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Inflammatory bowel disease (IBD) has been referred to as the “green cancer,” and

its progression to colorectal cancer (CRC) poses a significant challenge for the

medical community. A common factor in their development is glycolysis, a crucial

metabolic mechanism of living organisms, which is also involved in other diseases.

In IBD, glycolysis affects gastrointestinal components such as the intestinal

microbiota, mucosal barrier function, and the immune system, including

macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked

to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-

activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and

transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus,

a comprehensive study of glycolysis is essential for a better understanding of the

pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the

role of glycolysis in diseases, particularly IBD and CRC, via its effects on the

intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription

factors and some therapeutic strategies targeting glycolytic enzymes.
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1 Introduction

There has been increasing interest in studying the differences between tumor tissue

metabolism and normal tissue metabolism, also known as metabolic reprogramming (1)

This reprogramming mainly involves lipid metabolism (2), amino acid metabolism (3), and

glycolysis (4). Among them, glycolysis is closely related to the energy metabolism of tumor

cells, as first discovered by Professor Otto H. Warburg in the 1920s (5). He found that the

metabolism of tumor cells differs from that of normal cells, which generally only undergo

glycolysis for energy production under hypoxia. In a normal oxygen environment, the

more efficient oxidative phosphorylation pathway (OXPHOS) provides energy.
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Interestingly, tumor cells with high energy demand still choose

glycolysis as the main energy supply pathway even under hypoxic

conditions, a phenomenon known as the Warburg effect (6). Nearly

a century has passed since this discovery, and as research continues,

the Warburg effect is more accurately understood. Contrary to the

initial view of Warburg’s paper, the enhanced glycolysis in tumor

cells is not a result of compensation for differential energy

production by abnormally functioning mitochondria. Instead, it is

due to the high expression of HIF-1, the activation of oncogenes, the

mutation of oncogenes, and the action of related signaling pathways

(7). Studying the mechanisms behind it could clarify the role of

glycolysis in related diseases.

Inflammatory bowel diseases (IBD) are chronic, non-specific

inflammatory diseases of the intestinal system that are still being

explored for better understanding in terms of their etiology and

pathogenesis. The two main types of IBD are ulcerative colitis (UC)

and Crohn’s disease (CD) (8). IBD is a global disease with varying

epidemiological characteristics in different regions. Since 2020, IBD

has been in the ‘Acceleration in Incidence stage’ in most newly

industrialized countries in Asia and Latin America, with the

incidence increasing more rapidly (9). IBD is characterized as an

indolent and recurrent disease and radical drug therapy has not yet

been established, leaving some patients in a state of lifelong disease.

Furthermore, patients with IBD have a higher risk of developing

colorectal cancer (CRC), also known as colitis-associated colorectal

cancer (CAC) (10, 11). According to the most recent data published

by the American Cancer Society in 2022, CRC is one of the three

most prevalent cancers and has one of the largest racial disparities

in treatment outcomes (12). Patients with CRC have a high

mortality rate and are the third most common cause of cancer

deaths worldwide, with nearly one million deaths per year (13). The

application of current therapies in the clinical treatment of IBD

does not completely relieve the symptoms of the disease (14), and

new treatments are being researched and validated (15).

The regulation of the glycolytic pathway, an important

mechanism in both intestinal inflammation and tumors, is one of

the therapeutic targets in IBD and CRC (16). We review the general

role of glycolysis in diseases, focusing on its effects on key

gastrointestinal components such as microbiota, immunity,

barrier integrity, and signal molecules. Further investigation of

the molecular mechanisms involved in these regulations could

help explore and discover effective therapeutic targets for IBD

and CRC.
2 Glycolysis

2.1 Process and significance

Sugar metabolism in organisms involves several processes, such

as glycolysis, aerobic oxidation, pentose phosphate pathway, and

glycogen synthesis and catabolism. Glycolysis, in particular, is the

process of breaking down glucose or glycogen to produce lactate

and energy under relatively anoxic conditions. This process can be

divided into two stages: the first stage converts glucose or glycogen
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into pyruvate through the action of various enzymes, and the

second stage reduces pyruvate to lactate via lactate dehydrogenase

(LDH) activity. Through this process, one molecule of glucose can

produce two molecules of ATP (17). Three key enzymes namely,

hexokinase (HK), phosphofructokinase-1 (PFK1), and pyruvate

kinase (PK) determine the rate of reaction in the specific

biochemical process: (Figure 1). Although the entire reaction

process is mostly reversible, the three key enzymes catalyze

irreversible reactions. Glucose transporters are also crucial for

glycolysis since they are responsible for transporting glucose, the

raw material, across membranes. Around 14 different glucose

transporters have been identified, among which GLUT1 is widely

expressed in human tissues and organs and serves as the primary

glucose transporter (18). Although glycolysis produces less energy

compared to the aerobic oxidation of sugar, it plays an important

role in living organisms and has unique and significant

physiological significance. In times of relative hypoxia, such as

during strenuous exercise like rock climbing, where the oxygen

supply is relatively inadequate, muscle tissue heavily relies on

glycolytic processes for energy supply (19). Some cells or tissues,

such as mature red blood cells, retina, and renal medulla, also rely

heavily on glycolytic processes for energy supply under

aerobic conditions.
2.2 Glycolysis-associated diseases

Glycolysis has an important impact on the physiological

functions and disease processes of living organisms. The

glycolytic process provides the energy required by organisms and

is the basis for their survival and activity. However, in some

diseases, abnormalities in the glycolytic process may lead to the

disruption of physiological functions and adversely affect the

organism. Changes in glycolysis in some representative diseases

are shown in Table 1 below.

2.2.1 Metabolic diseases
As a metabolic process, glycolysis is of great importance in

metabolic diseases. A typical example of a metabolic disorder is

Diabetes mellitus, which is characterized by hyperglycemia caused

by multiple factors. Diabetes can be divided into two main types,

type 1 and type 2 diabetes, and 90% of patients are diagnosed with

type 2 diabetes (34). Type 2 diabetes is a serious public health

problem. Although a decrease in pancreatic b-cells is observed in

type 2 diabetes, it is not sufficient to explain the decrease in insulin

secretion, which is mainly due to altered pancreatic b-cell
metabolism and impaired cell function (35, 36). Studies have

shown (20) that glycolysis is one of the most significantly

upregulated metabolic pathways in type 2 diabetic islets, and

many glycolysis-related enzymes show significant elevations at

both protein and mRNA levels. These results are also observed in

a Goto-Kakizaki (GK) rat model (37). Some glycolysis-related

metabolites, such as hexose monophosphate, 3-phosphoglycerate,

and lactate, have been found to have a high correlation with the risk

of type 2 diabetes (38).
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TABLE 1 Changes and effects of glycolysis in various diseases.

