transcripts code for missense mutations,

whereas with TVP23C, only in the canonical transcript does the

variant result in a missense mutation among five (Ser256Arg) or

twelve (Trp202Arg and Ser199Thr) possible isoforms, some of

which are read-through fusions with CDRT4 (CMT1A

Duplicated Region Transcript 4). It is likely that the TVP23C

Trp202Arg and Ser199Thr variants commonly co-occur, given

their proximity to one another on the gene and their matching

frequency distribution, as both have MAFs that range from 0.54 in

East Asians to 0.28 in South Asians. Thus, one might speculate that

the unknown functional impact of Ser199Thr matches that of

Trp202Arg, which was found in a choriocarcinoma patient (458).

Notably, choriocarcinoma shows a geographical disparity as it

occurs at a ten-fold greater frequency in Southeast Asia than in

the West (reviewed in 439). The third TVP23C variant Ser256Arg is

most common among Africans/African Americans (MAF = 0.24)

and involves the loss of a potential phosphorylation site about 50

amino acid residues downstream of the other two TVP23C variants.

3.3.2 Additional representative genes of interest
The remaining 14 genes in Table 6 are better characterized;

notably, many have pleiotropic functions beyond the functions

initially attributed to them. ATPase Phospholipid Transporting

10D (ATP10D ) codes for the cata lyt ic subunit of a

glycoslyceramide flippase complex at the endoplasmic reticulum

(ER), nucleoplasm, and plasma membrane. DnaJ Heat Shock

Protein Family (Hsp40) Member B11 (DNAJB11) codes for an

ER-resident and secreted co-chaperone of BiP/GRP78/HSPA5.

Desmocollin 1 (DSC1) codes for an adhesive glycoprotein

cadherin family member. The Immunoglobulin Like Domain

Containing Receptor 1 protein (ILDR1) maintains structural
frontiersin.org

https://doi.org/10.3389/fendo.2023.1286979
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yeyeodu et al. 10.3389/fendo.2023.1286979
TABLE 6 Geographic Ancestral Variants with Unknown/Uncharacterized Function.

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

ATP10D

ATPase, class V,
type 10D

sphingolipids
assoc w/ innate
immune response

331 lung cancer 332 controls circulating
sphingolipids
responsible for
atherosclerosis, T2D

333

transports
glucosylceramide,
a sphingolipid

downregulated by
TGFb
in eosinophils

334 colorectal cancer 335

4-47514685-
C-
T
(rs33995001)

3 (2) Thr43Ile 0.44 LAT to
0.16 E ASN

4-47582029-
G-
A
(rs1058793)

4 (1) Val1240Ile 0.58 E ASN to
0.16 EUR

found in
Bulgarian
centenarians

336

4-47591266-
G-
C (rs4145944)

3 (1) Ser1389Thr 0.62 AFR/AA to
0.12 E ASN

serum cholesterol 323

Disease Disparity: Sphingolipid levels are elevated in lupus [337] and hepatocellular carcinoma [338], two diseases with known
disparities based on geographic ancestry [339 and 340, respectively]

CCDC105

coiled-coil domain containing 105,
tektin like 1, TEKTL1

HBV infection 341 colon,
lung cancer

342,
343

interacts with MESD
[344], part of WNT
pathway in cancer
and
cardiovascular
disease

345,
346

19-15020518-
G-
A
(rs35352238)

1 (1) Val245Met 0.54 E ASN to
0.11 AFR/AA

19-15023114-
C-
A
(rs8112667)

1 (1) Pro499Thr 0.53 E ASN to
0.18 MID E

serum fibrinogen 323

Disease Disparity: interacts with MAGEA11 [347], a biomarker for stomach cancer [348], which shows racial and geographic
disparities [reviewed in 349]

CRELD2
cysteine rich with
EGF like
domains 2

marker in
joint infection

350 multiple cancers 350 cardiometabolic
disease

350

22-49921715-
C-
A
(rs8139422)

10 (5) Asp182Glu 0.51 AFR/AA to
0.03 EUR

age-related
macular
degeneration

351

Disease Disparity: breast [352] and prostate [353] cancers, reviewed in [60]

CSF2RB

IL3RB,
CD131, IL5RB

colony
stimulating factor
2 receptor beta
surfactant
homeostasis

354 variant assoc w
leukemia
variant assoc w
breast cancer

355
356

peptide agonists of
EPOR/CD131
heteroreceptor are
anti-atherosclerotic

357

22-36930401-
G-
C (rs16845)

4 (4) Glu249Gln 0.21 AFR/AA to
0.00 E ASN

Disease Disparity: breast cancer [60, 352]

(Continued)
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TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

DNAJB11
ER-associated
DnaJ Hsp40
member B11

immune
infiltration
in thyroid

358 liver, breast,
pancreatic
cancer

358 diabetes 119

3-186583914-
A-G (rs8147)

