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Introduction: Reprogramming of cellular metabolism is now a hallmark of

tumorigenesis. In recent years, research on pancreatic neuroendocrine tumors

(pNETs) has focused on genetic and epigenetic modifications and related

signaling pathways, but few studies have been devoted to characterizing the

metabolic profile of these tumors. In this review, we thoroughly investigate the

metabolic pathways in pNETs by analyzing the transcriptomic and metabolomic

data available in the literature.

Methodology: We retrieved and downloaded gene expression profiles from all

publicly available gene set enrichments (GSE43797, GSE73338, and GSE117851)

to compare the differences in expressed genes based on both the stage and

MEN1 mutational status. In addition, we conducted a systematic review of

metabolomic data in NETs.

Results: By combining transcriptomic and metabolomic approaches, we have

identified a distinctive metabolism in pNETs compared with controls without

pNETs. Our analysis showed dysregulations in the one-carbon, glutathione, and

polyamine metabolisms, fatty acid biosynthesis, and branched-chain amino acid

catabolism, which supply the tricarboxylic acid cycle. These targets are

implicated in pNET cell proliferation and metastasis and could also have a

prognostic impact. When analyzing the profiles of patients with or without

metastasis, or with or without MEN1 mutation, we observed only a few

differences due to the scarcity of published clinical data in the existing

research. Consequently, further studies are now necessary to validate our data

and investigate these potential targets as biomarkers or therapeutic solutions,

with a specific focus on pNETs.

KEYWORDS
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1 Introduction

It has been a century since the 1923 publication of Otto

Warburg’s paper, which first described alterations in cancer

metabolism compared to surrounding healthy tissue (1).

Reprogramming of cellular metabolism has now become a

hallmark of tumorigenesis (2–4) and has been implicated in

tumor initiation, proliferation, metastasis, and chemoresistance

(5–8). However, the main pathways involved in cancer metabolic

plasticity may vary according to cancer type and thus require

specific clarification. These aspects are particularly relevant in the

case of pancreatic neuroendocrine tumors (pNETs), as only a few

studies have explored their metabolism. pNETs are rare tumors,

accounting for only 3%–5% of all cases of pancreatic neoplasms (9),

and they originate from pancreatic hormone-producing cells (islet

cells). Over the past decades, an increased incidence of pNETs has

been observed due to improvements in imaging, endoscopy, and

biomarker detection technologies (9–12). Despite these advances,

overall survival (OS) rates have remained relatively unchanged (10).

pNETs display tumor heterogeneity depending on several

factors: 1) WHO tumor grade, 2) functional status (hormone

secretion), 3) stage, and 4) the genetic and epigenetic molecular

signatures. For example, well-differentiated non-functional pNETs

commonly have mutations in MEN1, ATRX, and DAXX, as well as

activation of specific pathways such as mTOR, contrary to TP53 and

RB1 mutations, which are found in more aggressive pancreatic

neuroendocrine carcinomas (13–21). Many studies on pNETs have

been dedicated to describing genetic or epigenetic abnormalities

and their associated signaling pathways (13, 21–25). However, to

the best of our knowledge, no studies have specifically investigated

the metabolism of pNETs.

In addition to these now increasingly considered aspects, it is

important to study the metabolism of each tumor type and identify

common characteristics to establish metabolomic signatures (or
Frontiers in Endocrinology 02
biomarkers) that can predict the tumor type, its aggressiveness, and

the patient’s prognostic outcome (26). A better understanding of

tumor metabolism would also provide essential information for

developing new therapeutic strategies, which are still lacking in this

field. Several large-scale studies have used transcriptomics to

compare metabolic pathways between cancer and adjacent

normal tissue, as well as between different cancer types showing

dysregulated genes involved in the tricarboxylic acid (TCA) cycle,

oxidative phosphorylation (OXPHOS), and amino acid, fatty acid

(FA), and vitamin metabolism (27, 28). The objective of this review

is to describe the metabolic pathway features of pNETs by analyzing

available transcriptomic and metabolomic data from the

perspective of metabolic genes.
2 Patients and methods

2.1 Transcriptomic data

In the present study, we retrieved and downloaded gene

expression profiles and clinical data (TMN stage and molecular

profile) from all gene expression data series (GSE) datasets available

in the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/) (GSE43797, GSE73338, and

GSE117851). These datasets were used to compare differentially

expressed genes (DEGs) across different pNET datasets using the

GEO2R tool (Figure 1). Only DEGs with an adjusted p-value < 0.05

were included in the analysis.

