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Single-cell profiling reveals
transcriptomic signatures of
vascular endothelial cells in non-
healing diabetic foot ulcers
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Lei Chen1,2,3* and Yingbin Xu1,2,3*

1Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen
University, Guangzhou, Guangdong, China, 2Guangdong Provincial Engineering Technology Research
Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of
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Background: The treatment of diabetic foot ulcers (DFUs) poses a challenging

medical problem that has long plagued individuals with diabetes. Clinically,

wounds that fail to heal for more than 12 weeks after the formation of DFUs are

referred to as non-healing/chronic wounds. Among various factors

contributing to the non-healing of DFUs, the impairment of skin

microvascular endothelial cell function caused by high glucose plays a

crucial role. Our study aimed to reveal the transcriptomic signatures of non-

healing DFUs endothelial cells, providing novel intervention targets for

treatment strategies.

Methods: Based on the GEO dataset (GSE165816), we selected DFU-Healer,

DFU-Non-healer, and healthy non-diabetic controls as research subjects.

Single-cell RNA transcriptomic sequencing technology was employed to

analyze the heterogeneity of endothelial cells in different skin tissue samples

and iden t i f y hea l ing- re la ted endothe l i a l ce l l subpopu la t ions .

Immunofluorescence was applied to validate the sequencing results on

clinical specimens.

Results: The number of endothelial cells and vascular density showed no

significant differences among the three groups of skin specimens. However,

endothelial cells from non-healing DFUs exhibited apparent inhibition of

angiogenesis, inflammation, and immune-related signaling pathways. The

expression of CCND1, ENO1, HIF1a, and SERPINE1 was significantly

downregulated at the transcriptomic and histological levels. Further analysis

demonstrated that healing-related endothelial cell subpopulations in non-

healing DFUs has limited connection with other cell types and weaker

differentiation ability.
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Conclusion: At the single-cell level, we uncovered the molecular and functional

specificity of endothelial cells in non-healing DFUs and highlighted the

importance of endothelial cell immune-mediated capability in angiogenesis

and wound healing. This provides new insights for the treatment of DFUs.
KEYWORDS

single-cell RNA sequencing, diabetic foot ulcers, non-healing wounds, vascular
endothelial cell, immune, inflammation, angiogenesis
Introduction

According to the World Health Organization (WHO),

diabetes is the third most serious chronic disease threatening

human health, following cancer and cardiovascular diseases.

Diabetic foot ulcer (DFU) is one of the most common

complications among diabetic patients. Globally, it is estimated

that 9.1 to 26.1 million people will develop DFU each year, with a

lifetime incidence rate of 15-25% among diabetes patients (1). The

healing of DFU involves complex physiological processes that

include multiple cell types and cytokine involvement (2). In

clinical practice, some DFUs heal well after active treatment,

while others remain unhealed. Generally, DFU wounds that do

not heal within 12 weeks are considered non-healing or chronic

wounds (3, 4). The mechanisms underlying the different treatment

outcomes of DFUs are not yet clear. However, it has been observed

that diabetic patients with concomitant peripheral vascular

diseases have the worst prognosis for foot ulceration (5). This

may be due to biological and functional damage to endothelial

cells (ECs) caused by factors such as high glucose and hypoxia (6–

8). Among the many factors influencing the healing of DFUs, the

function of endothelial cells is a crucial determinant of wound

healing (9, 10). However, the transcriptomic signatures of

endothelial cells in non-healing DFUs have been overlooked in

existing research. Endothelial cells (ECs) not only form the inner

lining of arteries, veins, and capillaries but also serve as endocrine

cells that mediate immune and inflammatory responses. Different

subtypes of ECs exhibit tissue-specific and vascular-type-specific

immunoregulatory functions (11) and play a critical role in

angiogenesis through various signaling pathways (12). Single-

cell RNA sequencing (scRNA-seq) technology has become the

most advanced method for revealing the heterogeneity and

complexity of RNA transcripts within individual cells and for

uncovering the composition and functions of different cell types in
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tissues, organs, and organisms (13). Georgios Theocharidis et al.

(14) performed debridement surgery on DFU patients and

collected skin samples from the wound site for research

purposes. They defined DFU-Healer as patients whose wounds

healed within 12 weeks after surgery and DFU-Non-healer as

patients whose wounds remained non-healing. They analyzed the

single-cell transcriptomic landscape and deposited the single-cell

data in the Gene Expression Omnibus (GEO) database. Based on

their GEO dataset (GSE165816), our study selected DFU-Healer,

DFU-Non-healer, and healthy non-diabetic controls as research

subjects to reveal differentially expressed genes and functional

characteristics of endothelial cells that influence the healing of

DFUs, providing reference for the clinical treatment of

this disease.
Methods

Subjects

The research data were obtained from the NCBI Gene Expression

Omnibus (GSE165816) dataset, comprising a total of 25 samples.

Non-diabetic patients (n = 10) who underwent foot surgery for

various reasons, such as corrective surgery for hallux valgus, were

included as healthy controls. Diabetic foot ulcer patients (n = 11)

underwent surgical excision of the ulcer, providing sufficient wound

and peri-wound tissue for analysis. The DFU patients were followed

up for 12 weeks post-surgery and were divided into two groups based

on wound healing status: the ulcer healing group and the ulcer non-

healing group (healers; n = 7, non-healers; n = 4). Participants with

any diseases or medications that could potentially affect wound

healing, other than diabetes, were excluded from the study (14).

Additionally, skin samples from DFU patients (healers; n = 5, non-

healers; n = 4) and non-DFU patients (control group; n = 3) were

collected by our research team according to the above criteria for

immunofluorescence staining. DFU patient specimens comprised

ulcers and skin located 2-10mm away from the ulcer edge.All skin

specimens consisted of full-thickness skin tissue, excluding the ulcer

site, encompassing the epidermis, dermis, and subcutaneous tissue,

with a volume ranging from 0.8 to 2.5 cm3. Supplementary Dataset 1

includes clinical details of the participants in the study. There were no

significant differences in the major biological characteristics among

the groups.
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Data processing and analysis

The cell UMI (Unique Molecular Identifier) data table for each

sample was directly downloaded from the GSE165816 dataset. The

cell UMI data from the 25 samples used in this project were extracted.