3 (2) Ile264Val 0.47 AFR/AA to
0.15 E ASN

rheumatoid
arthritis

359

Disease Disparity: context-dependent breast cancer [60, 352]

DSC1
desmocollin 1 reduced in

pediatric
pneumomia

360 head and neck,
ovarian, anal

361–
363

prevents
HDL biogenesis

360

18-31140184-
C-
T
(rs17800159)

2 (2) ValIle460Ile 0.48 E ASN to
0.03 AFR/AA

Disease Disparity: ovarian cancer [364]

FAM131C

family with
sequence
similarity 131
member C

autoimmune
target in ApoE
KO mice

365 associated with
cancer survival

366 upregulated in high
fat diet

367

upregulated in
M1 macrophage-
rich adipose

368

1-16058636-
C-
A
(rs1832151)

2 (1) Ser215Ile 0.33 AFR/AA to
0.0013 E ASN

1-16060000-
C-
T
(rs71510977)

2 (1) Arg107Gln 0.78 E ASN to
0.10 AFR/AA

1-16062531-
T-
C (rs2863458)

2 (1) Lys48Glu 0.38 AFR/AA to
0.01 E ASN

waist-hip ratio 324

Diseaese Disparity: interacts with VSNL1 [369], which is associated with colon cancer [370, 371] and gastric cancer [372], both
cancers that show ethnic disparities [373]

ILDR1
Ig-like domain
containing
receptor 1

flu
virus replication

374 gastric
cancer marker

375 diet-induced obesity
and hyperglycemia

376

3-121993958-
G-
C (rs3915061)

5 (3) Pro264Arg 0.49 S ASN to
0.22 E ASN

Disease Disparity: gastric cancer [reviewed in 349, 373]

ITPRIPL1

inositol triphosphate interacting
protein like 1, KIAA1754L

immune
checkpoint
inhibition of T-
cell activation

377 gene
methylation
assoc w
breast cancer

378 diabetic nephropathy 379

2-96328019-
C-
T (rs2279105)

4 (4) Thr463Met 0.69 S ASN to
0.21 E ASN

HbA1c 323

Disease Disparity: breast cancer [60, 352]

PDIA6
protein disulfide
isomerase A6,
ERP5

lymphoid and
myeloid
development

380
381

NSCLC, breast,
bladder, gastic,
oral,

382–
387

diabetes 119

(Continued)
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TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

TXNDC7
thioredoxin
domain
containing 7

platelet
aggregation
and activation

pancreatic
cancers

2-10790777-
T-C (rs4807)

6 (6) Lys214Arg 0.39 E ASN to
0.125 AFR/AA

serum IgE,
HbA1c,
rheumatoid
arthritis

323,
359

age-related
macular degeneration

351

Disease Disparity: breast [60, 352] and gastric cancer [reviewed in 349, 373]

RB1
retinoblastoma 1
transcriptional
co-repressor

associated with
Treg infiltration
in bladder cancer

388 tumor
suppressor in
multiple cancers

389 negative association
with BMI and
insulin resistance

390

13-48599402-
T-
C (rs1887154)

1 (1,
non-

cannonical)

Leu99Ser
(1 transcript)

0.79 AFR/AA to
0.28 MID E

Predicted Impact: potential phosphorylation site introduced (+Ser): RB1 phosphorylation inactivates this tumor suppessor and
promotes tumor progression [389], impacts several regulatory pathways and protein-protein interactions [391]

RPAIN

RPA interacting
protein, nuclear
transporter, HRIP

variants assoc w/
influenza A virus
(RNA)
pathogenesis

392
393

alternate splice
variants in
colon cancer,
glioblastoma

394
395

gene expression is
associated with BMI

396

17-5422825-
C-
G (rs12761)

16 (11) Asn103Lys 0.82 E ASN to
0.22 AFR/AA

BMI 397

Disease Disparity: colon cancer [398]

SEMA6D

sematophorin D6 regulates late
phase CD4+ T
cells response,
anti-inflammatory
macrophage
polarization

399
400,
401

lung cancer,
chemoresponse
in breast cancer

151,
402

cardiomyocyte
development,
immune
cell metabolism

401
403

15-47764022-
A-
G
(rs3743279)

9 (9) Asn307Ser 0.24 AFR/AA to
0.00 EUR

skin pigmentation 404

15-47765874-
G-
A (rs532598)

9 (8) Ser478Asn 0.59 E ASN to
0.34 MID E

partial
epilepsies, asthma

405,
406

Disease Disparity: SEMA6D expression is associated with survival in triple negative breast cancer [407], which occurs
disproportionately among women of African descent [352]

Predicted Impact: both variants may alter phosphorylation status (+/- Ser) with the potential to alter activity, stability and/or
protein-protein interactions

SIPA1L2

signal induced
prolif assoc 1 like
2, SPAR2,
SPAL2,
KIAA1389

assoc w/ H2O2
release from
healthy
Caucasian
lymphoblastoids

408 metastatic clear
cell kidney
carcinoma
(EUR)