GSE43797 was used to characterize mRNA expression in well-

differentiated and non-functional pNETs (n = 6, including three

with lymph node extension and two with metastasis) and non-

neoplastic pancreatic tissues (n = 5 showed no evidence of chronic

pancreatitis or preneoplastic lesions) (29). GSE73338 consists of a

large panel of non-functional pNETs (23) (n = 63) from a global
FIGURE 1

GSEA and WebGestalt analysis methodology. In GSE43797, mRNA expression in pNETs (n = 6) and non-neoplastic pancreatic tissues (n = 5). In
GSE73338, we selected 63 non-functional pNETs and 5 normal pancreas samples. In GSE117851, among 47 pNET tumor specimens, 8 presented
with MEN1 mutation and 17 were wild-type. Only DEGs with an adjusted p-value < 0.05 were included. GSEA, gene set enrichment analysis; pNETs,
pancreatic neuroendocrine tumors; DEGs, differentially expressed genes; ADJ, adjusted; MEN1, multiple endocrine neoplasia type 1.
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cohort that is 42% male, with an average age of 53 years (range 17–

78), and an average tumor size of 30 mm. The dataset also included

five normal pancreas samples without chronic pancreatitis or

preneoplastic lesions (22). The MEN1 mutation status was

unknown for GSE43797 and GSE73338. GSE117851, however,

consists of 47 well-differentiated pNETs of WHO grade G1/G2,

includingMEN1 mutations (n = 8) or wild-type mutations (n = 17)

(global cohort: 59% male, average age 52 years [range 26–73],

average tumor size 36 mm) (24). The data were extracted and

annotated. Functional enrichment analysis was conducted using

WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) (http://

www.webgestalt.org/) (30). Gene set enrichment analysis was

carried out with the Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional database, and log-fold changes were used to

rank DEGs. Each target identified by KEGG and WebGestalt was

subsequently studied in the literature to define its functional role.

2.2 Metabolomic data

Metabolites are the final products of cellular regulatory

processes and are the closest -omic layer to the tumor phenotype.

Their levels could thus represent the ultimate response of biological

systems to genetic and environmental changes. As a result, there has

been a growing interest in using metabolomics to identify

biomarkers of tumor phenotypes (31, 32). As part of this study,

we conducted a systematic review of the literature on metabolomic

data in NET to identify dysregulated metabolites.
Frontiers in Endocrinology 03
3 Results

3.1 Data extraction

We identified 9,383 DEGs (adjusted p-value < 0.05) in

pNETs compared with non-neoplastic pancreas samples

using data from GSE43797 (Figure 2A and Table 1). We used

the gene set enrichment analysis (GSEA) computational

method to identify sets of enriched genes (Figure 2B).

Notably, we observed the enrichment of Gene Ontology (GO)

terms corresponding to specific functions (Figure 2C

and Table 1):
- one-carbon metabolism (glycine, serine, and threonine

metabolism) (CBS, GNMT, PHGDH, PSAT1, GCAT,

CTH, AMT, SARDH, SHMT1, and AOC3),

- glutathione metabolism and redox balance (GSTA2, GSTA1,

ANPEP, GSTA5, GGT6, OPLAH, MGST1, CHAC1, SRM,

GST3, IDH2, and GSTP1),

- creatine metabolism (GATM and GAMT),

- polyamine synthesis (SRM),

- fatty acid metabolism and signaling (CPT IC, ELOVL 4-6,

HACD1, ACAA2, HACD3, ABHD17B, and ACLY),

- branched-chain amino acid metabolism (valine, leucine, and

isoleucine degradation) (BCKDHA), and

- signaling pathways (ATF4, CHAC1, and mTOR).
B

C

A

FIGURE 2

Gene set enrichment analysis (GSEA) from patients with non-neoplastic pancreas vs. well-differentiated and non-functional primitive pancreatic
neuroendocrine tumors (GSE43797). (A) Volcano plot of DEGs (log2 fold change). Adjusted p-value < 0.05. (B) GSEA of DEGs using the WebGestalt
tool. (C) Major enrichment GO plots corresponding to metabolism-associated KEGG term. GSEA, gene set enrichment analysis; DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Additionally, we compared pNETs from either men (n = 4) or

women (n = 2) with non-neoplastic pancreatic tissue (gender not

documented in GEO2R) from the GSE43797 dataset. In men, 5,801

were found to be dysregulated, while in women, 3,845 genes were

dysregulated. Both lists had 3,041 DEGs in common.