Cells entering the apoptosis program were filtered based on three

criteria: gene expression counts between 500 and 5,000, UMI counts

between 500 and 10,000, and mitochondrial gene expression

percentage not exceeding 25%. Cells expressing multiple immune

cell markers [T cell: CD8A, CD3D, CD3E; B cell: CD19; Macrophage:

CD14, CD163; Dendritic: CD11c(ITG AX)] were filtered out. After

cell filtering, the remaining valid cells were first normalized at the cell

level. The NormalizeData tool of the Seurat package was used to

normalize the gene expression levels of each cell, ensuring that the

total expression of each cell summed up to 10,000. Next, the

ScaleData tool was used to scale the cells based on the total UMI

counts and mitochondrial gene expression levels, performing linear

regression on the cell expression levels. The FindVariableFeatures

tool was then employed to identify variable genes based on the

average gene expression and gene expression variability of cells. The

threshold for variable gene selection was an average gene expression

between 0.125 and 3, and the top 2,000 variable genes were selected

based on decreasing gene expression variability. The RunPCA tool of

the Seurat package was used to perform PCA (Principal Component

Analysis) on the cells based on the expression levels of variable genes.

The top 18 principal components were selected, and t-SNE (t-

Distributed Stochastic Neighbor Embedding) dimensionality

reduction was applied to the cells using the FindCluster tool with a

resolution of 0.5 (0.8 for subclustering of vascular endothelial cells)

for cell clustering. Cell types were identified based on marker

information provided in the referenced article (https://doi.org/

10.1101/2021.03.11.434413). The FindMarkers tool of the Seurat

package was used to analyze differential gene expression in the

sample cells. The enrichKEGG function of the clusterProfiler

package was employed to perform KEGG Pathway enrichment

analysis on significantly differentially expressed genes, with the

analysis threshold set at pvalueCutoff = 1, qvalueCutoff = 1,

minGSSize = 1, and maxGSSize = 1000. Enrichment results with a

p-value below 0.05 were considered significant.
Differential gene analysis

Significantly differentially expressed transcription factor genes

were identified based on the transcription factor information for the

human species available in the Human Transcription Factor

Database (HumanTFDB, http://bioinfo.l ife.hust.edu.cn/

HumanTFDB#!/). Using the target gene data information of

human transcription factors collected in the TRRUST database, a

search was conducted for target genes of the transcription factors,

and expressed target genes were filtered. The targeting relationships

between transcription factors and target genes were listed. The

enrichKEGG function in the clusterProfiler package was used to

perform KEGG Pathway enrichment analysis on the target genes,
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specifically focusing on immune and inflammation-related

pathways. The analysis thresholds were set as pvalueCutoff = 1,

qvalueCutoff = 1, minGSSize = 1, and maxGSSize = 1000.

Enrichment results with a p-value below 0.05 were considered

significant. In the significantly differentially expressed gene

enrichment pathways, immune and inflammation-related

pathways were also selected. A Venn analysis was performed on

the two sets of immune and inflammation-related pathways to

obtain the common pathways. A Venn analysis was then conducted

on the genes corresponding to the common pathways to identify the

shared genes. The differential genes and target genes were analyzed

for protein-protein interactions using the STRING protein

interaction database (http://string-db.org/) for the human species,

and the Cytoscape software was used for visualization.
Specimen collection and sectioning
1. Specimen collection: Fresh tissue was fixed in 4%

paraformaldehyde universal tissue fixativea (Biosharp,

BL539A) for more than 24 hours. The tissue was taken

out from the fixative solution and trimmed to the desired

area using a surgical knife in a fume hood. The trimmed

tissue was placed in a dehydration container along with the

corresponding labels.

2. Dehydration and paraffin embedding: The dehydration

container was placed in the biological tissue Dehydrator

(ZEEDO, HS-569) for gradual ethanol dehydration. The

sequence of dehydration was as follows: 75% ethanol for 4

hours, 85% ethanol for 2 hours, 90% ethanol for 2 hours,

95% ethanol for 1 hour, absolute ethanol I for 30 minutes,

absolute ethanol II for 30 minutes, alcohol-benzene for 5-

10 minutes, xylene I for 5-10 minutes, xylene II for 5-10

minutes, 65°C melting paraffin I for 1 hour, 65°C melting

paraffin II for 1 hour, 65°C melting paraffin III for 1 hour.

3. Embedding: The dehydrated tissue was embedded using an

embedding machine (ZEEDO, ES-300). First, the melted

paraffin was placed in an embedding mold. Before the

paraffin solidified, the tissue was taken out from the

dehydration container, placed in the embedding mold

according to the embedding surface requirements, and

labeled accordingly. The embedding mold was cooled on

a -20°C cold plate, and once the paraffin solidified, the

paraffin block was removed from the embedding mold

and trimmed.

4. Sectioning: The trimmed paraffin block was cooled on a -

20°C cold plate, and then placed in the paraffin microtome

(ZEEDO, HS-3345)for sectioning at a thickness of 4mm.

The sections were floated on a water bath at 40°C to flatten

the tissue, and the tissue was lifted onto glass slides. The

slides were baked in a 60°C oven to dry and deparaffinize

the sections. After deparaffinization and hydration, the

slides were stored at room temperature for further use.
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Immunofluorescence staining and imaging
Fron
1. Dewaxing of paraffin sections: The sections were

sequentially placed in dewaxing solution I (Eco-friendly)

(Phygene, PH1900)for 10 minutes, dewaxing solution II

for 10 minutes, dewaxing solution III for 10 minutes,

absolute ethanol I for 5 minutes, absolute ethanol II for 5

minutes, absolute ethanol III for 5 minutes, and then

rinsed with distilled water.