Disease
classification

Disease Name
Glycolysis variation

trend
Key effects References

Metabolic diseases Type 2 diabetes ↑ Reduces insulin release; Impairs b-cell metabolism (20)

Neurological
diseases

Alzheimer’s Disease ↓ Impairs l-serine biosynthesis pathway; Synapse loss (21)

Parkinson’s disease ↓ Decreases brain ATP levels; Neuron loss (22)

Vascular disease

Atherosclerosis ↑
Promotes endothelial cell proliferation; Protects endothelial

barrier integrity
(23)

Calcific aortic valve
disease

↑ Promotes valve calcification (24)

Ocular neovascular
diseases

↑ Promotes ocular neovascularization (25)

Neoplastic Disease

Gastric cancer ↑ Promotes growth and migration (26)

Pancreatic cancer ↑ Promotes growth and migration (27)

Breast cancer ↑ Promotes growth and migration (28)

Colorectal cancer ↑ Promotes growth and migration (29)

Prostatic cancer ↑ Promotes growth and migration (30)

Digestive Diseases

Inflammatory bowel
disease

↑ Proinflammatory (31)

Colorectal cancer ↑ Promotes growth and migration; Induced resistance
(32)
(33)
F
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FIGURE 1

The key biochemical process of glycolysis. Glucose located outside the cell enters the cell through the glucose transporter (GLUT). Glucose reacts
with glycolytic enzymes such as hexokinase (HK), phosphofructokinase-1 (PFK-1) & pyruvate kinase (PK) to provide energy to the cell. The whole
glycolytic process can be divided into the energy dissipation stage and the energy generation stage.
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2.2.2 Neurological diseases
Glycolysis is also implicated in neurological disorders.

Alzheimer’s disease (AD) is a progressive neurological disorder

characterized by memory loss and cognitive dysfunction. In the

early stages of AD, reduced glycolysis is commonly observed, and

impaired glycolytic metabolism due to reduced glycolytic flux may

be inherent to the pathogenesis of AD (21). Glial cells, which are

closely associated with AD (39), utilize the glycolytic intermediate

3-phosphoglycerate to produce the amino acid l-serine. Reduced

glycolysis leads to a corresponding decrease in l-serine synthesis, as

demonstrated in mouse models of AD and AD patients (21, 40).

Additionally, glycolysis plays a critical role in the treatment of

Parkinson’s disease, and terazosin has been shown to activate the

enzymatic activity of phosphoglycerate kinase 1 (PGK1) (22, 41).

This activation increases the production of pyruvate, a glycolytic

product, which further stimulates oxidative phosphorylation,

mitochondrial activity, and ATP production. These changes may

have a direct impact on the pathophysiology of PD.

2.2.3 Vascular diseases
Glycolysis is also relevant in the study of various vascular

diseases. Atherosclerosis (AS) is a common vascular disease, and

among many causative factors, endothelial cell injury in arteries is

considered a major trigger for its development (42). Endothelial cell

proliferation relies mainly on glycolysis for energy supply to meet

the energy requirements for growth. Reducing glycolysis by

knocking down pharmacological activation of the protein kinase

AMP-activated a1 (PRKAA1) in endothelial cells blocks

endothelial cell proliferation and accelerates atherosclerotic lesion

formation in hyperlipidemic mice. Conversely, upregulating solute

carrier family 1 member 2 (SLC1A2) expression enhances impaired

glycolysis in PRKAA1-deficient endothelial cells, leading to

enhanced endothelial cell viability, endothelial cell barrier

integrity, and reversal of atherosclerotic susceptibility (23).

Glycolytic metabolism also provides important directions in drug

development and mechanistic studies of calcific aortic valve disease

(24), and ocular neovascular disease (25).

2.2.4 Neoplastic diseases
Glycolysis is a major focus of research in various tumors and a

popular subject of study. The effect of glycolysis on tumors is

complex. On one hand, the metabolism of tumor cells is

characterized by a high growth rate and high metabolism,

requiring a large amount of energy, making glycolysis an

important process in tumors. On the other hand, the glycolytic

pathway of tumor cells is usually abnormal, leading to an increased

demand for sugar in tumor cells, while the metabolism of normal

cells is suppressed (43, 44). Wang et al. (26) found that forkheadbox

O4 (FOXO4) could inhibit the rate of glycolysis in gastric cancer

cells by directly inhibiting the glycolytic enzyme lactate

dehydrogenase (LDH) A and identified the HIF-1a-FOXO4-

LDHA axis. Highly active glycolysis in pancreatic cancer produces

a large number of metabolites and drives tumor cell invasion and

migration. Important enzymes and intermediates in the glycolytic

process can affect the metastasis of pancreatic cancer by
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participating in signal transduction or epigenetic regulation

related to epithelial-mesenchymal transition (EMT), angiogenesis,

and colonization (27, 45). In studying breast cancer-related

mechanisms, Jiang et al. (28) found that Zeb1 mobilizes glycolytic

activity through the PI3K/Akt/HIF-1a signaling axis, driving the

formation of an immunosuppressive tumor microenvironment

(TME). The expression of Zeb1 was positively associated with

glycolytic dysregulation and the accumulation of M2-like tumor-

associated macrophages (TAMs). Moreover, glycolysis is being

intensively investigated in numerous other cancers, such as CRC

(29) and prostate cancer (30).

2.2.5 Digestive diseases
Digestive system diseases are a major threat to human health.

According to relevant epidemiological statistics, digestive system

diseases exist in more than one-third of epidemic cases (46). The

relatively high incidence means that digestive diseases represent a

significant public health burden. Therefore, the related research on

digestive system diseases is of great significance. IBD and CRC are

serious diseases closely related to the digestive system, and their

causes are complex and diverse, including metabolic factors.

Glycolysis, a key metabolic pathway, has been found to play an

important regulatory role in both diseases. In subsequent parts of

this paper, the regulation mechanism of glycolysis in IBD and CRC

is expounded to provide more inspiration for the research and

treatment of these diseases.
3 Role of glycolysis in IBD

Glycolysis plays a vital role in supporting the growth and

metabolism of intestinal microbiota by producing energy and

metabolites. However, the composition of the intestinal

microbiota in patients with IBD differs in structure from that of

healthy individuals, which can negatively affect the balance of

intestinal homeostasis. For instance, alteration in the intestinal

microbiota impacts the synthesis of short-chain fatty acids

(SCFAs), which play an essential role in maintaining intestinal

health. Moreover, glycolysis has a crucial role in regulating immune

system functions. The glycolytic metabolic pathway can regulate the

polarization of macrophages, which affects their activation status

and cellular function. Glycolysis is also involved in the regulation of

neutrophil, dendritic cell, and T cell populations and their cellular

functions. Additionally, glycolysis has a unique mechanism for

intestinal barrier function (Figure 2).
3.1 Effects of glycolysis on
intestinal microbiota

IBD is a chronic inflammatory disease with its pathogenesis not

fully understood. The human intestinal microbiota is a complex

ecosystem that plays a crucial role in host physiology, including the

regulation of immune responses. Dysbiosis of the intestinal

microbiota, characterized by changes in microbial composition
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and diversity, is usually associated with the development of IBD

(47). Targeted treatment of the intestinal microbiota may be an

effective way to treat IBD (48). The species diversity of intestinal

microbiota in patients with IBD is lower than that in healthy people.