We also analyzed 63 non-functional pNET and five normal

pancreas samples extracted from GSE73338. In this dataset, we

identified 7,663 genes that were significantly dysregulated
Frontiers in Endocrinology 04
(adjusted p-value < 0.05) (Figure 3A and Table 1). Utilizing

GSEA (Figure 3B and Table 1), we observed an enrichment of

metabolism-associated GO terms, including the following

(Figure 3C and Table 1):
- one-carbon metabolism (glycine, serine, and threonine

metabolism) (GATM, CTH, PHGDH, GCAT, CBS, PSAT1,

GAMT, and AMT),
TABLE 1 Differentially expressed genes in pancreatic neuroendocrine tumors compared with non-neoplastic pancreas tissue.

Dataset pNETs compared with non-
neoplastic pancreas from

GSE43797

pNETs compared with non-neo-
plastic pancreas from GSE73338

pNET patients with or without
MEN1 mutations from

GSE117851

Type of
metabolism

Downregulated
in pNET

Upregulated
in pNET

Downregulated
in pNET

Upregulated in
pNET

Upregulated
in MEN1
pNET

Downregulated
in MEN1 pNET

One-carbon
metabolism

CBS, CTH, GNMT,
PHGDH, PSAT1,

GCAT, AMT, SARDH,
SHMT1

MTRR CBS, CTH, PHGDH,
GCAT, PSAT1, AMT

GSS C1GALT1C1,
HGD, GLS,
GLUD2

Glutathione
metabolism and
redox balance

GSTA2, GSTA1,
ANPEP, GSTA5, GGT6,

OPLAH, MGST1,
GST3, IDH2, GSTT2B

GSTCD GSTA2, MGST1
GSTO4, GSTM4

GSTO1, GSTT2, GPX4 GPX3-4, GLS GSTA1

Creatine
metabolism

GATM, GAMT GATM, GAMT CKB

Polyamine
synthesis

SRM

Fatty acid
metabolism and

signaling

CPT IC, ELOVL
5-6, HACD1,
ACAA2,

ABHD17B, ACLY

ACADS, AACS ELOVL5-6, FADS2 HACD1, ACSM3,
DHRS3

Signaling
pathways

ATF4, CHAC1, mTOR

Branched-chain
amino acid
metabolism

BCKDHB ACADSB, BCAT1,
ACAD8-9, AACS

BCKDHA, MCCC2

TCA
and OXPHOS

IDH2 OGDHL, IDH3,
MDH2

ETFDH NDUFA1,3,7,
NDUFB11, NDUFS7,
ATP6AP1, COX7C,
UQCR11, UQCRQ

Drug
metabolism

AOX1, UGT2A3,
MGST1, CYP2E1,

FMO5, FMO4, MAOB,
CYP1A2, MAOA,
ADH4, CYP2B6,
ADH1B, FMO1

CYP3A5,
CYP4F3, MAOA

cAMP signaling
pathway

GNAI1, ADCY2,
GRIA2, GRIN2C,
RAPGEF4, GNAI2,
MAPK10, SSTR2,
ATP2B1, ATP2A2,
ATP1B2, CALM1,
MYL9, ABCC4,
EDNRA, TNNI3,
RAP1A, ATP1A2,
PIK3R1, CAMK2G,

CREB5
Data from GSE43797, GSE73338, and GSE117851. Targets in black bold are expressed in GSE43797 and GSE73338.
GSE, gene set enrichment; FA, fatty acid; OXPHOS, mitochondrial oxidative phosphorylation; PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle.
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Fron
- glutathione metabolism and redox balance (GSTA2, GSTO1,

GSTO4, GSTM4, and GPX4),

- creatine metabolism (GATM, GAMT, and CKB),

- fatty acid metabolism (ACADS, AACS, and FADS2),

- branched-chain amino acid metabolism (valine, leucine, and

isoleucine degradation) (BCKDHA, ACADSB, BCAT1,

AOX1, ACAD8, and MCCC2),

- drug metabolism (AOX1, UGT2A3, CYP2E1, FMO5, FMO4,

MAOB, CYP1A2, MAOA, ADH4, GSTM4, CYP2B6,

ADH1B, and FMO1),

- cAMP signaling pathway (GNAI1, ADCY2, GRIA2, GRIN2C,

RAPGEF4, GNAI2, MAPK10, SSTR2, ATP2B1, ATP2A2,

ATP1B2, CALM1,MYL9, ABCC4, EDNRA, TNNI3, RAP1A,

ATP1A2, PIK3R1, CAMK2G, and CREB5), and

- TCA cycle (OGDHL, IDH3, and MDH2).
In addition, we compared DEGs in pNETs versus normal

pancreas samples from GSE43797 and GSE73338 and

obtained a common list of 2,193 altered DEGs from

both datasets.
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3.2 Transcriptomic signature
comparison of pNET patients
with or without metastasis