2. Antigen retrieval: In a transparent beaker, poured 500 mL of

50X sodium citrate antigen retrieval solution (Codow,

CD434600), placed the tissue slides into the antigen

retrieval solution, and put them together in a microwave

oven. Heated them on high heat for 6-8 minutes. Carefully

observed the heating of the retrieval solution and, once

the solution boiled (to prevent excessive evaporation of the

buffer and to avoid drying out the slides), turned off the heat,

allowing it to cool down at room temperature.The slides were

placed in PBS (pH 7.4) and washed on a decolorizing shaker

for 3 times, 5 minutes each time.

3. Inactivation of endogenous hydrogen peroxidase: A circle

was drawn around the tissue using a peroxidase-blocking

pen. The slides were then placed in a 3% hydrogen

peroxide solution and incubated at room temperature,

protected from light, for 25 minutes to block endogenous

peroxidase. After that, the slides were placed in PBS (pH

7.4) and washed on a decolorizing shaker for 3 times, 5

minutes each time.

4. Serum blocking: The PBS was removed and added 10%

rabbit serum (Acmec, AC17053) for blocking for

30 minutes.

5. Primary antibody incubation: The blocking solution was

removed and the prepared primary antibody was added.

The slides were then placed flat in a humid chamber and

incubated overnight at 4°C.

6. Secondary antibody/HRP inucubation: The slides were

placed in PBS (pH 7.4) and washed on a decolorizing

shaker for 3 times, 5 minutes each time. After excess liquid

was gently shaken off, the corresponding HRP-labeled

secondary antibody was added within the drawn circle

and incubated at room temperature for 50 minutes.

7. Addition of TSA dye: The slides were placed in PBS (pH

7.4) and washed on a decolorizing shaker for 3 times, 5

minutes each time. After excess liquid was gently shaken

off, the TSA reagent was added within the drawn circle and

incubated at room temperature, protected from light, for

10 minutes. After incubation, the slides were placed in

TBST and washed on a decolorizing shaker for 3 times, 5

minutes each time.

8. Antigen retrieval: The washed slides were subjected to the

same procedure as described in step 2.
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9. Second round of antibody incubation: Steps 4-7 were

repeated. In step 5, the second primary antibody was

applied, and in step 7, the second TSA dye was used.

10. DAPI counterstaining of cell nuclei: After excess liquid

was gently shaken off, DAPI staining solution was added

within the drawn circle and incubated at room

temperature, protected from light, for 10 minutes.

11. Quenching of autofluorescence: The slides were placed in

PBS (pH 7.4) and washed on a decolorizing shaker for 3

times, 5 minutes each time. After excess liquid was gently

shaken off, autofluorescence quenching reagent B

(Servicebio, G1221-2)was added within the drawn circle,

incubated for 5 minutes, and then rinsed with running

water for 10 minutes.

12. Mounting: The slides were mounted with anti-

fluo r e s c e n c e qu en ch i n g moun t i n g med i um

(Servicebio, G1401).

13. Image acquisition: The upright fluorescence microscope

(Nikon, Eclipse C1) was using for image acquisition. DAPI

excitation wavelength 330-380 nm, emission wavelength

420 nm; SPGreen (FITC) excitation wavelength 465-495

nm, emission wavelength 515-555 nm; SPOrange (CY3)

excitation wavelength 510-560 nm, emission wavelength

590 nm.
Note: Information regarding the antibodies and fluorescent

dyes used in immunofluorescence staining is provided in

the Table 1:
Results

Identification and gene features of skin
tissue cells

To determine the cell types and gene features of normal skin

and DFU skin cells, we referred to the study by Georgios

Theocharidis et al. (14) and downloaded a portion of the raw

dataset (GSE165816) for single-cell expression analysis

Supplementary Dataset 2. We analyzed a total of 25 samples from

11 diabetes patients (7 DFU-Healers and 4 DFU-Non-Healers) and

10 healthy non-diabetic subjects. The study groups, objectives, and

analysis strategy are shown in Figure 1A. In summary, following the

cell type marker information provided in the research of Georgios

Theocharidis et al. (14), we analyzed 53,199 cells (24,922 from

normal skin, 12,173 from DFU-Healers, and 17,743 from DFU-

Non-Healers) and created a gene expression matrix for each cell.

We used t-SNE plot and graph-based clustering for dimensionality

reduction, resulting in the identification of 13 distinct cell types

(Figure 1B). We identified most of the typical cell types observed in

human skin (15, 16), including smooth muscle cells (SMCs)

(TAGLN+, ACTA2+), fibroblasts (Fibro) (DCN+, CFD+), HE-
frontiersin.org
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TABLE 1 Serum sPD-L1 changes before and after 3-4 cycles of PD-1 inhibitors treatment in advanced non-small cell lung cancer (NSCLC) patients.

Name CD31 CCND1 ENO1 HIF1a SERPINE1
Goat Anti-Rabbit
IgG (H+L) HRP

FITC-
Tyramide
(TSA)

CY3-
Tyramide
(TSA)

DAPI

Company
Affinity

Biosciences
Affinity

Biosciences
Affinity

Biosciences
Affinity

Biosciences
Affinity

Biosciences
Affinity Biosciences Servicebio Servicebio Abcam

Catalog
Number

AF6191 AF0931 DF6191 AF1009 AF5176 S0001 G1222 G1223 ab228549

Dilution 1:200 1:200 1:100 1:200 1:100 1:200 1:500 1:500 1:10000
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fibro (DCN+, CHI3L1+), vascular endothelial cells (VasEndo)

(ACKR1+), differentiated keratinocytes (DiffKera) (KRT1+,

KRT10+), basal keratinocytes (BasalKera) (KRT5+, KRT14+), NK

and T cells (NKT) (CD3D+, CCL5+), M1 macrophages (M1-

macro) (IL1B+), M2 macrophages (M2-macro) (CD163+),

melanocytes and Schwann cells (Melano/Schwann) (MLANA+,

CDH19+), lymphatic endothelial cells (LymphEndo) (CCL21+), B

lymphocytes (B lymphos) (CD79A+, MS4A1+), and mast cells

(TPSAB1+) (Figures 1C, D, Supplementary Dataset 3). The

distribution of the main markers for vascular endothelial cells is

shown in the t-SNE plot (Figure 1E).
Exploring cellular heterogeneity in DFU-
Healer, DFU-Non-Healer and
healthy controls