There are phylum-level decreases in Firmicutes (Faecalibacterium),

Bacteroides (Bacteroides), and Fusobacteria, and increases in

Proteobacteria (adherent invasive E. coli), Actinobacteria, and

Verrucomicrobia (49–51). Members of the Firmicutes produce

short-chain fatty acids (SCFAs), important metabolites for

maintaining intestinal homeostasis. SCFAs are the main bacterial

metabolites produced by specific colonic anaerobic bacteria after

fermentation of dietary fiber and resistant starch and mainly

include acetate, propionate, and butyrate. Members of the

Bacteroidetes mainly produce acetate and propionate and

members of the Firmicutes mainly produce butyrate in the

human intestine (52–54). The role of SCFAs in the prevention

and treatment of IBD is increasingly recognized (55), and their

inhibitory effect on the growth of Salmonella typhi, pathogenic

Escherichia coli, and Clostridium difficile has been demonstrated

(56). Regulation of SCFA production and transport is essential for

maintaining the balance of the intestinal microbial community and

host immunity. The process of SCFA production involves the
Frontiers in Endocrinology 05
metabolism of dietary fiber by the intestinal microbiota and

several enzymes and transporter proteins, with glycolysis playing

an important role.

Glycolysis is the process of catabolizing glucose into pyruvate,

which can be further metabolized to produce SCFAs. Pyruvate is

converted to acetyl coenzyme A, which serves as a feedstock

substrate for the biosynthesis of acetate, propionate, and butyrate.

The activity of glycolysis can be regulated by various factors,

including the expression of genes encoding enzymes involved in

the process. Pyruvate kinase M2 (PKM2) is a crucial glycolysis-

related enzyme and mediator of the inflammatory process. Serum

PKM2 levels are six-fold higher in patients with IBD than in healthy

population controls (57). PKM2 upregulation increases glycolytic

activity and provides more raw material for the synthesis of SCFAs.

However, the production of SCFAs is usually lower in IBD patients

than in healthy populations due to changes in the composition of

the intestinal microbiota and reduced dietary fiber intake.

Modulation of glycolysis and SCFA production is a promising

avenue for the development of new treatments for IBD (58).

Biological agents such as prebiotics can be considered to promote

the growth of SCFAs-producing bacteria in the gut, thereby

alleviating IBD symptoms.
FIGURE 2

The role of glycolysis in IBD. Patients with IBD have a change in the structure and abundance of the intestinal microbiota, with phylum-level
decreases in the Firmicutes & Bacteroides but increases in Proteobacteria. This leads to a decrease in the production of short-chain fatty acids
(SCFAs), which have the function of promoting the intestinal barrier. Moreover, glycolysis has a crucial role in regulating immune system functions.
For example, T Lactate, a product of glycolysis, can contribute to the M1 phenotype polarization by promoting NLRP3 activation. Glycolysis is also
involved in the regulation of neutrophil, dendritic cell, and T cell populations.
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3.2 Effects of glycolysis on the
immune system

The glycolytic pathway has an important impact on the

activation and regulation of the immune system, especially in the

context of IBD. As a metabolic process, glycolysis has the potential

to regulate the immune system and changes in glycolysis can cause

alterations in the immune system response. This may lead to the

development of IBD, which is characterized by chronic

inflammation of the intestine. Glycolysis affects important

immune cells, such as macrophages, neutrophils, dendritic cells,

and regulatory T cells.

3.2.1 Macrophages
Macrophages are an important class of immune cells, and their

role in IBD is significant. They are distributed in the submucosal

tissues of the intestine and play a key role in the immune response

of the intestinal mucosa (59). In the intestinal inflammatory

response, macrophages can enhance the inflammatory response

by inducing the release of multiple cytokines and inflammatory

mediators. In the M1 polarized state, macrophages produce various

pro-inflammatory cytokines such as IL-1b, IL-6, and TNF-a (60),

which exacerbate the inflammatory response. In contrast, in the M2

polarized state, macrophages secrete anti-inflammatory cytokines

such as IL-10 and TGF-b (61, 62), promoting tissue repair. During

IBD, an imbalance of oxygen supply and demand in the mucosal

microenvironment leads to severe hypoxia at the inflamed site (63).

In a hypoxic environment, macrophages undergo metabolic

reprogramming to meet energy demands, especially in M1

macrophages, their focus shifts from oxidative phosphorylation

metabolism to aerobic glycolysis (64).

Glycolysis plays an important role in macrophage polarization.

The glycolytic product, lactate, affects macrophage polarization, and

PYD domains-containing protein 3 (NLRP3) inflammasome

mediates macrophage polarization in innate immunity. NLRP3

activation requires glycolytic downstream metabolism, including

lactate fermentation and pyruvate oxidation (65). In one study, it

was found that an imbalance in M1/M2 macrophage polarization

caused by increased M1- and decreased M2-type macrophage, is

involved in the development of IBD (66). In LPS and IFN-g
stimulated bone marrow-derived macrophage (BMDM) cell

models of inflammation, mRNA expression of glycolytic enzyme

genes, including glucose transporter protein 1 (GLUT1), enolase 1

(ENO1), pyruvate kinase (PKM), pyruvate dehydrogenase kinase 1

(PDK1 ) , a ldolase , lactate dehydrogenase A (LDHA) ,

phosphoglycerate mutase (PGAM), phosphofructokinase (PFK),

and glyceraldehyde-3-phosphate dehydrogenase (GhAPDH) were

significantly elevated, indicating that glycolysis in macrophages is

significantly elevated in the IBD state. Further studies revealed that

the HIF-1a/glycolytic axis was responsible for inhibiting

macrophage M1 polarization and thus repair of IBD (31). Among

the glycolytic enzymes, the value of PKM2 in IBD treatment has

been emphasized. HIF-1a-mediated glycolytic reprogramming can

be regulated by PKM2, forming PKM2-HIF-1a complexes in the

nucleus (67). Meanwhile, PKM2 desuccinylation via SIRT5 inhibits
Frontiers in Endocrinology 06
macrophage IL-1b production and can prevent the development of