Non-functional pNET transcriptomic samples (n = 63) were

compared with liver metastasis samples from non-functional pNETs

(n = 7) using GSE73338. No differences were found in the previously

mentioned major metabolic families (one-carbon metabolism, fatty

acid synthesis, creatine biosynthesis, TCA, etc.). Only 69 DEGs were

statistically significant (adjusted p-value < 0.05). Among them, a

significant variation in targets impacted in metabolism was observed

(Figure 4): GYS2, NAT8L, TDO2, RDH16, DAO, and DPYS.
3.3 Metabolic signature comparison
of pNET patients with or without
MEN1 mutations

A total of 603 DEGs were extracted from GSE117851 by

comparing non-functional pNETs based on whether or not they

had MEN1 mutations (Figure 5A). GSEA was subsequently
B

C

A

FIGURE 3

Gene set enrichment analysis (GSEA) from patients without pancreatic lesions compared with patients with well-differentiated and non-functional
primitive pancreatic neuroendocrine tumors (GSE73338). (A) Volcano plot of DEGs (log2 fold change). Adjusted p-value < 0.05. (B) GSEA of DEGs
using the WebGestalt tool. (C) Major enrichment GO plots corresponding to metabolism-associated KEGG term. GSEA, gene set enrichment
analysis; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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conducted (Figure 5B) and showed an alteration of metabolism-

associated KEGG GO terms (Figure 5C). In pNETs with MEN1

mutations, an increased normalized enrichment score was

observed (Table 1):
Fron
- one-carbon metabolism (glycine, serine, and threonine

metabolism) (C1GALT1C1, HGD, GLS, and GLUD2),

- glutathione metabolism and redox balance (GPX3-4 and GLS),

- fatty acid metabolism and signaling (HACD1, ACSMB, and

DHRS), and

- other metabolic pathways (in the urea cycle (ASS1), tyrosine

and phenylalanine (HGD), serine and threonine

(C1GALT1C1), oxalate (HAO1), taurine (CDO1), choline

(PEMT) ketogenesis (HMGCS2), glycerol metabolism (GK),

amine metabolism (MAOA), biotin (BTD) and nucleotide

biosynthesis (PRPS1), and glucose metabolism (PCK2))

(Figure 5C).
A decreased normalized enrichment score was noted in

oxidative phosphorylation for NDUFA1, NDUFA3, NDUFA7,

NDUFB11, NDUFS7, ATP6AP1, COX7C, UQCR11, and UQCRQ.
3.4 Metabolomic approaches in NET?

The metabolome of gastroenteropancreatic neuroendocrine

tumors (GEP-NETs) has been explored by very few researchers
tiers in Endocrinology 06
(33–35). In 2013, Kinross et al. (Table 2) were the first to apply a 1H

nuclear magnetic resonance spectroscopic profiling (1H NMR)

technique to analyze urine from a prospective cohort of 28

patients with GEP-NETs (including 8 small intestine NETs (SI-

NETs) and 10 pNETs) (33). They observed a decrease in the

concentration of creatine, citrate, and hippurate in the urine of

patients with GEP-NETs compared with controls. Another study by

Imperiale et al. (2019) (Table 2) focused on SI-NETs, related hepatic

metastases, and normal SI pathological tissues, using 1H-magic

angle spinning (HRMAS) NMR spectroscopy (34). They identified

and quantified 27 metabolites and observed that SI-NETs were

characterized by higher concentrations of succinate, glutathione,

taurine, myoinositol, and glycero-phosphocholine. SI-NET samples

with aggressive profiles had lower concentrations of glucose, serine,

and glycine and increased levels of choline-containing compounds,

taurine, lactate, and alanine. Liver metastases were differentiated

from normal hepatic parenchyma based on a higher abundance of

acetate, succinate, choline, phosphocholine, taurine, lactate, and

aspartate. In comparison, higher levels of alanine, ethanolamine,

glycerol-phosphocholine, and glucose were found in hepatic

metastases when compared with primary SI-NETs.