To assess the cellular heterogeneity, gene expression, and

molecular pathway changes among different clinical groups, we

generated separate t-SNE plots based on samples from normal

skin, DFU-Healer, and DFU-Non-Healer (Figure 2A). The results

of cell abundance analysis for the three groups (Figure 2B) showed

significant differences (p<0.05, Supplementary Figure 1) in B-

lymphocytes, HE-Fibroblasts, Basal keratinocytes, lymphatic

endothelial cells, and melanocytes/Schwann cells among the

clinical groups. Specifically, B-lymphocytes were significantly

higher in DFU-Healer compared to the Healthy Control group,

suggesting the enrichment of B-lymphocytes following wound

formation, which may be associated with increased collagen

deposition and maturation, enhanced angiogenesis, and

promoted nerve growth (17). Notably, B lymphocytes in DFU-

Non-Healer were also significantly elevated comparing to Healthy

Controls. The underlying reason could be attributed to the varying

roles of different B cell subpopulations in wound healing, which

warrants further research to elucidate the mechanisms involved

(18). In DFU-Healer, the abundance of HE-Fibroblasts was 64.11

± 2.06% (mean ± SE), and M1 macrophages were 50.79 ± 1.59%,

while in DFU-Non-Healer, HE-Fibroblasts were 9.84 ± 0.50%, and

M1 macrophages were 26.58 ± 1.16%. In the healthy Ctrl group,

HE-Fibroblasts were 26.04 ± 2.19%, and M1 macrophages were

22.62 ± 0.73%. The proportion of VasEndo was almost the same

among the three groups (Supplementary Dataset 4). The paraffin

sections of a total of 12 clinical samples from the three groups
Frontiers in Endocrinology 05
were subjected to immunofluorescence staining,with CD31 used

as the marker for endothelial cells (Figure 2C). Fluorescence

microscopy was employed for observation. Any individual

endothelial cell or endothelial-cell cluster stained by the CD31

antibody, regardless of whether they formed luminal structures, as

long as they had clear boundaries with surrounding blood vessels,

were considered countable vessels (19). The most densely

vascularized areas were observed at 10× magnification, and

three random subregions within these areas were selected. At

40× magnification (grid area 0.1 mm2), photographs of these three

subregions were taken, and vessel numbers were counted

individually. The average value of vessel numbers was calculated

for each specimen, and vascular density was expressed as vessels

per square millimeter (n/mm2). Finally, one-way ANOVA

statistical analysis (Figure 2D) was performed to compare

vascular density among the three groups, revealing no

significant differences between them. The comparison of the

number of significantly differentially expressed genes among

different groups illustrates the upregulation or downregulation

of genes (Figure 2E, Supplementary Dataset 5). And there were 31

commonly significant differentially expressed genes among the

three groups (Figure 2F). In DFU-Healer vs healthy Ctrls, 254

genes were upregulated, and 213 genes were downregulated. In

DFU-Healer vs DFU-Non-Healer, 74 genes were upregulated, and

56 genes were downregulated. In DFU-Non-Healer vs healthy

Ctrls, 97 genes were upregulated, and 101 genes were

downregulated. To compare the vascular endothelial cells

differentially expressed genes more detailedly between DFU-

Healer and healthy Ctrls, KEGG analysis was performed on

their transcriptome profiles (Figure 2G). It was found that

vascular endothelial cells exhibited upregulation in several

pathways associated with ECM receptor signaling and

inflammation, as shown by the heatmap of corresponding gene

expression (Supplementary Figure 2). GSEA enrichment analysis

revealed significant activation of the ECM-receptor interaction

and IL-17 signaling pathway in DFU-Healer (FDR<0.05)

(Figure 2H), which may be related to the appropriate

inflammatory response mediated by vascular endothelial cells

after wound formation, promoting angiogenesis and wound

healing (20, 21). Further KEGG analysis of the differentially

expressed genes between DFU-Non-Healer and healthy controls

revealed downregulation of several pathways associated with

immune response in vascular endothelial cells (Figure 2I), as
frontiersin.org
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shown by the heatmap of corresponding gene expression

(Supplementary Figure 3). GSEA enrichment analysis showed

significant inhibition of antigen processing and presentation, Th17

cell differentiation, and Th1 and Th2 cell differentiation in DFU-Non
Frontiers in Endocrinology 06
Healer (Figure 2J, Supplementary Figure 4). The failure of endothelial

cells in DFU-Non-Healer to exert immune regulatory functions

similar to T cells mediating inflammatory response after wound

formation, may affecting wound angiogenesis and healing (11, 22, 23).
B

C

D
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FIGURE 1

Single-cell RNA-seq reveals heterogeneity in normal skin and diabetic foot ulcers. (A) Overview of the study design and the number of samples in
each clinical group. (B) t-SNE plot showing the composition of the entire dataset consisting of 53,199 cells. Cells are color-coded by orthogonal-
generated clusters and labeled based on manual cell type annotations (HE-Fibro, Healing-enriched fibroblasts; Fibro, Fibroblasts; SMCs, Smooth
muscle cells; BasalKera, Basal keratinocytes; DiffKera, Differentiated keratinocytes; Melano/Schwann, Melanocytes and Schwann cells; Mast, Mast
cells; VasEndo, Vascular endothelial cells; M1-macro, M1 macrophages; M2-macro, M2 macrophages; NKT, NK cells and T lymphocytes;
LymphEndo, Lymphatic endothelial cells; B-lympho, B lymphocytes). (C) Dot plots displaying the expression of cell type-specific marker genes used
for cell type annotation. The size of the dots represents the percentage of cells in each cell cluster expressing the marker gene, and the color
represents the average proportion of expression levels (blue: low, red: high). (D) Heatmap showing the top highly expressed genes in each cell
cluster. (E) Expression profiles of characteristic genes for vascular endothelial cells: (I) ACKR1, (II) SELE, and (III) RAMP3. The schematic diagram in
(A) was created using BioRender (BioRender.com).
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FIGURE 2