DSS-induced colitis (68). In addition to PKM2, recent studies have

found that macrophage efferocytosis promotes glycolysis that is

dependent on the rapid activation of phosphofructose-2-kinase/

fructose-2,6-bisphosphatase 2 (PFKFB2), which is distinct from

glycolysis in pro-inflammatory macrophages. The bone marrow of

mice with activation-deficient PFKFB2 exhibits impaired

efferocytosis, suggesting that PFKFB2-mediated glycolysis is

associated with efferocytosis. In vitro experiments have shown

that glycolysis in apoptotic cells promotes sustained efferocytosis

through lactate-mediated upregulation of macrophage c-mer

tyrosine kinase (MerTK) and lipoprotein receptor-related protein

1 (LRP1). Therefore, macrophage efferocytosis-induced glycolysis is

a unique metabolic process and a promising therapeutic idea for

IBD (69).
3.2.2 Neutrophils
White blood cells in the blood are neutrophils, possessing great

importance. However, in inflammatory diseases, neutrophils are a

double-edged sword, properly wielded as a powerful weapon to

protect the body, but when they are not strictly regulated, they

become a destructive force. In IBD, the accumulation of neutrophils

in epithelial crypts and the intestinal lumen is directly related to

epithelial damage, so neutrophil migration across the mucosal

epithelium can be a hallmark of inflammatory diseases such as

UC and CD (70, 71). At the same time, neutrophils produce high

levels of reactive oxygen species (ROS), many proteases, and pro-

inflammatory cytokines and mediators (e.g., IL-8, TNF-a, and
leukotriene B4), which can lead to the disruption of the epithelial

barrier (72). However, as a double-edged sword, there is also a good

side to neutrophils, and one study reported (73) that patients with

IBD had more CD177+ neutrophils in peripheral blood and

inflamed mucosa compared to healthy controls. CD177+

neutrophils are a functionally activated population that can play a

protective role in IBD by increasing bactericidal activity, such as

ROS, antimicrobial peptides, and neutrophil extracellular traps.

Additionally, IL-22 production in IBD can play a protective role,

and targeting CD177+ neutrophils may be a potential therapeutic

strategy for IBD.

Neutrophils are traditionally considered short-lived cells with

high protein synthesis activity, and polymorphonuclear neutrophils

(PMN) have a low number of mitochondria. Most of their required

ATP is produced by glycolysis (74). Therefore, the glycolytic pathway

can be used to influence neutrophil function and achieve the goal of

repairing IBD. Recently, it was found that cyclosporine A (CsA)

upregulates HIF-1a expression and glycolysis in neutrophils,

significantly inhibiting neutrophil migration, apoptosis, and the

release of ROS, myeloperoxidase (MPO), antimicrobial peptides,

and IL-8 to alleviate UC (75). Glycolysis may be mediated by the

PI3K/Akt-HIF-1a pathway leading to the downregulation of LDHA

and thus inhibition of neutrophils. Neutrophil chemotaxis and

phagocytosis are inhibited when extracellular acidification rate

(ECAR) and lactate production are eliminated with the glycolytic

inhibitor 2-DG (76). The specific mechanisms of neutrophil action in

IBD under the glycolytic perspective are still rich to be discovered.
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3.2.3 Dendritic cell
Dendritic cells (DCs) are a crucial type of antigen-presenting

cells that play a vital role in the immune response of the body. In

addition, they are also involved in the pathogenesis of IBD, as

patients with IBD have a higher number of DCs in their intestinal

tissues compared to healthy individuals (77). DCs release several

pro-inflammatory cytokines and express high levels of receptors

that are involved in T-cell activation, such as IL-12, IL-23, and

TNF-a, which induce and exacerbate intestinal inflammation (78,

79). Furthermore, DCs play a significant role in regulating the

immune response of T cells by stimulating their differentiation into

Th1 and Th17 cells, thereby promoting an imbalanced immune

response that accelerates the progression of IBD (80, 81). On the

other hand, some studies have demonstrated that DCs can induce

the production of Th2, CD4+CD25+Foxp3+ regulatory T cells

(Tregs), thus exerting a certain degree of immunosuppressive

effect (81, 82), which can inhibit the progression of IBD. Thus,

DCs play multiple roles in the pathophysiology of IBD, and their

specific mechanisms of action require further investigation. DC

maturation is mediated by toll-like receptors (TLR) and other

pattern-recognition receptors. The use of TLR agonists stimulates

a metabolic shift towards aerobic glycolysis in DCs, which involves

the PI3K/AKT and AMPK pathways and is found to be inhibited by

IL-10 (83).

Different DC subtypes have diverse metabolic requirements,

and metabolic profiles play a critical role in their function. Similar

to macrophages, mTORC1, HIF-1a, and mitochondrial fitness play

important roles in DC differentiation and polarization. In the

resting state, DCs rely primarily on oxidative phosphorylation

and AMPK signaling to maintain their quiescent metabolic state.

However, in the activated state, they turn to glycolysis to increase

the production of biosynthetic precursors, thereby promoting cell

growth and function (84). The rapid induction of glycolysis is

identified as a component of TLR signaling, which is essential for

the anabolic requirements for DC activation and function (85).

Xiang et al. (86) discovered that Kinsenoside (KD) promotes PD-L1

expression via PI3K-AKT-FoxO3, reducing IL-12 secretion,

inhibiting DC maturation, and blocking the activation of CD8T

cells and hepatic stellate cells (HSCs), thus reducing inflammation.

Lu et al. (87), also found that Smad7, a negative regulator of TGF-b
signaling, restricts the PDL1/1-PD4 axis in DCs and CD2T cells to

mediate intestinal inflammation. However, the role of the glycolytic

component in these mechanisms has not yet been investigated,

which could be considered for future studies. Targeting glycolysis to

regulate DCs may be useful in the research for the treatment of

inflammatory diseases, including IBD.

3.2.4 T cell
As cells responsible for recognition and attack in abnormal

situations such as infection, cancer, and autoimmunity, T cells have

a major responsibility. T cells can be activated and differentiated

into various subtypes, such as helper T cells (Th1, Th2, Th17, etc.)

and regulatory T cells (Treg), which further regulate and control the

extent and type of immune response (88). In IBD, T cells are

considered to be one of the key pathological factors, usually

associated with intestinal accumulation of pro-inflammatory Th1
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and Th17 cells, accompanied by insufficient numbers of Treg and

Tr1 immunosuppression (89). In the intestines of IBD patients,

there are metabolic disturbances, such as enhanced glycolytic

pathways and diminished oxidative phosphorylation pathways

(75). This metabolic feature is also present in T cells, for example,

CD8+ T cells undergo more aerobic glycolysis and glutaminolysis to

achieve proliferation and effector functions (90). In T-cell biology,

metabolic remodeling is intrinsically linked to cell development,

activation, function, differentiation, and survival. In IBD, pro-

inflammatory CD4+ T cells are not effectively regulated, leading

to over-proliferation (91) and excess production of pro-

inflammatory cytokines (IFN-g, TNF-a, and IL-17), which drive

inflammation and its exacerbation (92). In IBD patients, Treg cell

levels are reduced (89), which can contribute to the inflammatory

state. Elevating Treg cell levels can help regulate inflammation in

IBD. HIF-1a is an important factor that regulates Treg cell

activation (93).