Finally, in a recent study, Soldevilla et al. (2021) (Table 2)

analyzed and profiled plasma samples from 77 NET patients and

68 controls using gas chromatography–mass spectrometry (GC-

MS), capillary electrophoresis–mass spectrometry (CE-MS), and

liquid chromatography–mass spectrometry (LC-MS) untargeted

metabolomics (35). They observed 32 enriched metabolic

pathways in NET related to the TCA cycle and amino acid
B

A

FIGURE 4

Gene set enrichment analysis (GSEA) from patients without metastasis. Well-differentiated, non-functional pNETs compared with metastatic non-
functional pNETs (GSE73338). (A) Volcano plot of DEGs (log2 fold change). Adjusted p-value < 0.05. (B) GSEA of DEGs using the WebGestalt tool.
DEGs, differentially expressed genes.
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metabolism. Among the 32 significant pathways, the most

enriched ones were as follows: arginine biosynthesis, alanine,

aspartate, and glutamate metabolism; arginine and proline

metabolism; glyoxylate and dicarboxylate metabolism;

glutathione metabolism; aminoacyl-tRNA biosynthesis; pyruvate

metabolism; and the TCA.
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4 Discussion

In this study, we analyzed available transcriptomic and

metabolomic data to investigate the role of metabolism in pNETs.

Given the central role of gene expression in influencing phenotypes,

transcriptome analysis provides valuable insights into phenotypic
TABLE 2 Differentially expressed metabolites in neuroendocrine tumors compared with controls.

NET patients compared with controls NET patients with metastasis compared with
primitive NET

Study
Sample type
Pathological
subtypes

Increased Decreased Increased Decreased

Kinross et al., 2013
(33)
Urine

GEP-NET

Creatine, citrate,
hippurate

Hippurate

Imperiale et al.,
2019 (34)

Tumor sample
SI-NET

Succinate, glutathione, taurine, myoinositol,
glycerophosphocholine

Creatine, alanine,
ethanolamine,

aspartate

Choline, glycerophosphocholine,
ethanolamine, aspartate, tryptophan,

isoleucine, valine, alanine, lactate, ascorbate,
arginine, creatine

Serine, acetate,
NAA, fumarate,
tyrosine, glucose,

serine
glutamine

Soldevilla et al.,
2021 (35)
Plasma

Patients with NET

Arginine, 1-methyladenosine, biliverdin, 5-
hidroxyindolacetic acid, 15-hidroxyeicosatetraenoic
acid, ursodeoxycholic acid, ursodeoxycholic acid 3-

sulfate

Linoleoylcarnitine,
oleoylcarnitine,
sphingosine-1-
phosphate
Targets in bold are expressed in two distinct studies.
B

C

A

FIGURE 5

GSEA comparing pNET wild-type patients with NEM1-mutated pNET patients. Gene set enrichment analysis (GSEA) from patients with wild-type,
well-differentiated, and non-functional primitive pNETs compared with NEM-mutated patients (GSE117851). (A) Volcano plot of DEGs (log2 fold
change). Adjusted p-value < 0.05. (B) GSEA of DEGs using the WebGestalt tool. (C) Major enrichment GO plots corresponding to metabolism-
associated KEGG term. GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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oncological variability. An important advantage over genomic or

proteomic approaches is that metabolomic data include

contributions from gene–environment interactions, such as drug

effects, dietary influences, and microbiota activities. These factors

are known to either be responsible for oncogenesis or to

significantly influence the efficacy and toxicity of oncological

treatments (36–39).

The primary objective of this integrative analysis was to identify

the metabolic pathways expressed differently between patients with

pNET and those with healthy tissue. As expected, from a

transcriptomic perspective, pNETs exhibited a loss of physiological

functions, particularly related to pancreatic secretion (Figures 2B and

3B). In addition, a neuronal signature was observed in pNETs,

including axon guidance, serotoninergic synapse, and cholinergic

synthase, validating our analyses. Furthermore, we observed a

significant variation in lipid metabolism. Altered lipid metabolism

is an emerging hallmark of tumors, as proliferating cancer cells

undergo reprogramming of fatty acid uptake, synthesis, and

storage. In addition, cancer cells need lipids for energy production

and the biosynthesis of membrane components (40–42) (Figure 6). In

the transcriptomic analysis, a significant enrichment in fatty acid

synthesis (ELOVL 4-6, HACD1 and 3, ACAA2, ABHD17B, ACLY,

and FADS2) in pNET tissues was observed when compared with

controls (Figures 2, 3, 6, and Table 1). Our findings are consistent

with the observations of Soldevilla et al. (2021), who identified 155

differential metabolites using a multiplatform non-targeted

metabolomic approach that provided broad coverage of the
Frontiers in Endocrinology 08
metabolome. They observed that fatty acids were the second most