409 identified by
bioinformatics in
type 2 diabetes

410

inactivates RAP1
(involved in
inflammatory
response)

410 varying
correlation with
23 cancers

411 gene expression assoc
with NAFLD

412

(Continued)
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TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

1-232403473-
C-
T (rs2275303)

9 (8) Gly1639Ser 0.48 E ASN to
0.00 AFR/AA

Alzheimer's in
Asian population

413

1-232439175-
T-
C (rs2275307)

9 (8) Thr1322Ala 0.48 E ASN to
0.22 EUR

Disease Disparity: gene shows highest correlation with cancers with known ethnic disparities [411], including bladder [414],
esophageal [415], hepatocellular carcinoma [416], and ovarian [364]

Predicted Impact: both variants may alter phosphorylation status (+Ser and -Thr) with the potential to alter activity, stability and/or
protein-protein interactions

TBC1D4

AS160 Akt
substrate of
160 kD

delivery to
chlamydial
inclusions

417 breast cancer,
multiple
myeloma

418,
419

nonsense variant
confers insulin
resistance and T2D
in
Greenlandic
population

420

13-75286865-
A-
G (rs557337)

4 (4) Val1275Ala 0.49 AFR/AA to
0.00 E ASN

fibrinogen 323

13-75481466-
G-
A
(rs77685055)

3 (3) Ala101Val 0.29 E ASN to
0.02 AFR/AA

RBC count mean
corp.
Hb, hematocrit

421–
423

Disease Disparity: gene associated with cancers that show ethnic disparities, including breast [60, 352] and multiple myeloma [424]

TESPA1

HSPC257, thymocyte expressed,
positive selection associated 1

development and
maturation of T
cells
TCR regulation

425 pan-
cancer
prognostic

426 mito-assoc ER mb
proteins are assoc w/
cardiovascular
disease

427

12-54950349-
C-
G
(rs2171497)

7 (2,
non-canonical)

Leu103Phe 0.64 E ASN to
0.05 AFR/AA

ulcerative colitis 428 BMI 397

12-54961249-
C-
T (rs997173)

8 (5) Leu496Lys 0.63 E ASN to
0.06 AFR/AA

Kuru and sCJD
(prion diseases)

429

Disease Disparity: although TESPA1 expresssion is upregulated in several cancers, the most dramatic increase in expression occurs
in acute myeloid leukemia (AML) [426], a cancer which shows ethnic disparities [430]

TVP23C

TGN vesicle
protein 23
homolog
C, FAM18B2

gene is an
integration site
for HBV in
liver cancer

431 plasma protein
assoc w/
colorectal cancer

432 bioinformatic feature
gene assoc w/
ischemic stroke

433

platelet granule
secretion, chronic
immune
thrombocytopenia

434 data mining
prognostic
marker for
liver cancer

435 readthrough
translation with
CDRT4
downregulated in
obese individuals

436

associated with
CD4 Tex
(exhausted
T) cells

437 fusion CDRT4
found in
pancreatic
cancer

438

17-15502927-
A-
C
(rs73289533)

5 (1) Ser256Arg 0.24 AFR/AA to
0.00 E ASN

(Continued)
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barriers in epithelia and auditory neurosensory hair cells (459),

mediates fatty acid and lipoprotein-stimulated cholecystokinin

secretion in the small intestine (460), regulates water homeostasis

in kidney (461), and interferes with phospholipid scramblase
Frontiers in Endocrinology 23
(PLSCR1) anti-viral activity (374). Protein Disulfide Isomerase

Family A Member 6 (PDIA6) inhibits intracellular aggregation of

misfolded proteins and extracellular aggregation of platelets (381).

Replication Protein A Interacting Protein (RPAIN) participates in
TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

17-15540420-
A-
G
(rs200768112)

12 (1) Trp202Arg 0.54 E ASN to
0.28 S ASN

choriocarcinoma 439

17-15540428-
C-
G
(rs2302252)

12 (1) Ser199Thr 0.54 E ASN to
0.28 S ASN

Disease Disparity: Choriocarcinoma incidence rate 10-fold higher in Southeast Asia than in the West [439]

ZNF23
KOX16,
ZNF359, ZNF612

correlation with
pathogenic
environment

49 downregulated
in cancer

440 mitochondrial
dysregulation
in melanoma

441

16-71453303-
T-
C (rs2070832)

9 (7) Ser28Gly 0.94 AFR/AA to
0.29 E ASN

partial epilepsies 405 BMI 323

Disease Disparity: reduced expression of this tumor repressor gene in ovarian and endometrial cancers [440]; oviarian cancers show
ethnic disparities [364]

Predicted Impact: variant occurs in a putative N-terminal strong transcriptional repressor KRAB domain [442], loss of Ser may alter
activity and/or binding interactions

