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Organoid models of the pituitary
gland in health and disease
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The pituitary gland represents the hub of our endocrine system. Its cells produce

specific hormones that direct multiple vital physiological processes such as body

growth, fertility, and stress. The gland also contains a population of stem cells

which are still enigmatic in phenotype and function. Appropriate research

models are needed to advance our knowledge on pituitary (stem cell) biology.

Over the last decade, 3D organoid models have been established, either derived

from the pituitary stem cells or from pluripotent stem cells, covering both healthy

and diseased conditions. Here, we summarize the state-of-the-art of pituitary-

allied organoid models and discuss applications of these powerful in vitro

research and translational tools to study pituitary development, biology,

and disease.
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1 Introduction

1.1 The pituitary gland

1.1.1 Anatomy and functionality
The pituitary gland is a key player in the endocrine system. Together with the

hypothalamus, it governs the physiological processes of, among others, body growth,

metabolism, reproduction, lactation, and stress. The mouse pituitary consists of three

segments, encompassing the anterior, intermediate, and posterior lobe (AL, IL, and PL,

respectively). In some mammals including humans, the IL is not present anymore as

separate entity but its endocrine cells, the melanocyte-stimulating hormone (MSH)-

producing melanotropes, have become part of the AL. Primarily, the AL is composed of

specific hormone-producing cell types, i.e., somatotropes that produce growth hormone

(GH), lactotropes that make prolactin (PRL), corticotropes that secrete adrenocorticotropic

hormone (ACTH), thyrotropes that produce thyroid-stimulating hormone (TSH), and

gonadotropes that generate luteinizing hormone (LH) and/or follicle-stimulating hormone

(FSH). These trophic hormones stimulate the release of hormones from target organs

including the adrenal cortex, gonads, liver, and thyroid gland, or act directly on other

tissues, such as PRL that stimulates milk production in the breast. To accomplish its key
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biological function, the pituitary integrates stimulatory and

inhibitory signals from the hypothalamus, together with negative

feedback cues from the target organs, which together control the

pituitary’s pulsatile hormonal output (1, 2).

During organogenesis of the gland, the different endocrine cell

types all develop from embryonic stem/progenitor cells (3, 4). After

birth, a number of stem cells remain present, located in two separate

niches, namely the marginal zone (MZ) that lines the embryonically

residual cleft between the IL and AL, and scattered clusters in the

AL parenchyma. The pituitary stem cells are marked by expression

of the transcription factor SRY-box transcription factor 2 (SOX2)

and are mostly quiescent in the homeostatic gland (3–7). However,

evidence suggests that they may play a role in pituitary cell

remodeling during conditions of altered hormonal needs (such as

lactation and stress; reviewed in (8)). Their contribution appears to

be situated in amplified differentiation toward the wanted endocrine

cells and/or in auto- and paracrine signaling (e.g., via wingless-type

MMTV integration site (WNT) ligands) activating proliferation of

the stem cells themselves and/or surrounding endocrine

(progenitor) cells (8–11).

1.1.2 Pituitary diseases
Because of the pituitary’s central and broad function in the

endocrine system and organism, clinical manifestations arising

from functional deficiency are serious and wide-ranged. Pituitary

pathology may involve hypofunction (hypopituitarism) or

hyperfunction (hyperpituitarism) (12).

1.1.2.1 Hypopituitarism

Decline or loss of pituitary function causes deficiency in one or

multiple hormones. Hypopituitarism can have a congenital cause

due to mutations in genes involved in pituitary development and

endocrine cell differentiation, such as POU class 1 homeobox 1

(POU1F1, also known as PIT1) and orthodenticle homeobox 2

(OTX2) or can be acquired during life (13–16). Pituitary tumors

(see below) are the most prevalent culprit of acquired

hypopituitarism, because of their expansive growth compressing

the healthy pituitary tissue and impairing local blood flow.

Furthermore, their treatment by irradiation or surgical resection

also causes damage to the healthy tissue resulting in hypofunction.

Additional causes of acquired hypopituitarism include central

nervous system infections, radiotherapy of non-pituitary brain

tumors and traumatic brain injury. The kind of the

hypopituitarism symptoms depends on which hormonal axis is

affected. For example, GH deficiency results in muscle weakness

and osteoporosis in adults. Hypopituitarism patients are treated

with lifelong hormone replacement therapy, meaning

supplementation of the declined or missing pituitary and/or

target-organ hormones (17–21).

1.1.2.2 Hyperpituitarism

Hyperpituitarism is characterized by excess production of one

or more pituitary hormones. The most common cause is a

functional pituitary tumor (see below), resulting in clinical
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symptoms according to which of the hormones is over-produced.