abundant biochemical class following amino acid derivatives (35). In

addition to a family history of NET, epidemiological evidence from

observational studies suggests that a higher body mass index and type

2 diabetes are important risk factors for NET oncogenesis,

independent of the NET origin (43–46). However, to the best of

our knowledge, no study has focused on the link between obesity,

pancreatic fatty acid infiltration, and progression-free survival (PFS)

or OS in pNETs. In challenging microenvironment conditions, such

as those in oncogenesis, acetyl-CoA upregulates fatty acid synthesis to

create favorable conditions for cell survival, proliferation, metastasis,

and stress resistance (40, 47). Fatty acid metabolism should therefore

be considered a valid target in pNET patients with this profile. For

example, targeting FASN (with the FASN inhibitor TVB-2640) or

ACLY (with the acyl inhibitor SB-204990) has shown anticancer

effects in some preclinical models, and this approach is currently

being tested as anticancer therapies in clinical trials (48).

Interestingly, Orlistat, a FASN inhibitor, has been shown to inhibit

the progression of pNETs by inducing ferroptosis (49).

Another significant aspect of metabolic cancer cell

reprogramming is one-carbon metabolism, which is useful for

methylation reactions, the generation of reducing cofactors, and

nucleotide and creatine biosynthesis (50–52). In the two GSE

datasets comparing normal and pNET samples, enrichment of

targets involved in one-carbon metabolism was observed,

particularly those involved in serine synthesis (PHGDH and

PSAT1), glycine synthesis (GCAT AMT), and glutathione
FIGURE 6

Schematic overview of pNET metabolism after integrative biology analysis. Color codes are defined as follows: green, enzymes or transporters
implicated in pNET metabolism; blue, metabolites; yellow, metabolic pathway; red boxes, signaling pathways; black boxes, functional cellular
mechanisms. 3PG, 3-phosphoglycerate; AOX1, aldehyde oxidase 1; AMT, aminomethyltransferase; ACLY, ATP citrate lyase; AACS, acetoacetyl-CoA-
synthetase; ACADS, acyl-CoA dehydrogenase short chain; ACADSB, acyl-CoA dehydrogenase short/branched chain; ACAD8, acyl-CoA
dehydrogenase family member 8; ATF4, activating transcription factor 4; BCAT1, branched chain amino acid transaminase 1; BCKDHs, branched
chain keto acid dehydrogenase; CBS, cystathionine beta-synthase; CHAC1, ChaC glutathione specific gamma-glutamylcyclotransferase 1; CTH,
cystathionine gamma-lyase; CPT1C, carnitine palmitoyltransferase 1C; ELOVLs, elongation of very long-chain fatty acid proteins; FADS2, fatty acid
desaturase 2; GAMT, guanidinoacetate N-methyltransferase; GATM, glycine amidinotransferase; GLUT1, glucose transporter 1; GSS, glutathione
synthetase; GSTA1,2, 5, glutathione S-transferase alpha 1,2,5; HACD1, 3-hydroxyacyl-CoA dehydratase 1; IDH3, isocitrate dehydrogenase 3; MCCC2,
methylcrotonyl-CoA carboxylase subunit 2; MDH2, malate dehydrogenase 2; MTRR, 5-methyltetrahydrofolate-homocysteine methyltransferase
reductase; mTOR, mechanistic target of rapamycin; MUFAs, monounsaturated fatty acids; NADPH, nicotinamide adenine dinucleotide phosphate;
OGDHL, oxoglutarate dehydrogenase L; PHGDH, phosphoglycerate dehydrogenase; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen
species; SAM, S-adenosyl methione; dcSAM, decarboxylated SAM; SAH, S-adenosylhomocysteine; SFA, saturated fatty acid; SHMT1, serine
hydroxymethyltransferase 1.
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synthesis (CBS and CTH). Interestingly, Soldevilla et al. (2021)

showed increased plasma concentrations of leucine, glycine, and

serine in patients with NETs compared with controls (Table 2) (35).