Note: ZNF23 KRAB domain is truncated and does not appear to alter repressor activity [440], however not all ZNF23 interactors
(such as mitochondrial ATPAF2. keratin-associated KRTAP10-8, myelin-associated MOBP, growth factor signaling regulators
SPRED1 and SPRY1, and TNFR associated adaptor TRAF1), are transcription factors

ZNF267

Zinc Finger
Protein
267, HZF2

P.
gingivalis
infection

443 hepatic,
colorectal
cancer, B-
cell lymphoma

444–
446

liver disease
(cirhhosis), NAFLD

447,
448

16-31915298-
G-
A
(rs3850114)

2 (1) Cys350Tyr 1.0 E ASN to
0.61 AFR/AA

serum IgE 323

Disease Disparity: hepatic and colorectal cancers show ethnic disparities [340, 449]

ZNF628

Zinc Finger
Protein 628, ZEC

target gene
protamine
inhibits
microbial
infection

450–
452

protamine 1
marker for
leukemia and
colorectal cancer

453,
454

protamine alters BP,
mitochondrial
function

455

19-55481893-
A-
G
(rs34864744)

2 (2) Thr234Ala 0.93 AFR/AA to
0.45 E ASN

Disease Disparity: ethnic disparities observed in colorectal cancers [449]

Predicted Impact: variant alters potential phosphorylation status (-Thr) in a disordered region of this transcription activator [344]
between two zinc finger clusters of the canonical protein that bind DNA independently [456]
frontier
Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at least one variant in the human genome that occurs in at least 20% (Minor
Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number
(reference SNP cluster ID), and amino acid location numbers and identities of the original and coded replacement. Populations are defined by Karczewski 2020 (15): African/African American
(AFR/AA), East Asian (E ASN), non-Finnish European (EUR), Latino/Latina (LAT), Middle Eastern (MID E), and South Asian (S ASN). The number of affected transcripts listed include total
transcripts (first number) and transcripts with missense mutations (in parentheses) that contain the gene variant, but do not include transcripts of any overlapping genes.
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DNA metabolism, nuclear import, and response to UV light. The

Semaphorin 6D (SEMA6D) gene codes for an integral membrane

protein member of the semaphorin family whose members

collectively sculpt axonal paths, branches, conduction, and target

selection; the distribution of nine SEMA6D transcript isoforms

varies according to developmental stage and tissue type. Tre-2/

BUB2/CDC16 (TBC) Domain Family Member 4 (TBC1D4, also

referred to as Akt Substrate of 160 kD or AS160) is a Rab-GTPase

activator with multiple transcript variants; isoform 2 promotes

SLC2A4/GLUT4 presentation at the plasma membrane to

increase cellular glucose uptake (344). Thymocyte Expressed,

Positive Selection Associated 1 (TESPA1) interacts with COP9

and TCR signalsomes and participates in T cell differentiation

and T cell receptor signaling. Three zinc finger (ZNF) proteins

ZNF23, ZNF267, and ZNF628 localize to the nucleus and regulate

transcription. Parent genes and the corresponding population-

enriched variants of the common cytokine receptor beta chain

CSF2RB and the transcription co-repressor RB1 are both

discussed below.

3.3.2.1 CSF2RB

Colony stimulating factor 2 receptor beta (CSF2RB, CD131)

forms dimers with the alpha receptor subunits for cytokines IL-3,

IL-5, and GM-CSF (CSF2). As noted above, a population-enriched

variant of the IL3RA subunit also exists, although the population

distributions of these two variants are very different: the Val323Leu

IL3RA variant is found least frequently among Africans/African

Americans (MAF = 0.06, Table 4), whereas the Glu249Gln CSF2RB

variant is more predominant in Africans/African Americans than

any other population (MAF = 0.21).

CSF2RB is associated with pulmonary alveolar proteinosis (PAP),

which involves the accumulation of surfactant and macrophage

dysfunction in alveoli (reviewed in 462). Although studies so far

have not suggested geographic or population differences in PAP

occurrence, the most common PAP co-morbidities include

cardiovascular disease, type 2 diabetes, and hypertension, all of

which are unevenly distributed among populations. Further, a rare

Arg461Cys CSF2RB variant (MAF< 0.001, not listed in Table 6) was

found in individual patients with leukemia (355) and breast cancer

(356). Notably, both of these cancers show racial and ethnic

disparities [430 and 352 respectively].

3.3.2.2 RB1

Retinoblastoma (RB1) was one of the first tumor suppressors to

be identified. Alterations in the expression and sequence of the RB1

gene have been implicated in several cancers besides retinoblastoma

where they were originally characterized (reviewed in 391). More

than 40 years of extensive research indicates that regulation of and

by RB1 is highly complex, linked with multiple signaling pathways,

and varies with context. Not surprisingly, the number of proteins

shown to interact with RB1 is more than 30 as curated by UniProt

(344) and more than 150 as curated in BioGRID (463) and IntAct

(464). The functional diversity of the binding partners of RB1 is
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consistent with its pleiotropic effects, which extend beyond

transcription and cell cycle control to include progenitor

maturation, terminal differentiation, and immune evasion (391).