Single-cell transcriptomic analysis profiles comparing Healthy Control, DFU-Healer, and DFU-Non-Healer groups, describing gene features and
healing-related biological pathways. (A) Separated t-SNE plot of the Healthy Control, DFU-Healer, and DFU-Non-Healer groups. Cell clusters
were manually annotated based on the expression of specific markers, representing various known and novel cell types (as shown in
Figures 1C, D). (B) Stacked bar plots showing the proportions of different cell types in the three clinical groups. Green: Healthy Control, Orange:
DFU-Healer, Red: DFU-Non-Healer. Cell types with significant differences among the clinical groups are marked with asterisks.
(C) Immunofluorescence staining showing the distribution of blood vessels in the three groups (healers; n = 5, non-healers; n = 4, healthy controls;
n=3). CD31: Red, DAPI: Blue. Scale bars are 200 mm. (D) Bar graph displaying the statistical analysis of blood vessel density in the three groups
(healers; n = 5, non-healers; n = 4, healthy controls; n=3). * denotes significant differences (p<0.05), ns denotes no significant difference (one- way
ANOVA with Fisher’s LSD post-hoc). (E) Bar plots comparing the number of differentially expressed genes in endothelial cells among the three
clinical groups in pairwise fashion. (F) Venn diagram showing the number of commonly significant differentially expressed genes among the three
clinical groups. (G) Immune and inflammation related KEGG pathways for significantly differentially expressed genes of vascular endothelial cells
between DFU-Healer and Healthy Control. (H) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (G). (I) Immune and
inflammation related KEGG pathways for significantly differentially expressed genes of vascular endothelial cells between DFU-Non-Healer and
Healthy Control. (J) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (I).
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Comparative analysis of vascular
endothelial cells revealed downregulation
of key healing-related gene expression in
DFU-Non-Healer

The differentially expressed gene analysis in DFU-Healer and

DFU-Non-Healer showed enrichment of immune and

inflammation related pathways, suggesting that vascular

endothelial cells mediate immune regulation and inflammatory

responses (Figure 3A), as shown by the heatmap of

corresponding gene expression (Supplementary Figure 5). To

further compare the gene expression profiles of vascular

endothelial cells between DFU-Healer and DFU-Non-Healer, we

performed GSEA on their transcriptomic profiles. We found

significant enrichment of eight KEGG signaling pathways in

DFU-Healer, including the AGE-RAGE signaling pathway in

diabetic complications, Focal adhesion, PI3K-Akt signaling

pathway, Relaxin signaling pathway, IL-17 signaling pathway,

TNF signaling pathway, NF-kappa B signaling pathway, and HIF-

1 signaling pathway. All these pathways are associated with

immune, inflammation, and vascularization (24) (Figure 3B,

Supplementary Figure 6). This suggests that vascular endothelial

cells in the DFU-Non-Healer group have weaker immune

regulation, inflammatory response, and vascular generation

potential compared to the DFU-Healer group.

There were 130 significantly differentially expressed genes between

DFU-Healer and DFU-Non-Healer (Figure 2E), which were enriched

in 193 pathways, including 46 immune and inflammation related

pathways. Using the Human Transcription Factor Database

(HumanTFDB), we identified two significantly differentially

expressed transcription factors, HIF1a and ID1. Searching the

TRRUST database for the corresponding target genes of HIF-1a and

ID1, we found 77 target genes. Transcription factors and their target

genes exhibit a one-to-many relationship (Supplementary Dataset 6).

We performed KEGG Pathway enrichment analysis on these 77 target

genes and identified a total of 208 KEGG pathways, of which 88

pathways were significantly enriched including 43 immune and

inflammation related pathways. The top 30 significantly enriched

pathways among the 88 pathways were selected for scatter plot

display (Supplementary Figure 7). Out of the immune and

inflammation related pathways enriched in significantly differentially

expressed genes and target genes, 43 were exhibited a common

intersection. (Figure 3C, left, Supplementary Dataset 7). Among these

43 shared pathways, there were a total of 46 significantly differentially

expressed genes and 47 transcription factor target genes. Analysis of the

relationship between these two gene sets revealed that five genes

(CCND1, ENO1, HIF1a, MMP2, SERPINE1) were common

(Figure 3C, right). Cyclin D1 (CyD1) is a key cell cycle regulatory

molecule with immunoregulatory functions. It is significantly

upregulated at the site of inflammation and its synergistic interaction

with VEGFA promotes angiogenesis and vascular permeability (25–

27). Enolase is a glycolytic enzyme that catalyzes the interconversion of

2-phosphoglycerate and phosphoenolpyruvate. Rheumatoid arthritis

(RA) patients have increased surface expression of enolase-1 (ENO1)

on their immune cells, leading to enhanced inflammatory response and

promoting tumor angiogenesis (28–30). Hypoxia-inducible factor 1-
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alpha (HIF1a) is one of themajor regulatory factors involved in cellular

responses to hypoxia. It plays a role in regulating cell metabolism and

immune cell effector function. HIF1a is a key metabolic reprogrammer

that promotes the expression of inflammatory genes in inflammatory

cells. Overexpression of HIF-1a promotes invasion, migration,

proliferation, and tubule formation ability of endothelial cells, and it

has a role in promoting tissue angiogenesis and diabetic foot ulcer

healing (31–35). Matrix metalloproteinase-2 (MMP2) is one of the

members of the matrix metalloproteinase gene family (MMPs) and is

highly expressed in neuroinflammation. Inhibiting MMP2 expression

can suppress inflammatory pathways and angiogenesis (36–38).