Excessive activation of serine/glycine biosynthesis drives

tumorigenesis and provides a single-carbon unit for one-carbon

metabolism and the necessary creatine biosynthesis. Interestingly,

both Kinross et al. (2013) and Imperiale et al. (2019) have

independently shown, using different methodological analyses,

that the level of creatine was lower in NET samples (urine and

tumor samples) from patients with NETs (Table 2) (33, 34).

Considering the importance of creatine metabolism in cancer cell

survival, metastasis (through smad2/3), and immune evasion, it

could be a potential target in pNET (53, 54). The activation of one-

carbon metabolism also involves the methionine cycle and thus

polyamine biosynthesis, wherein one of the key enzymes (SRM) was

found to be upregulated in GSE43797 (Table 1 and Figure 6). This

finding is consistent with the plasma metabolomic analysis carried

out by Soldevilla et al. (2021), where an increase in acetylspermidine

polyamine was observed, illustrating the relevance of polyamine

metabolism in NETs. Furthermore, glutathione metabolism, which

is also influenced by one-carbon metabolism, plays a vital role in

providing a stronger antioxidant capacity to survive in a more

oxidative environment due to the sharp rise in ROS generation in

cancer cells (55). Our analysis of pNET patients compared with

controls also showed dysregulation of glutathione metabolism

targets (GSTA2, various GSTs, and GPX4) (Figure 6). These

enzymes are useful for protecting cancer cells against H2O2-

induced cell death and ferroptosis, as they compensate for the

elevated ROS stress and confer resistance to a number of

chemotherapeutic agents (49, 56–59). Interestingly, glutathione

was found to be characteristic and more abundant in SI-NETs

compared with normal small intestine tissue in the Imperiale study

and in GEP-NET plasma samples in the Soldevilla study (34, 35).

This suggests that higher glutathione metabolism may be present in

GEP-NETs and therefore appears to be a pathway of interest.

Finally, in our analysis, we observed TCA cycle alterations in pNET

and GEP-NET when compared with control patients without NETs

whether in transcriptomic analyses (OGDHL, IDH3, and MDH1) or

metabolomic approaches (succinate or isocitrate/citrate alterations)

(Figures 2, 3, 6, and Table 1). Metabolism fueling the TCA cycle,

such as fatty acid oxidation and branched-chain amino acid (alanine,

leucine, and isoleucine) metabolism, were also found to be altered. In

terms of fatty acid oxidation, we observed an increase in CPT1 and

ACADS expression in the two GSE datasets comparing normal

pancreas and pNETs, contributing to an increase in acetyl-CoA,

which provides an energy supply for the TCA cycle. After

transcriptomic analysis, branched-chain amino acid targets were also

increased in pNET samples (BCKDHB). These branched-chain amino

acids are metabolized in the mitochondria into ketoacids, generating

succinyl CoA and acetyl-CoA for oxidation by the TCA cycle (Figure 6)

(60). Describing the alterations of the TCA cycle in NETs more

precisely is important to better understand the oncogenesis of these

tumors and to consider new therapeutic approaches that directly target

these metabolites (61).

The second objective was to identify the metabolic pathways

expressed differently between primary pNETs and metastasis.
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Unfortunately, only one GSE dataset, which included a limited

number of metastatic patients, was available for this analysis,

therefore yielding few results. Despite this limitation, we observed

little difference between the primitive pNET tissues and metastatic

pNET tissues, which may suggest common metabolic characteristics.

We only observed enrichment in targets implicated in amino acid

metabolism, notably with regard to tryptophan (TDO2, DAO, and

DPYS). This finding was also confirmed in the study by Imperiale et al.

(2019), where tryptophan was found to be higher in liver metastasis

compared with primitive SI-NETs. It is well-known that tumors use

tryptophan and its metabolites to promote their growth and metastasis

and evade host defenses. Therefore, studying this pathway in pNETs

could be particularly interesting (62, 63). Additionally, fatty acid

metabolism (RDH16) was also found to be upregulated in our study.

Imperiale et al. (2019) also observed higher levels of acetate, which can

be considered an index of fatty acid synthesis following beta-oxidation

of acetyl-CoA, in aggressive SI-NETs, thus confirming the significance

of fatty acid metabolism in NETs as well as in different cancers (34, 64,

65). Moreover, an enrichment in other metabolomic targets was

identified (GYS2 and NAT8L), which are potential targets as in other

cancers (66–69).