Five protein coding transcripts of RB1 have been identified.

These include 1) the MANE select (canonical) protein composed of

27 exons encoding a total of 928 aa residues; 2) a closely related

transcript that is 5 as shorter and differs from the canonical protein

by 18 of its last 19 C-terminal residues; and 3) three much shorter

transcripts (coding for 53, 103 or 110 aa peptides) which include all

or portions of only 2 or 3 exons of the canonical protein. Of these

shorter transcripts, the two shortest are derived from the N-

terminal portion of RB1. In contrast, the 110 aa non-canonical

transcript codes for an unidentified N-terminal residue equivalent

to the Ser501 residue of the canonical protein and then aligns with

all canonical residues up through Ser565; the remaining non-

canonical aa residues 66-110 are located downstream of the

canonical C-terminal residue 928. It is in this extra-exonic

portion of the non-canonical 110 aa RB1 isoform that the

Leu99Ser population-enriched variant, which introduces a

potential phosphorylation site, is found. In spite of the high

number of aa residues (n ≥ 105) in the canonical RB1 protein

that are known to be post-translationally modified, within the aa

501-565 residue range that overlaps with the first 65 residues of the

110 aa isoforms, only two potential ubiquitination sites have been

identified in the vicinity of aa 550) (391).
4 Conclusion

Population studies have traditionally focused on querying

individual diseases or combinations of diseases, including cancer

and cardio-metabolic disease, which frequently show disparate

prevalence and/or severity in non-European populations. In this

perspective, we have introduced a complementary approach that

explores the intersection of innate immunity, cancer, and cardio-

metabolic diseases. The effective elimination of disease disparities

will involve not only addressing the profound social and behavioral

determinants of health, but also identifying and treating the

biological contributors of disease that include novel genes as well

as previously characterized genes that participate in novel pathways.

We suggest that careful evaluation of population differences in

conventional and unconventional innate immune genes and their

related pathways will provide key insights into the underlying

mechanisms that connect cancer and cardio-metabolic diseases.

At the same time, the genes we have identified in this study that are

associated with both cancer and cardio-metabolic diseases may play

critical roles in under-appreciated facets of innate immunity and

their contribution to disease disparities. Further, we predict that the

geographic ancestral distribution of innate immune gene variants

will match the geographical distribution of the environmental

stressors (including but not limited to infectious agents) that they

are designed to mitigate as described above for HbS and DARC

variants with malaria (Section 1.3).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1286979
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yeyeodu et al. 10.3389/fendo.2023.1286979
The genes we have identified serve as potential targets for

diagnostics and/or therapeutic interventions. Notably, the

development and clinical use of therapeutics targeting these

candidate genes is likely to require a nuanced approach since

variations in these genes across different global populations are

likely to alter the activity and/or expression of their coded proteins,

with the subsequent potential to impact therapeutic outcomes.

Assessing the prevalence of specific target variants in one or more

major populations and, more precisely, the presence of these

specific target variants in individuals is a consequential step

towards increasing the safety and effectiveness of emerging

therapies. This perspective highlights the importance of 1)

considering genetic diversity in identifying and developing

treatments and 2) continuing to incorporate ongoing GWAS

projects as they identify and characterize new or understudied

genes and their population-enriched variants associated with

complex and infectious diseases.
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190. Carlos D, Pérez MM, Leite JA, Rocha FA, Martins LM, Pereira CA, et al. NOD2
deficiency promotes intestinal CD4+ T lymphocyte imbalance, metainflammation, and
aggravates type 2 diabetes in murine model. Front Immunol (2020) 11:1265. doi:
10.3389/fimmu.2020.01265

191. Cavallari JF, Pokrajac NT, Zlitni S, Foley KP, Henriksbo BD, Schertzer JD.
NOD2 in hepatocytes engages a liver-gut axis to protect against steatosis, fibrosis, and
gut dysbiosis during fatty liver disease in mice. Am J Physiol-Endocrinol Metab (2020)
319(2):E305–14. doi: 10.1152/ajpendo.00181.2020

192. Cerhan JR, Wang S, Maurer MJ, Ansell SM, Geyer SM, Cozen W, et al.
Prognostic significance of host immune gene polymorphisms in follicular lymphoma
survival. Blood (2007) 109(12):5439–46. doi: 10.1182/blood-2006-11-058040

193. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol
(2015) 15(12):760–70. doi: 10.1038/nri3921

194. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate
immunity pathway. Immunity (2020) 53(1):43–53. doi: 10.1016/j.immuni.2020.05.013
Frontiers in Endocrinology 29
195. Corrales L, McWhirter SM, Dubensky TW Jr., Gajewski TF. The host STING
pathway at the interface of cancer and immunity. J Clin Invest (2016) 126(7):2404–11.
doi: 10.1172/JCI86892

196. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, et al. The cGAS-STING
signaling in cardiovascular and metabolic diseases: Future novel target option for
pharmacotherapy. Acta Pharm Sin B (2022) 12(1):50–75. doi: 10.1016/j.apsb.2021.05.011

197. Jin L, Xu L, Yang IV, Davidson EJ, Schwartz DA, Wurfel MM, et al.
Identification and characterization of a loss-of-function human MPYS variant. Genes
Immun (2011) 12(4):263–9. doi: 10.1038/gene.2010.75

198. Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. Single nucleotide
polymorphisms of human STING can affect innate immune response to cyclic
dinucleotides. PloS One (2013) 8(10):e77846. doi: 10.1371/journal.pone.0077846

199. Kennedy RB, Haralambieva IH, Ovsyannikova IG, Voigt EA, Larrabee BR,
Schaid DJ, et al. Polymorphisms in STING Affect Human Innate Immune Responses to
Poxviruses. Front Immunol (2020) 11:567348.

200. Straub RH. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy
redirection, and water retention: role in chronic inflammatory diseases with an
evolutionary perspective. J Mol Med (2014) 92:925–37. doi: 10.1007/s00109-014-1175-9

201. Kozyreva TV, Khramova GM. Effects of activation of skin ion channels
TRPM8, TRPV1, and TRPA1 on the immune response. Comparison with effects of
cold and heat exposure. J Thermal Biol (2020) 93:102729. doi: 10.1016/
j.jtherbio.2020.102729

202. Yee NS. Roles of TRPM8 ion channels in cancer: proliferation, survival, and
invasion. Cancers (2015) 7(4):2134–46. doi: 10.3390/cancers7040882

203. Liu Z, Wu H, Wei Z, Wang X, Shen P, Wang S, et al. TRPM8: a potential target
for cancer treatment. J Cancer Res Clin Oncol (2016) 142:1871–81. doi: 10.1007/s00432-
015-2112-1

204. Sanders OD, Rajagopal JA, Rajagopal L. Menthol to induce non-shivering
thermogenesis via TRPM8/PKA signaling for treatment of obesity. J Obes Metab
Syndrome (2021) 30(1):4–11. doi: 10.7570/jomes20038

205. Kozyreva TV, Kozaruk VP, Meyta ES. Effect of the peripheral TRPM8 ion
channel activation on the cardiovascular parameters. Int Arch Clin Pharmacol (2019)
5:1–7. doi: 10.23937/2572-3987.1510019

206. Naumov DE, Perelman JM, Kolosov VP, Potapova TA, Maksimov VN, Zhou X.
Transient receptor potential melastatin 8 gene polymorphism is associated with cold-
induced airway hyperresponsiveness in bronchial asthma. Respirology (2015) 20
(8):1192–7. doi: 10.1111/resp.12605

207. Potapova TA, Babenko VN, Kobzev VF, Romashchenko AG, Maksimov VN,
Voevoda MI. Associations of cold receptor TRPM8 gene single nucleotide
polymorphism with blood lipids and anthropometric parameters in Russian
population. Bull Exp Biol Med (2014) 157(6):757–61. doi: 10.1007/s10517-014-2660-4

208. Mangi MH, Newland AC. Interleukin-3: promises and perspectives. Hematol
(Amsterdam Netherlands) (1998) 3(1):55–66. doi: 10.1080/10245332.1998.11752123

209. Wu C-H, Lee T-H, Yang S-F, Tsao H-M, Chang Y-J, Chou C-H, et al. Interleukin-
3 polymorphism is associated with miscarriage of fresh in vitro fertilization cycles. Int J
Environ Res Public Health (2019) 16(6):995. doi: 10.3390/ijerph16060995

210. Stomski FC, Sun Q, Bagley CJ, Woodcock J, Goodall G, Andrews RK, et al.
Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor alpha- and beta-
chain heterodimerization, which is required for receptor activation but not high-affinity
binding. Mol Cell Biol (1996) 16(6):3035–46. doi: 10.1128/MCB.16.6.3035

211. Heeb LEM, Egholm C, Boyman O. Evolution and function of interleukin-4
receptor signaling in adaptive immunity and neutrophils. Genes Immun (2020) 21
(3):143–9. doi: 10.1038/s41435-020-0095-7

212. DamenM, Stankiewicz TE, Park SH, Helsley RN, Chan CC,Moreno-Fernandez
ME, et al. Non-hematopoietic IL-4Ralpha expression contributes to fructose-driven
obesity and metabolic sequelae. Int J Obes (Lond) (2021) 45(11):2377–87. doi: 10.1038/
s41366-021-00902-6

213. Zhu N, Gong Y, Chen XD, Zhang J, Long F, He J, et al. Association between the
polymorphisms of interleukin-4, the interleukin-4 receptor gene and asthma. ChinMed
J (Engl) (2013) 126(15):2943–51.