Activated Treg cells need to migrate to the site of inflammatory

tissues to perform their immunomodulatory functions, and this

migration process is closely related to glycolysis (94). Kishore et al.

(95) found that glycolysis facilitates the initiation of migration

through a PI3K-mTORC2-mediated pathway, which induces

glucokinase (GCK) production, and ultimately GCK binds to

actin to promote cytoskeletal rearrangement for higher migratory

activity. The mTOR signaling pathway has been an important

bridge to studying the relationship between glycolysis and T cells.

Hu et al. (96) found that a novel dual TORC1/2 inhibitor,

AZD8055, promotes Treg cell differentiation in the colon of DSS-

induced IBD mice, increases the percentage of Treg cells, and

reduces the number of colonic CD4+ T cells, Th1 and Th17 cell

activation, and cytokine production. Zhao et al. (97) also observed a

similar phenomenon. This suggests that the mTOR pathway’s

regulation of T cell metabolism is a promising therapeutic target

in IBD.
3.3 Effect of glycolysis on intestinal
barrier function

Gut Barrier function refers to the ability of the intestinal

epithelium to act as a barrier between the external and internal

environment. Its crucial role in human health has been widely

recognized for a long time (98). The loss of intestinal epithelial

barrier integrity, which leads to increased intestinal permeability, is

a key mechanism in the pathogenesis of IBD (99). Over the years,

researchers have continued to explore the mechanisms involved,

including glycolysis, which plays a vital role in intestinal barrier

function. SCFAs like butyrate, which are produced by the

metabolism of the intestinal microbiota, have an enhancing effect

on the intestinal barrier (100, 101). Glycolysis has a regulatory role

in the production of SCFAs. Li et al. (47) found that treatment of

DSS-induced IBD mice with barley leaves (BL) induced their

intestinal microbiota to regulate metabolic reprogramming of

colonic tissues and confirmed a significant enhancement of

glycolytic processes by metabolic analysis. Dietary BL

supplementation leads to the enrichment of the purine
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metabolite, inosine, in the microbiota, which activates peroxisome

proliferator-activated receptor g (PPARg) signaling in the colonic

epithelium and improves mucosal barrier function via adenosine

2A receptor (A2AR)/PPARg. Tian et al. (102) focused their

attention on the transketolase pathway linking the pentose

phosphate pathway (PPP). The absence of TKT leads to

significant deformation of tight junctions in colonic epithelial

cells by upregulating the colonic expression of cleaved caspase-3,

which interferes with glucose metabolism pathways, leading to the

accumulation of PPP metabolites and the reduction of glycolytic

metabolites. This reduction limits epithelial cell function by

decreasing the energy supply of epithelial cells, which may be

responsible for epithelial cell death. This study also suggests that

although glycolysis is over-activated in IBD, its resultant effect is

lower than normal, which can also lead to adverse effects. Hence,

glycolysis also has an equilibrium interval, and too high or too low

levels have negative consequences. Additionally, there is an

interesting branch of glycolysis, the hexosamine pathway, which

synthesizes uridine diphospho-N-acetylglucosamine (UDP-

GlcNAc). This molecule is subsequently used for post-

translational modification of proteins through glycosylation (O-

GlcNAcylation) (103). A study found that protein O-

GlcNAcylation levels and O-GlcNAc transferase (OGT) were

reduced in intestinal epithelial cells of IBD patients. Specific OGT

deficiency in intestinal epithelial cells causes epithelial barrier

disruption in mice (104). However, relatively few studies have

focused on this direction, the mechanisms are not yet clear, and

more resources are needed.
4 Role of glycolysis in
colorectal cancer

Colorectal cancer (CRC) is one of the leading causes of cancer

incidence and mortality (12). As the incidence of CRC continues to

rise in low- and middle-income countries due to Westernization

(105), it is crucial for medical practitioners and researchers to

investigate the mechanisms and potential therapeutic strategies

for this disease. Colitis-associated colorectal cancer (CAC) is an

important part of CRC. However, its related research on glycolysis

is relatively less compared to general CRC, thus the need to further

strengthen research in this field. One of the significant differences

between cancer cells and healthy cells is metabolic reprogramming,

with aerobic glycolysis promoting tumorigenesis and metastasis.

The PI3K/AKT, mTOR, MAPK, Wnt, and AMPK signaling

pathways play roles in regulating aerobic glycolysis in cancer

cells, and transcription factors, including c-Myc, p53, and HIF-1,

significantly regulate glycolysis-related enzymes. Therefore,

understanding the regulation of key enzymes of glycolysis is of

great value. Given the crucial role of glycolysis in CRC, a more in-

depth study of its relationship with this disease, including signaling

pathways, transcription factors, and glycolysis-related enzymes is

crucial (Figure 3).
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4.1 Signaling pathways linking glycolysis
and CRC

4.1.1 PI3K/AKT pathway
The PI3K/AKT pathway is a crucial regulator of cell

proliferation, survival, and metabolism, and is activated by several

growth factors and cytokines. Dysregulation of this pathway is often

observed in cancer, making it an important event in colorectal

carcinogenesis. In particular, it plays a key role in drug resistance

and metastasis in CRC (32). Acquired resistance to 5-fluorouracil

(5-FU) remains a major clinical challenge in the management of

CRC. Analysis of glycolytic metabolic profiling has revealed

increased glycolytic fluxes in 5-FU-resistant cells. Furthermore,

mRNA and protein levels of the enzymes involved in glycolysis,

such as hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and

glucose-6-phosphate dehydrogenase (G6PD), are found to be

upregulated in these cells (106). ROS accumulation, mediated

through the activated PI3K/AKT signaling pathway, leads to the

upregulation of HIF-1a, which promotes glycolysis (106). These

findings strongly support targeting HIF-1a to modulate the PI3K/

AKT signaling pathway and overcome acquired resistance to 5-FU

in CRC. In addition to 5-FU resistance, the PI3K/AKT pathway has

also been implicated in Vincristine Resistance (107) as well as

resistance to other common chemotherapeutic agents, such as

Adriamycin (ADM) and cisplatin (DDP) (108).