Our last objective was to identify the metabolic pathways that are

differently expressed in pNET patients based on the presence or

absence of germinal MEN1 mutation. Interestingly, we observed a

differential expression in mRNA implicated in OXPHOS (NDUFA1,

NDUFA3, NDUFA7, NDUFB11, NDUFS7, ATP6AP1, COX7C,

UQCR11, UQCRQ, and NAMPT). We found an association between

MEN1 status and genes involved in OXPHOS. This association was

further supported by a recent article demonstrating that MEN1

regulates the expression of genes involved in OXPHOS and

glycolysis to coordinate cellular response for energy production (70).

To the best of our knowledge, nometabolomic study has addressed this

question, but it is an important research point that should be developed

further to better understand the differences between pNETs with and

withoutMEN1mutations. Recently, Fahrmann et al. reported a plasma

acetylated polyamine metabolite signature (N-acetylputrescine,

acetylspermidine, and diacetylspermidine) associated with MEN1-

duodenopancreatic NET disease progression. However, no

overexpression of polyamine pathway mRNAs was observed in

metastatic MEN1 patients (71, 72).

Using duodenopancreatic NET transcriptomic analysis to focus on

prognosis, as was done in the Diedisheim study (25), we observed that

the targets associated with TCA were associated with poor (OGDHL)

or intermediate (IDH and MDH1) outcomes. Targets implicated in

fatty acid metabolism were associated with both poor outcomes

(FASN) and better outcomes (ELOVL4, ACLY, and AACS). Targets

implicated in amino acid metabolism were associated with poor

outcomes (SHMT1), intermediate outcomes (GATM, CBS, GNMT,

PHGDH, AMT, GCAT, AOC3, BCAT1, and ACADS), or better

outcomes (AOX1 and AACS). Targets implicated in glutathione

metabolism were associated with poor outcomes (GSTA1 and

MGST1) and intermediate outcomes (GSTA2, ANPEP, OPLAH,

SRM, IDH2, GSTP1, GSTO1, and MAOB). Similarly, a recent proteo-

transcriptomic classification of pNETs showed that several different

metabolic targets were overexpressed in the pNET proliferative

subgroup: PHGDH, SDMT1, MGST1, and FASN (73).
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Our original analysis suggests that integrating transcriptomics

with metabolomics can provide insights into how metabolites are

regulated and can elucidate targetable functional mechanisms.

However, this study has several limitations. First, RNA

sequencing approaches allow comparison of the quantitative

expression of the genes of interest and can therefore provide an

idea of intratumoral metabolism. However, they do not precisely

describe its functioning, as they completely ignore the influence of

epigenetics and other mechanisms that can impact the functioning

of the studied enzymes. Additionally, these approaches do not take

into account the metabolism of non-cancer stromal and

immune cells.

Second, metabolites represent the end product of gene expression.

Metabolomic analysis is therefore the most precise methodology for

defining the metabolic functioning of pNETs. However, the only

publications using metabolomic analysis were from studies

conducted in all types of NETs and not specifically in pNETs,

despite the well-known importance of the primitive organ in

defining the metabolic nature of the tumor, which also depends on

the tumor grade; these details were not described in these GSE datasets

(74). In addition, these metabolomic studies used various sample types,

including tumor, urine, and plasma, which provided different sets of

information. To comprehensively understand the molecular

heterogeneity in pNETs (75, 76), further studies combining single-

cell RNA sequencing and metabolomic approaches in tumor samples

are necessary, as has been previously suggested (7, 23).

Integrative biology, combining transcriptomic and metabolomic

approaches, demonstrates a distinct metabolic profile in pNETs

characterized by dysregulation of one-carbon metabolism and

glutathione metabolism, and fatty acid biosynthesis, which facilitate

cancer cell proliferation as well as fatty acid oxidation and branched-

chain amino acid catabolism, which supply the tricarboxylic acid cycle.

These targets are implicated in signaling pathways such as the

unfolded protein response and mTOR pathways, which are also

associated with pNET cell proliferation and metastasis. The targets

highlighted in this study make it possible to differentiate patients

with or without pNETs and could also serve as prognostic

indicators. However, further studies are now needed to validate

these findings and to explore these targets as potential biomarkers

or therapeutic options specifically tailored for pNETs.
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