Plasminogen activator inhibitor-1 (PAI-1, SERPINE1) is a major

inhibitor of tissue plasminogen activator and is associated with

tumor progression and angiogenesis. Downregulation of SERPINE1

expression in ECs can inhibit vascular formation. In cell experiments,

SERPINE1 directly inhibits eNOS activity, reduces NO synthesis, and

enhances endothelial cell function (39–41). Protein-Protein Interaction

Network analysis using the STRING protein interaction database and

Cytoscape software was performed on the 46 significantly differentially

expressed genes and 47 target genes (Figure 3D). CCND1, ENO1,

HIF1a, MMP2, and SERPINE1 showed significantly lower expression

in DFU-Non-Healer compared to DFU-Healer (p<0.05) (Figure 3E).

Immunofluorescence staining of CD31 in conjunction with CCND1,

ENO1, HIF1a, MMP2, and SERPINE1 showed co-expression of CD31

with CCND1, ENO1, HIF1a, and SERPINE1 on the vascular wall in

the DFU-Healer group, while no significant co-expression was

observed in the DFU-Non-Healer group (Figure 3F). This suggests

that the high expression of CCND1, ENO1, HIF1a, and SERPINE1 is

beneficial for wound healing, while low expression may lead to non-

healing wounds.It is worth noting that MMP2 was not significantly

expressed in the vascular walls of both sample groups, which may be

related to post-transcriptional regulation, translation, and protein

degradation of mRNA (42–44).
Exploration of healing-related
subpopulations in endothelial cells

We performed secondary subpopulation classification of

endothelial cells, analyzing a total of 4948 cells (2136 from

Healthy Control, 1578 from DFU-Healer, and 1234 from DFU-

Non-Healer). A gene expression matrix was created for each cell,

and t-SNE dimensionality reduction was performed. Using the

FindCluster tool in the Seurat package with a resolution of 0.8,

cells were clustered into 15 distinct cell types (Figure 4A). An

independent t-SNE plot revealed different distributions of

endothelial cell subpopulations among the three groups,

indicating significant heterogeneity between the samples

(Figure 4B). FindMarkers tool was used to analyze differentially

expressed marker genes for each cell cluster relative to other

clusters, and the results were visualized using a heatmap

(Figure 4C). Comparative analysis of cell type abundance

demonstrated differences in endothelial subclusters among the

different clinical groups (Figure 4D). Specifically, Cluster 1 and

Cluster 2 were the main subcluster types in the DFU-Healer group,

with higher proportions compared to the other two groups. When
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analyzing Subclusters 1, 2, and 5 as a whole, we found that the

expression of CCND1, ENO1, HIF1a, MMP2, and SERPINE1 was

lower in the DFU-Non-Healer group compared to the DFU-Healer

group (Figure 4E), with ENO1 and SERPINE1 showing significant
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downregulation (p<0.05). We defined Subclusters 1, 2, and 5 as

Healing Enriched Vascular endothelial cell (HE-VasEndo). Further

KEGG pathway enrichment analysis of significantly differentially

expressed genes between the two groups identified a total of 47
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FIGURE 3

Comparison of the gene characteristics, healing-related biological pathways, and significantly differentially expressed genes between the DFU-Healer and
DFU-Non-Healer groups. (A) Bubble plot illustrating the significant differences in immune and inflammation related KEGG pathway between DFU-Healer and
DFU-Non-Healer endothelial cells. (B) The significantly enriched GESA plot(FDR<0.05) based on the KEGG pathways in (A). (C) The Venn diagram showcases
the intersection of 46 immune and inflammation related pathways enriched with significantly differentially expressed genes in DFU-Healer and DFU-Non
Healer endothelial cells, as well as the 43 pathways enriched with immune and inflammation related target genes. The diagram reveals a total of 43
common pathways (left), where the DFU-Healer and DFU-Non-Healer endothelial cells share 46 healing-related genes and 47 target genes. The Venn
diagram displays 5 genes that are common to both groups (right): CCND1, ENO1, HIF1a, MMP2, and SERPINE1. (D) The Protein-Protein Interaction Network
analysis demonstrates the interactions among these 5 common genes in (C). (E) Dot plots illustrates the differential expression (p<0.05) of CCND1, ENO1,
HIF1a, MMP2, and SERPINE1 between the DFU-Healer and DFU-Non Healer groups. (F) The immunofluorescence validation of protein expression, with
CD31 labeled in red, CCND1, ENO1, HIF1a, and SERPINE1 labeled in green, and DAPI staining in blue. Scale bars are 200 mm.
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enriched KEGG pathways, predominantly related to inflammation

and immunity (Figure 4F). GSEA-KEGG analysis revealed that

compared to DFU-Non-Healer, most of the inflammation,

immunity, and extracellular matrix pathways were enriched in

DFU-Healer, with significant enrichment observed in the AGE-

RAGE signaling pathway in diabetic complications, IL-17 signaling
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pathway (45), Focal adhesion (46), PI3K-Akt signaling pathway

(47), and ECM-receptor interaction (20) (Figure 4G), all of which

are associated with angiogenesis. This suggests that HE-VasEndo

plays a crucial role in promoting angiogenesis and wound healing

and the absence of this endothelial subpopulation may contribute to

non-healing wounds.
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FIGURE 4

Comparison of gene features and healing-related biological pathways in subpopulations of endothelial cells between DFU-Healer and DFU-Non-
Healer groups. (A) t-SNE plot embedding of the entire dataset comprising 4948 cells. Cells are colored by orthogonal-generated clusters and
labeled based on manual cell type annotations. (B) t-SNE plot showing the separation of subpopulations of endothelial cells from Healthy Control,
DFU-Healer, and DFU-Non-Healer groups. (C) Heatmap displaying top highly expressed genes within each cell subpopulation. (D) Bar plot depicting
the proportions of endothelial cell subpopulations. (E) Violin plot illustrating the differential expression of CCND1, ENO1, HIF1a, MMP2, and SERPINE1
between healing-related subpopulations 1, 2, and 5 (HE-VasEndo) in the DFU-Healer and DFU-Non-Healer groups. (F) KEGG pathway enrichment
analysis of significantly differentially expressed genes in healing-related subpopulations 1, 2, and 5 (HE-VasEndo) of DFU-Healer and DFU-Non-
Healer. (G) GSEA-KEGG showing significantly enriched pathways between DFU-Healer and DFU-Non-Healer.
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Cell communication analysis revealing the
intercellular connections and cell
differentiation trajectories of HE-VasEndo,
macrophages, smooth muscle cells (SMC),
and HE-fibroblasts

In comparison to DFU-Healer, DFU-Non-Healer showed

significant downregulation of 74 genes and upregulation of 54

genes. The interactions among downregulated genes and

upregulated genes were separately analyzed, resulting in 602 and

201 pairs of gene interactions, respectively. The top 25 genes with

scores above 900 and the highest number of interactions were

selected from the downregulated gene interactions to construct an

interaction network diagram (Figure 5A, left). Similarly, the top 25

genes with the most interactions were selected from the upregulated

gene interactions to construct another interaction network diagram

(Figure 5A, right).