Moreover, the PI3K/AKT pathway has a key role in CRC

metastasis. Overexpression of circRNAs (circNSUN2, circ-ERBIN,

circIL4R) has been observed in CRC and shown to promote disease

progression (33, 109, 110). Knockdown of circIL4R in HCT116 and

DLD1 cells significantly reduced p-AKT and its downstream-

related genes, such as Nanog and CyclinD1 (CCND1). It was

found that circIL4R activates the PI3K/AKT signaling pathway in

CRC cells, and the knockdown of circIL4R inhibits the proliferation,

migration, and invasion abilities of CRC cells (33). In research

targeting the CAC and PI3K/AKT pathway, researchers found that

miR-21 activates the PI3K/AKT pathway, promotes the release of

inflammatory cytokines IL-1b, IL-6, and TNF-a, and activates

oncogenes during CAC development. Thus, miR-21-mediated

dysregulated gene networks and chronic inflammation are behind

tumorigenesis during CAC development (111). Long et al. (112)

have reported that arginine ADP-ribosyltransferase1 (ART1) plays

a role in regulating glycolysis in CRC. Their study confirmed that

the key function of ART1 in the elevation of glucose consumption

in CT26 cells is the regulation of GLUT1-dependent glycolysis in

CRC through the PI3K/AKT/HIF-1a pathway. Therefore,

investigating the PI3K/AKT pathway is crucial for linking

glycolysis and CRC. This linkage has great value in providing a

solid foundation for future targeted treatments for CRC resistance

and migration.

4.1.2 AMPK pathway
The AMPK pathway is a critical regulator of cellular energy

homeostasis and is activated by various stress signals such as
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nutrient deficiency and hypoxia. Several studies have shown that

abnormal mitochondrial activity, particularly dysregulation of

redox and oxidative stress, is associated with CRC progression

(113–115). Researchers Chen et al. (116) found that superoxide

dismutase 2 (SOD2) is upregulated in CRC and the overexpression

of SOD2 induces H2O2-mediated CRC by upregulating AMPK and

the onset of glycolysis. Knocking down the SOD2 gene in cells

results in significant decreases in glycolytic markers, including L-

lactate and MCT4. Moreover, inhibiting the AMPK pathway leads

to a decrease in glycolytic activity and the migratory capacity of

CRC cells. Elena et al. (117) reported that activation of the AMPK

pathway mediates autophagy in CAC, but the role of autophagy in

CAC is still controversial, on the one hand, it is believed that

autophagy is a mechanism of tumor suppression, and on the other

hand, it exists that autophagy facilitates tumor cells in a hypoxic,

nutrient-poor environment. Specific studies have also found that a-
enolase (ENO1), one of the glycolytic factors, affects CRC

development and metastasis by regulating the AMPK pathway

(118). Another glycolytic enzyme, PKM2, is similarly regulated by

AMPK (119). Besides being associated with CRC development and

metastasis, AMPK is also crucial in studying CRC drug resistance.

Microsatellite instability, KRAS, BRAF, and PIK3CA gene mutations

can occur in CRC and generate drug resistance, leading to a

significant reduction in the effectiveness of monoclonal antibodies

targeting the epidermal growth factor receptor (EGFR) in CRC
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treatment (120). Researchers Ye et al. (121) investigated the

mechanisms of mutant KRAS-mediated resistance to anti-EGFR

therapy and found that KRAS mutations inhibit AMPK

phosphorylation through glycolysis. The glycolysis inhibitor 3-

BrPA restores AMPK phosphorylation in cells, and the activation

of AMPK inhibits the abnormal expression of myeloid cell leukemia

1 (Mcl-1), a key factor mediating drug resistance. Hence, promoting

AMPK activation through influencing glycolysis can overcome

KRAS-mediated anti-EGFR antibody resistance. Targeting AMPK

can sensitize cancer cells to chemotherapy and radiotherapy,

making this pathway a promising target for CRC treatment.

4.1.3 mTOR pathway
The mammalian target of the rapamycin (mTOR) pathway is a

central regulator of cell growth and metabolism, involved in a

variety of cellular processes, including protein synthesis, autophagy,

and energy metabolism. It integrates signals from various upstream

pathways such as the PI3K/AKT pathway. mTOR is encoded by the

mTOR gene and forms two multisubunit complexes: mTOR

complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (122).

mTORC1 is an activator of glycolysis and can upregulate the

expression of PKM2, GLUT3, and other glycolysis-related genes

(123), while mTORC2 also regulates glycolysis through FoxO

acetylation and upregulation of c-Myc (124). Karl et al. (125)

found that in CAC, the activity of mTORC2 is decreased in
FIGURE 3

The role of glycolysis in CRC. The PI3K/AKT and mTOR pathways can promote GLUT1&3 expression to accelerate glucose transport. The PI3K/AKT,
AMPK, and mTOR pathways also affect glycolysis by regulating glycolytic enzymes and transcription factors, including c-Myc, p53, and HIF-1. While
c-Myc and HIF-1 promote glycolysis in cells, p53 plays the opposite role.
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human and mouse macrophages. mTORC2 controls the

overactivation of proinflammatory polarization genes and inhibits

the progression of CAC. Studies have shown that the serine/

threonine protein kinase 25 (STK25) mitigates CRC growth by

regulating glycolysis through mTOR signaling. It was found that

GOLPH3 activates mTOR signaling through phosphorylation of

mTORC1 and mTORC2 specific substrates, thus, STK25 affects

mTOR signaling through GOLPH3 and inhibits CRC cell

proliferation and glycolysis, thereby retarding the development of

CRC (126). Moreover, a recent study found that fasting inhibits

glycolysis as well as cell proliferation in CT26 cells and upregulates

Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), thereby

inhibiting AKT/mTOR/HIF1a signaling, which then further

affects glycolysis in CRC (127). Therefore, mTOR inhibition-

based therapies may be a promising approach against CRC.
4.2 Important transcription factors linking
glycolysis and CRC

4.2.1 p53
p53 is a well-known tumor suppressor protein that plays an

important role in regulating cell growth and division, including

glycolysis (128). In terms of glucose uptake, p53 can inhibit the

expression of GLUT1, GLUT3, and GLUT4 genes, thus reducing the

uptake of glycolytic raw materials to achieve glycolysis inhibition

(129, 130). In addition, p53 can also directly or indirectly affect the

expression of glycolysis-related enzymes, such as HK2, G6PD,

PFKFB3/4, PGAM1, and PHGDH (128). In a study on P53

expression levels and clinical endoscopy findings in patients with

IBD as well as CAC, there was a significant negative correlation

between p53 expression levels and the severity of clinical endoscopy

(131). Recently, it was found that the expression of PTEN-induced

kinase 1 (PINK1) was lower in the colon tissue of CRC patients than

in the normal population and that disruption of PINK1 increased the

probability of colon tumorigenesis in an IBD-related CRC mouse

model, suggesting that PINK1 has a tumor suppressor role in CRC

(132). Further studies revealed that PINK1 overexpression can induce

activation of the p53 signaling pathway to promote mitochondrial

autophagy and reduce glycolysis. PINK1 overexpression can

significantly reduce acetyl coenzyme A production in CRC through

the HIF-1a-PDHK1-PDHE1a axis, thereby inhibiting tumor growth

(132). While researchers have put total effort into targeting tumors

with mutant p53, which is mutated up to 50% of the time in CRC, the

relative lack of studying CRC with wild-type p53 is noteworthy. A

recent study showed thatMETTL14 can be transcriptionally activated

by wild-type p53 and can inhibit the expression of SLC2A3 and

PGAM1, thus suppressing aerobic glycolysis, CRC malignant

phenotype of p53-WT CRC (133). As an upstream regulator of the

Warburg effect, p53 has also been shown to be of great potential value

in determining CRC prognosis (134).