214. ElKassar N, Gress RE. An overview of IL-7 biology and its use in
immunotherapy. J Immunotoxicol (2010) 7(1):1–7. doi: 10.3109/15476910903453296

215. Carrette F, Surh CD. IL-7 signaling and CD127 receptor regulation in the
control of T cell homeostasis. Semin Immunol (2012) 24(3):209–17. doi: 10.1016/
j.smim.2012.04.010

216. Nguyen V, Mendelsohn A, Larrick JW. Interleukin-7 and immunosenescence. J
Immunol Res (2017) 2017:4807853. doi: 10.1155/2017/4807853

217. BossennecM, Di Roio A, Caux C, Ménétrier-Caux C. MDR1 in immunity: friend or
foe? Oncoimmunology (2018) 7(12):e1499388. doi: 10.1080/2162402X.2018.1499388

218. Wang BL, Zhai HY, Chen BY, Zhai SP, Yang HY, Chen XP, et al. Clinical
relationship between MDR1 gene and gallbladder cancer. Hepatobiliary Pancreat Dis
Int (2004) 3(2):296–9.

219. Lai J, Yang S, Lin Z, Huang W, Li X, Li R, et al. Update on chemoresistance
mechanisms to first-line chemotherapy for gallbladder cancer and potential reversal
strategies. Am J Clin Oncol (2023) 46(4):131. doi: 10.1097/COC.0000000000000989
frontiersin.org

https://doi.org/10.12659/MSM.933503
https://doi.org/10.1016/j.cmet.2020.10.019
https://doi.org/10.1172/jci.insight.158571
https://doi.org/10.1038/s41431-019-0563-6
https://doi.org/10.1186/s40348-021-00119-7
https://doi.org/10.1038/s41576-021-00414-z
https://doi.org/10.2174/1573395511309010004
https://doi.org/10.1007/s40291-012-0008-1
https://doi.org/10.1200/JCO.2020.38.15_suppl.e16100
https://doi.org/10.1089/met.2010.0004
https://doi.org/10.1007/s00439-009-0768-9
https://doi.org/10.1016/j.ajhg.2008.03.012
https://doi.org/10.1016/j.ajhg.2008.03.012
https://doi.org/10.3390/ijms14058832
https://doi.org/10.1194/jlr.M048710
https://doi.org/10.1371/journal.pone.0019245
https://doi.org/10.1371/journal.pone.0019245
https://doi.org/10.1136/annrheumdis-2019-eular.6054
https://doi.org/10.1016/j.orcp.2017.07.001
https://doi.org/10.1016/j.abb.2018.12.022
https://doi.org/10.1155/2022/2271788
https://doi.org/10.3389/fimmu.2020.01265
https://doi.org/10.1152/ajpendo.00181.2020
https://doi.org/10.1182/blood-2006-11-058040
https://doi.org/10.1038/nri3921
https://doi.org/10.1016/j.immuni.2020.05.013
https://doi.org/10.1172/JCI86892
https://doi.org/10.1016/j.apsb.2021.05.011
https://doi.org/10.1038/gene.2010.75
https://doi.org/10.1371/journal.pone.0077846
https://doi.org/10.1007/s00109-014-1175-9
https://doi.org/10.1016/j.jtherbio.2020.102729
https://doi.org/10.1016/j.jtherbio.2020.102729
https://doi.org/10.3390/cancers7040882
https://doi.org/10.1007/s00432-015-2112-1
https://doi.org/10.1007/s00432-015-2112-1
https://doi.org/10.7570/jomes20038
https://doi.org/10.23937/2572-3987.1510019
https://doi.org/10.1111/resp.12605
https://doi.org/10.1007/s10517-014-2660-4
https://doi.org/10.1080/10245332.1998.11752123
https://doi.org/10.3390/ijerph16060995
https://doi.org/10.1128/MCB.16.6.3035
https://doi.org/10.1038/s41435-020-0095-7
https://doi.org/10.1038/s41366-021-00902-6
https://doi.org/10.1038/s41366-021-00902-6
https://doi.org/10.3109/15476910903453296
https://doi.org/10.1016/j.smim.2012.04.010
https://doi.org/10.1016/j.smim.2012.04.010
https://doi.org/10.1155/2017/4807853
https://doi.org/10.1080/2162402X.2018.1499388
https://doi.org/10.1097/COC.0000000000000989
https://doi.org/10.3389/fendo.2023.1286979
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yeyeodu et al. 10.3389/fendo.2023.1286979
220. Ichihara S, Yamada Y, Kato K, Hibino T, Yokoi K, Matsuo H, et al. Association
of a polymorphism of ABCB1 with obesity in Japanese individuals. Genomics (2008) 91
(6):512–6. doi: 10.1016/j.ygeno.2008.03.004