To compare the intercellular interactions between the two

sample groups, we utilized the CellPhoneDB software to perform

cell communication analysis across all cell populations. HE-

VasEndo was considered as the receptor, while other cells served

as ligands. A total of 1,172 ligand-receptor relationships were

identified. From these, we selected 66 ligand-receptor pairs that

met the criteria of having at least one significant relationship among

12 pairs and an average ligand-receptor score greater than 0.5 in the

DFU-Non-Healer samples, or at least one significant relationship

among 12 pairs and an average ligand-receptor score greater than

0.5 in the DFU-Healer samples (Figure 5B, left). The analysis of the

effects of different cell types on HE-VasEndo revealed that B

lymphocytes, M1 macrophages, and M2 macrophages had the

strongest impact. Furthermore, compared to DFU-Healer, DFU-

Non-Healer exhibited a relative deficiency in the effects of B

lymphocytes, keratinocytes, and M1 macrophages on HE-

VasEndo. The key differentially expressed ligands included

CXCL8, CD44, and CCL5 for B lymphocytes, VEGFA,

TNFRSF10A/B, SEMA4A, PLD2, and NRP2 for keratinocytes,

and CXCL1, HLA-C, and NAMPT for M1 macrophages

(Figure 5C, left). Additionally, when HE-VasEndo was considered

as the ligand and other cells as the receptor, a total of 1,145 ligand-

receptor relationships were analyzed, resulting in 76 ligand-receptor

pairs (Figure 5B, right). Compared to DFU-Healer, DFU-Non-

Healer exhibited a relative deficiency in the effects of HE-VasEndo

on B lymphocytes and keratinocytes. The key differentially

expressed ligands included FAM3C, FLT1, LGALS9, MIF, NRP1,

and SELE for B lymphocytes, and NRP1/2, NOTCH1, LGALS9, and

FLT1 for keratinocytes (Figure 5C, right).

To measure the transcriptional dynamics of the cell types of

interest, we used Monocle (version: 2) to construct and compare the

differentiation trajectories of HE-VasEndo, macrophages, SMC, and

HE-fibroblasts between DFU-Healer and DFU-Non-Healer. From

an evolutionary perspective of cell types analysis, the cell profiling

results of the DFU-Healer suggested that HE-VasEndo cells are

situated at an initial evolutionary position, followed by SMC and

HE-Fibro cells, and eventually giving rise to M1-Micro and M2-

Micro cells (Figure 5D, left; Supplementary Figure 8, above).
Frontiers in Endocrinology 11
However, the cell profiling results of the DFU-Non-Healer

exhibited notable differences: SMC serves as the initial cell type,

followed by HE-Fibro cells, with subsequent differentiation into two

distinct pathways. One pathway leads to the formation of HE-

VasEndo cells, while the other leads to the development of M1-

Micro and M2-Micro cells (Figure 5D, right; Supplementary

Figure 8, below). These results indicate that HE-VasEndo in

DFU-Non-Healer represents a late-stage differentiated cell type

with lower differentiation potential compared to other cells. HE-

VasEndo in DFU-Healer represents an early-stage differentiated cell

type with greater differentiation potential. It exhibits more stem

cell-like characteristics and plays a positive role in vascular

regeneration and wound healing (48, 49).
Discussion

The normal process of wound healing involves inflammation,

angiogenesis, and extracellular matrix (ECM) remodeling. The

cellular players involved in healing include vascular endothelial

cells, fibroblasts, keratinocytes, monocyte macrophages,

neutrophils, lymphocytes, and other immune cells. Cytokines

such as transforming growth factor(TGF)-b1, vascular endothelial
growth factor (VEGF), soluble vascular cell adhesion molecule-1

(VCAM-1), platelet-derived growth factor (PDGF), and epidermal

growth factor (EGF) influence wound healing (50–56). Among

these, angiogenesis is crucial for wound healing, with vascular

endothelial cells being the key participants (57). They actively

control the dilation and constriction of blood vessels, as well as

the extravasation of solutes, fluids, macromolecules, and hormones,

including platelets and blood cells. They also guide inflammatory

cells outside the blood vessels to areas requiring repair or defense

against infection. Furthermore, endothelial cells play important

roles in controlling blood flow, platelet adhesion and aggregation,

leukocyte activation, adhesion, and translocation. They are closely

involved in maintaining the balance between coagulation and

fibrinolysis and play significant roles in regulating immune

responses, inflammation, and angiogenesis (58).

Currently, the treatment strategies for DFUs include

comprehensive approaches such as wound debridement, ulcer

offloading, medication, and wound dressings (59). However, the

management of non-healing DFUs remains a challenging clinical

problem, causing significant psychological and economic burdens to

individuals and consuming substantial healthcare resources (60). In

the context of high blood glucose levels, reduced angiogenic factors,

endothelial dysfunction, and vascular lumen narrowing impair

vascularization of diabetic wounds, hindering wound healing (61).