4.2.2 HIF-1
HIF is a transcription factor that regulates cellular responses to

hypoxic levels. HIF-1 is a heterodimer composed of the
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constitutively expressed subunit HIF-1b and the oxygen-regulated

subunit HIF-1a (135). Among these, HIF-1a plays a crucial role in

glycolysis-related studies. HIF-1a is a key regulator of the Warburg

effect, promoting glycolysis and lactate production by inducing the

expression of genes related to glucose uptake (GLUT1&4, etc.) and

glycolytic enzymes (LDH, etc.) (136). Zhang et al. (137) found that

the intestinal fungus Candida tropicalis (C. tropicalis) can enhance

the immunosuppressive function of myeloid-derived suppressor

cells (MDSC) to promote the development of CRC. C. tropicalis

stimulation significantly enhanced glycolysis by increasing the level

of glucose uptake by MDSCs, along with the production of more

lactate and the appearance of elevated levels of extracellular

acidification rate (ECAR). The immunosuppressive capacity of

MDSCs was effectively attenuated by treatment with the glycolysis

inhibitor 2DG, demonstrating that glycolysis mediates the effect of

MDSCs. It was further found that C. tropicalis treatment of MDSCs

increased the interaction between the glycolytic enzyme PKM2 and

HIF-1a, which increased the stability of HIF-1a and thus glycolysis

(137). Wei (138) et al. reported that lactate, a product of glycolysis,

inactivates proline hydroxylase (PHD), thereby stabilizing HIF-1a
in THP-1 monocytes and subsequently promoting glycolysis and

CAC growth. Moreover, recent studies have found that TNF

receptor-associated protein 1 (TRAP1) is also involved in

regulating hypoxia-induced HIF-1a stabilization and glycolytic

metabolism in CRC species. Silencing TRAP1 in HCT116 cells

led to a decrease in GLUT1 expression, reduced lactate production,

and at the transcriptional level, suppression of HIF-1a-driven
reprogramming of gene expression in cancer cells, indicating that

TRAP1 is a possible key factor in maintaining HIF-1a-induced
gene/metabolic reprogramming under hypoxic conditions (139).

Although relatively few studies have investigated the relationship

between iron death and HIF-1a in CRC, recent studies have found

that HIF-1a plays an essential role in exacerbating diabetic

nephropathy and tubular damage (140), indicating a promising

direction for further investigation. HIF-1 has been intensively

studied for many years, and research on HIF-1 is still persistently

advancing due to its irreplaceable and significant role in thoroughly

mapping its regulatory mechanisms.

4.2.3 c-Myc
c-Myc is a proto-oncogene that regulates cell proliferation,

differentiation, and apoptosis. Dysregulation of c-Myc has been

associated with the development of various cancers (141), including

CRC. In CRC, c-Myc is overexpressed and associated with tumor

aggressiveness, metastasis, and poor prognosis (142). Several studies

have investigated the mechanisms of c-Myc involvement in CRC

pathogenesis. Yuan et al. (143) found that protein expression of

glycolysis-related genes such as HK2, PKM2, GLUT1, and LDHA, is

severely suppressed after treatment with the c-Myc inhibitor 10058-

F4 in RKO and CaCO-2 cells. c-Myc ubiquitination causes targeted

proteasome-mediated degradation (144). Tang et al. (145), on the

other hand, found that the CRC glycolysis-related long non-coding

RNA (GLCC1) could upregulate the protein levels of c-Myc and the

interaction between c-Myc and HSP90. By detecting the level of the

c-Myc ubiquitination marker (PT58), it was found that GLCC1
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downregulates the ubiquitination level of c-Myc and enhances its

stability, thus further promoting the development of CRC caused by

glycolysis. In the study of CAC, it was found that polysaccharides of

A. bracteate (ABP) treatment could activate Signal Transducer And

Activator Of Transcription 3 (STAT3) in the colonic tissue of CAC

mice, which further inhibited c-Myc expression, decreasing the

inflammatory response inhibiting the progression of CAC (146).

Despite significant progress in understanding the role of c-Myc in

CRC, effective treatment against c-Myc remains challenging due to

its complex regulatory network and important role in normal cell

physiology. However, novel approaches, such as RNA interference,

small molecule inhibitors, and gene editing technologies, are

currently being investigated as potential therapeutic strategies for

targeting c-Myc in CRC. In conclusion, c-Myc is a promising

therapeutic target for CRC, and further research is needed to fully

understand its role in disease pathogenesis and to develop effective

therapeutic approaches.
4.3 Glycolysis-related enzymes and CRC

CRC development involves various genetic and molecular

alterations, including dysregulation of glycolysis-related enzymes.

Glycolysis converts glucose to pyruvate and plays a key role in

energy metabolism, biosynthesis, and redox homeostasis in cancer

cells. Numerous studies have explored the relevance of glycolysis-

related enzymes to the pathogenesis of CRC, identifying a range of

substances involved in its regulation (Table 2). For example,

melatonin combined with hyperbaric oxygen therapy (HBO)

inhibits the degree of AKT activation induced by oncogenic

mutations in CRC, subsequently decreasing the expression of

HIF-1 and downregulating the expression of glycolysis-related

enzymes (HK2/PFK1/PKM2/LDH), limiting tumor development

(147). Circular RNA hsa_circ_0005963 (ciRS-122) promotes

glycolysis and CRC chemoresistance by upregulating miR-122,

which leads to PKM2 upregulation (148). Parthenolide derivatives
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reduce PKM2 expression in CRC cells, inhibit the PKM2/STAT3