221. Wu J, Wang X, Chen H, Yang R, Yu H, Wu Y, et al. Type 2 diabetes risk and
lipid metabolism related to the pleiotropic effects of an ABCB1 variant: A chinese
family-based cohort study.Metabolites (2022) 12(9):875. doi: 10.3390/metabo12090875

222. Yan RJ, Lou TT, Wu YF, Chen WS. Single nucleotide polymorphisms of ABCB1
gene and response to etanercept treatment in patients with ankylosing spondylitis in a
Chinese Han population.Medicine (2017) 96(5):e5929. doi: 10.1097/MD.0000000000005929

223. Gervasini G, Carrillo JA, Garcia M, San Jose C, Cabanillas A, Benitez J.
Adenosine triphosphate-binding cassette B1 (ABCB1) (multidrug resistance 1)
G2677T/A gene polymorphism is associated with high risk of lung cancer. Cancer
(2006) 107(12):2850–7. doi: 10.1002/CNCR.22332

224. Song F, Zhang Y, Pan Z, Hu X, Zhang Q, Huang F, et al. The role of alcohol
dehydrogenase 1C in regulating inflammatory responses in ulcerative colitis. Biochem
Pharmacol (2021) 192:114691. doi: 10.1016/j.bcp.2021.114691

225. Chen Q, Li F, Gao Y, Xu G, Liang L, Xu J. Identification of energy metabolism
genes for the prediction of survival in hepatocellular carcinoma. Front Oncol (2020)
10:1210. doi: 10.3389/fonc.2020.01210

226. Liu X, Li T, Kong D, You H, Kong F, Tang R. Prognostic implications of alcohol
dehydrogenases in hepatocellular carcinoma. BMC Cancer (2020) 20(1):1204.
doi: 10.1186/s12885-020-07689-1

227. Molinaro A, Wahlström A, Marschall HU. Role of bile acids in metabolic
control. Trends Endocrinol Metab (2018) 29(1):31–41. doi: 10.1016/j.tem.2017.11.002

228. McGlone ER, Bloom SR. Bile acids and the metabolic syndrome. Ann Clin
Biochem (2019) 56(3):326–37. doi: 10.1177/0004563218817798

229. Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, et al. Identification of down-
regulated ADH1C is associated with poor prognosis in colorectal cancer using bioinformatics
analysis. Front Mol Biosci (2022) 9:791249. doi: 10.3389/fmolb.2022.791249

230. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity.
Clin Rev Allergy Immunol (2019) 56(3):308–21. doi: 10.1007/s12016-017-8648-x

231. Wang P, Zhang L, Huang C, Huang P, Zhang J. Distinct prognostic values of
alcohol dehydrogenase family members for non-small cell lung cancer. Med Sci Monit
(2018) 24:3578–90. doi: 10.12659/MSM.910026

232. Shen XY, Liu XP, Song CK, Wang YJ, Li S, Hu WD. Genome-wide analysis
reveals alcohol dehydrogenase 1C and secreted phosphoprotein 1 for prognostic
biomarkers in lung adenocarcinoma. J Cell Physiol (2019) 234(12):22311–20.
doi: 10.1002/jcp.28797

233. Xue Y, Wang M, Zhong D, Tong N, Chu H, Sheng X, et al. ADH1C Ile350Val
polymorphism and cancer risk: evidence from 35 case–control studies. PloS One (2012)
7(5):e37227. doi: 10.1371/journal.pone.0037227

234. Oze I, Matsuo K, Suzuki T, Kawase T, Watanabe M, Hiraki A, et al. Impact of
multiple alcohol dehydrogenase gene polymorphisms on risk of upper aerodigestive
tract cancers in a Japanese population. Cancer Epidemiol Biomarkers Prev (2009) 18
(11):3097–102. doi: 10.1158/1055-9965.Epi-09-0499

235. Harada R, Kimura M, Sato Y, Taniguchi T, Tomonari T, Tanaka T, et al. APOB
codon 4311 polymorphism is associated with hepatitis C virus infection through altered
lipid metabolism. BMC Gastroenterol (2018) 18(1):24. doi: 10.1186/S12876-018-0747-5

236. Deng W, Liu H, Luo S, Clarke J, Glass C, Su L, et al. APOB genotypes and
CDH13 haplotypes in the cholesterol-related pathway genes predict non-small cell lung
cancer survival. Cancer Epidemiol Biomarkers Prev (2020) 29(6):1204–13. doi: 10.1158/
1055-9965.EPI-19-1262

237. Jang SJ, Tuan WL, Hsu LA, Er LK, Teng MS, Wu S, et al. Pleiotropic effects of
APOB variants on lipid profiles, metabolic syndrome, and the risk of diabetes mellitus.
Int J Mol Sci (2022) 23(23):14963. doi: 10.3390/IJMS232314963/S1

238. Aceves-Ramıŕez M, Valle Y, Casillas-Muñoz F, Martıńez-Fernández DE, Parra-
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