To the best of our knowledge, many studies have focused on

alterations in the skin microenvironment of diabetic patients with

diabetic mellitus (DM) or diabetic foot ulcers (DFUs), but there is

limited research on vascular endothelial cells in recalcitrant DFUs. In

this study, based on the original experimental data (GSE165816) from

our previous research, we focused on the skin of healing and non-

healing DFU patients, with healthy non-diabetic subjects’ skin serving

as a control. This study provides the first insights into the
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transcriptomic signatures of vascular endothelial cells that influence

vascularization and healing of diabetic wounds, laying the foundation

for investigating the molecular mechanisms of non-healing vascular

endothelial cells in DFUs.
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The immune microenvironment of wound healing, including

the proper activation, regulation, and distribution of various

immune cells, is crucial for angiogenesis and healing. The process

of wound angiogenesis involves the interplay between endothelial
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FIGURE 5

Analysis of potential ligand-receptor interactions and cellular state changes in the healing-related subpopulations of vascular endothelial cells (HE-
VasEndo). (A) The interaction network diagrams illustrate the significantly upregulated (left) and downregulated (right) cytokine interactions in the
enriched HE-VasEndo involved in healing. (B) The ligand-receptor pairs show significant and specific changes between different cell types and HE-
VasEndo in the DFU-Healer and DFU-Non-Healer groups. The left panel displays the expression of receptors in HE-VasEndo, receiving ligand signals
from other cell types. The right panel shows the expression of receptors in other cell types, receiving ligand signals from HE-VasEndo. (C) The
circular plot demonstrates the associations between the receptors expressed in HE-VasEndo and the ligands expressed in B lymphocytes,
keratinocytes and M1-Macro (left), as well as the ligands expressed in HE-VasEndo and the receptors expressed in B lymphocytes and keratinocytes
(right). (D) The differentiation trajectory plots of cells associated with DFU-Healer and DFU-Non-Healer are shown. The blue panel represents the
inferred evolution time of cells, while the colorful panel displays the evolutionary trajectories labeled with different cell type origins, with different
colors corresponding to different cell subpopulations.
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cells and the immune system. It is an integral part of both acute and

chronic inflammation and is implicated in most immune-mediated

diseases. In chronic inflammatory diseases, macrophages and

lymphocytes infiltrate, tissue damage and repair occur

simultaneously, and newly formed vessels become permanent.

Angiogenesis and the inflammatory response are interdependent

(62). By comparing the DFU-Healer and DFU-Non-Healer sample

groups, the GSEA-KEGG pathway analysis results suggest that the

inhibition of immune and inflammation related pathways in

vascular endothelial cells of DFU-Non-Healer may impede

vascularization and healing of DFUs. Therefore, it is evident that

excessive suppression of local inflammatory responses in chronic

non-healing DFU is detrimental to wound healing, while systemic

suppression of inflammation is beneficial (14). Immune modulation

is not exclusive to immune cells but also a characteristic of

endothelial cells. The immune properties of vascular endothelial

cells can mediate the wound microenvironment and maintain

vascular function (11). Increasing evidence indicates that proper

immune regulation and inflammation response can promote

wound angiogenesis and healing, whereas excessive or

dysregulated inflammatory responses lead to delayed wound

healing (63, 64).

Extracellular matrix (ECM) plays a crucial role in various

aspects of vascular biology. During the initiation of angiogenesis,

ECM is involved in key signaling events that support the regulation

of endothelial cell (EC) migration, invasion, proliferation, and

survival. Moreover, temporary ECM acts as a flexible scaffold,

establishing mechanical guidance between distant ECs and

providing tissue cues in the absence of cell-cell contact. Lastly,

through specific integrin-dependent signaling pathways, ECM

controls the coordination of endothelial cell cytoskeleton to

facilitate the complex process of vascular morphogenesis, wherein

proliferating ECs organize into multicellular tubes with functional

lumens. Therefore, the composition of ECM and its regulation of

ECM degradation and remodeling play critical roles in controlling

lumen and tube formation, as well as the ultimate stability and

maturation of new blood vessels (65). In our study, we found that

the inhibition of ECM receptor-related pathways in vascular

endothelial cells of DFU-Non-Healer hinders vascularization and

healing of diabetic foot ulcers.

Using single-cell transcriptomic sequencing analysis, our study

revealed that five genes, CCND1, ENO1, HIF1a, MMP2, and

SERPINE1, were significantly downregulated in DFU-Non-Healer

compared to DFU-Healer. The differential expression of CCND1,

ENO1, HIF1a, and SERPINE1 was further validated through

immunofluorescence methods. These findings suggest that these

genes play unique roles in promoting the healing of diabetic foot

ulcers, and their deficiency impedes wound healing. However, the

specific mechanisms need further verification through in vitro

cell experiments. It is worth noting that single-cell sequencing

showed no significant difference in the number of endothelial

cells between the DFU-Healer and DFU-Non-Healer groups, and

immunofluorescence revealed no significant difference in vascular

density. This suggests that the healing of diabetic foot ulcers may be

associated with the immune-mediated capacity of endothelial cells
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and vascular function, rather than cell quantity and vascular density

(66, 67). Future longitudinal studies comparing DFU samples

collected from the same patients at multiple time points during

the wound healing process can help establish a timeline of diabetic

wound healing and explore potential changes in vascular

density (68).

Furthermore, this study further characterized subpopulations

of vascular endothelial cells and identified HE-VasEndo as

significantly associated with wound healing. Through

intercellular communication analysis, we found that the

interactions between B lymphocytes, keratinocytes, M1

macrophages, and HE-VasEndo were weaker in DFU-Non-

Healer, highlighting the importance of cellular interactions of

endothelial cells in vascular function and angiogenic capacity of

the wound (17, 69, 70). Differentiation trajectory analysis showed

that HE-VasEndo in DFU-Non-Healer exhibited weaker

differentiation potential (71), indicating that the differentiation

capacity of endothelial cells is a key factor influencing the healing

of DFU wounds. In summary, we have revealed the molecular and

functional specificity of vascular endothelial cells in non-healing

DFUs at the single-cell level, highlighting the importance of

endothelial cell immune-mediated capacity in vascular

generation and wound healing. These findings provide new

insights for the treatment of diabetic foot ulcers.
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