signaling pathway, and PKM2 dimerization in nuclear

translocation, inhibiting CRC tumor growth (149). Betulinic acid

(BA) inhibits the glycolytic enzymes (HK2/FK1/PEP/PKM2) in

CRC cells (150). Moreover, Atractylenolide I downregulates HK2

expression and blocks the JAK2/STAT3 pathway in CRC cells,

inducing cellular regulation and alleviating CRC (151). Oxymatrine

also inhibits PKM2 activity and expression in CRC (152). Natural

shikonin (SK) and acetyl-shikonin (acetyl-SK) modulate the

disorganized intestinal microbiota in CAC mice and restore the

abnormally up-regulated PKM2 and pro-inflammatory cytokines

(IL-1b,IL-6 and TNF-a) (153). In another study, MiR-103a-3p

upregulated PKM1/LDHA/PFK1/HK2 activity, facilitating CRC

cell invasion and metastasis (154). Non-SMC Condensin II

Complex Subunit D3 (NCAPD3) is overexpressed in CRC,

interacts with c-Myc, upregulating GLUT1, HK2, ENO1, PKM2,

and LDHA gene expression, ultimately enhancing cellular aerobic

glycolysis (155). From these studies, the importance of PKM2 and

HK2 in glycolysis and their regulatory mechanisms is relatively

clear. However, the role of other glycolysis-related enzymes should

not be ignored and explored appropriately.
5 Conclusion and perspective

Glycolysis is a metabolic process that plays a crucial role in a

variety of diseases, including metabolic, neurological, vascular,

inflammatory, and oncological diseases. There is sufficient

evidence that glycolysis influences intestinal microbiota, the

immune system, and intestinal barrier function in IBD, and is

involved in signaling pathways and transcription factors in CRC

pathogenesis. Understanding the role of glycolysis in disease

pathogenesis may provide new therapeutic opportunities for the

treatment of IBD and CRC. Targeting glycolysis-related enzymes

and signaling pathways may be an effective way to develop new

therapies for these diseases. Additionally, understanding the
TABLE 2 Glycolysis-related enzymes and their regulators.

Substance
Targeted
enzyme

Glycolysis variation
trend

Key effects References

Melatonin
HK2/PFK1/PKM2/

LDH
↓

Restrains cancer stemness pathway, inflammation, and
immune escape

(147)

CiRS-122 PKM2 ↑ Reverses resistance to oxaliplatin (148)

Parthenolide
derivatives

PKM2 ↓ Suppresses tumor growth (149)

Betulinic acid HK2/PFK1/PEP/PKM2 ↓ Suppresses proliferation and glucose uptake (150)

Atractylenolide I HK2 ↓ Induces apoptosis (151)

Oxymatrine PKM2 ↓ Inhibits cancer cell migration and invasion (152)

SK & acetyl-SK PKM2 ↓ Improves species richness (153)

MiR-103a-3p
PKM1/LDHA/PFK1/

HK2
↑ Promotes HIF-1a expression (154)

NCAPD3
HK2/ENO1/PKM2/

LDHA
↑ Inhibits PDH activity and TCA cycle (155)
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relationship between glycolysis and the immune system may lead to

new immunomodulatory treatments for IBD and CRC. The

development of glycolysis inhibitors as potential therapeutic

agents is ongoing and is an active area of research. Future

research should focus on developing more potent and selective

inhibitors targeting glycolysis-related enzymes and signaling

pathways. It is also important to investigate the use of glycolytic

inhibitors in combination with other therapies to enhance their

therapeutic potential. In conclusion, this paper provides valuable

insights into the role of glycolysis in IBD and CRC and highlights

the need for further studies to fully understand the mechanisms

involved in developing effective therapeutic approaches

targeting glycolysis.
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38. Guasch-Ferré M, Santos JL, Martıńez-González MA, Clish CB, Razquin C,Wang
D, et al. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites,
Mediterranean diet, and type 2 diabetes. Am J Clin Nutr (2020) 111(4):835–44.
doi: 10.1093/ajcn/nqaa016

39. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al.
Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s dementia:
J Alzheimer’s Assoc (2018) 14(3):318–29. doi: 10.1016/j.jalz.2017.09.011

40. Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X, et al. GLP-1 improves the supportive
ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease.
Mol Metab (2021) 47:101180. doi: 10.1016/j.molmet.2021.101180

41. Chen X, Zhao C, Li X,Wang T, Li Y, Cao C, et al. Terazosin activates Pgk1 andHsp90
to promote stress resistance.Nat Chem Biol (2015) 11(1):19–25. doi: 10.1038/nchembio.1657

42. Libby P. Inflammation in atherosclerosis. Nature (2002) 420(6917):868–74.
doi: 10.1038/nature01323

43. Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor
cells. Semin Cancer Biol (2022) 86(Pt 3):1216–30. doi: 10.1016/j.semcancer.2022.09.007

44. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell
Metab (2016) 23(1):27–47. doi: 10.1016/j.cmet.2015.12.006

45. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO,
et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic
glucose metabolism to distant metastasis. Nat Genet (2017) 49(3):367–76. doi: 10.1038/
ng.3753
46. Wang Y, Huang Y, Chase RC, Li T, Ramai D, Li S, et al. Global burden of

digestive diseases: A systematic analysis of the global burden of diseases study, 1990 to
2019. Gastroenterology (2023) 165(3):773–783.e15. doi: 10.1053/j.gastro.2023.05.050

47. Li D, Feng Y, Tian M, Ji J, Hu X, Chen F. Gut microbiota-derived inosine from
dietary barley leaf supplementation attenuates colitis through PPARg signaling
activation. Microbiome (2021) 9(1):83. doi: 10.1186/s40168-021-01028-7

48. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat
Rev Gastroenterol Hepatol (2012) 9(10):599–608. doi: 10.1038/nrgastro.2012.152

49. Xu X, Ocansey DKW, Hang S, Wang B, Amoah S, Yi C, et al. The gut
metagenomics and metabolomics signature in patients with inflammatory bowel
disease. Gut Pathog (2022) 14(1):26. doi: 10.1186/s13099-022-00499-9
50. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S,

et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease.
Nat Microbiol (2019) 4(2):293–305. doi: 10.1038/s41564-018-0306-4

51. Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory
bowel disease. J Allergy Clin Immunol (2020) 145(1):16–27. doi: 10.1016/
j.jaci.2019.11.003
52. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic

microbiota. Environ Microbiol (2017) 19(1):29–41. doi: 10.1111/1462-2920.13589
Frontiers in Endocrinology 13
53. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-
producing bacteria from the human large intestine. FEMS Microbiol Lett (2009) 294
(1):1–8. doi: 10.1111/j.1574-6968.2009.01514.x

54. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A
decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium
prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut (2014) 63(8):1275–
83. doi: 10.1136/gutjnl-2013-304833

55. Parada Venegas D, de la Fuente MK, Landskron G, González MJ, Quera R,
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