For instance, excessive production of GH leads to gigantism in

children and acromegaly in adults (12, 22).

1.1.2.3 Pituitary tumors

Although pituitary tumorous lesions are detected in 10-15% of

(unselected) people at autopsy, clinically relevant symptomatic

cases represent a minority (prevalence of 0.1%) but still account

for 10-15% of all intracranial tumors, thereby representing their

third most prevalent type (23, 24). Most pituitary tumors arise

sporadically, while 5% are familial cases through germline

mutations (25–28). Although generally classified as benign (and

referred to as adenomas), pituitary endocrine neoplasms exhibit a

spectrum of behaviors that are not entirely “benign” but can cause

significant morbidity and increased mortality risk, even when they

are not metastatic. Therefore, pituitary adenomas were recently

renamed to pituitary neuroendocrine tumors (PitNETs) (29).

Symptoms result from either the (growing) mass of the tumor

itself which can compress healthy pituitary tissue (leading to

hypopituitarism) and other neighboring structures (such as the

optic chiasm resulting in visual disturbances), or from the

hypersecretion of hormone(s) by the tumor (hyperpituitarism)

(30). Treatment modalities include surgical removal via the

transsphenoidal route, medical treatment (e.g., of PRL-producing

prolactinomas with dopamine agonists), and radiation therapy (of

recurrent or therapy-resistant tumors) (22, 31).
1.2 Pituitary in vitro models

Various in vitro research models have been applied to unravel

the pituitary’s biology. Cell lines such as the mouse corticotrope

AtT20 and rat somato-lactotrope GH3 are well-known tools to

explore hormone regulation (32). However, cell lines are non-

physiological since tumor-derived or immortalized and cultured

in two-dimensional (2D) format, and mostly represent only one

pituitary cell type (8). Primary 3D culture systems, such as pituitary

explants, re-aggregated pituitary cells, and stem cell-derived

pituispheres overcome some of these shortcomings (8). However,

pituitary explants are encumbered by quickly reached expiry which

restricts their experimental possibilities, and their functional/

cellular complexity (i.e., containing all pituitary cell types,

extracellular matrix (ECM), blood vessels, etc.) makes drawing

conclusions for specific cell types challenging (8, 33–36).

Aggregates, formed by dissociated AL cells that re-cluster by

either gyratory movement (37–39) or gravity in hanging-drop

culture (40, 41), reproduce cell-type specificities but have not

been highly instrumental to study the pituitary stem cell

compartment (8). Pituispheres, that represent clonal “balls” of

cells that self-develop from pituitary stem cells and can

differentiate into the various pituitary endocrine lineages, only

show limited expandability (5–7, 42). In recent years, the state-of-

the-art technology of 3D organoids has come to the forefront to

overcome several of the above-mentioned shortcomings.
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1.3 Organoid models

Organoids are 3D cell constructs that self-develop from stem

cells, and mimic key biological properties of the respective organ.

The originating stem cells can be pluripotent stem cells (PSCs),

including embryonic stem cells (ESCs) and induced PSCs (iPSCs),

or tissue-specific (epithelial) stem cells (TSCs) (43, 44).

TSC-derived organoids, representing the epithelial compartment

of the originating tissue, are established by embedding tissue

fragments or dissociated cells in an ECM scaffold (e.g., Matrigel or

basement membrane extract (BME)) while providing a stem cell-

maintaining culture medium, usually encompassing a WNT

pathway-stimulatory factor (such as R-spondin 1 (RSPO1)), a bone

morphogenetic protein (BMP)-inhibiting component (typically

Noggin), and epidermal growth factor (EGF). Besides these generic

factors, each specific tissue requires a somewhat different cocktail of

growth factors to achieve optimal organoid development and growth,

usually based on knowledge of the specific tissue’s stem cell niche or

its embryonic development (43–46).

PSC-derived organoids are established through directed

differentiation in which the embryogenic process of the tissue-in-

focus is recapitulated. First, the cells are specified toward the tissue’s

specific germ layer (endoderm, mesoderm, or ectoderm), followed

by induction and maturation toward the wanted tissue type by

(sequentially) exposing the cells to specific, embryonically active

growth and signaling factors. In this procedure, cells are brought

into a 3D configuration through aggregation or embedding in a

matrix, in which they self-develop and -organize into a tissue-

resembling structure (43–45). PSC-derived organoids are

structurally more complex than TSC-resulting organoids because

they can contain cell types not only from the epithelial

compartment but of all three germ layers, thereby more closely

mimicking the whole in vivo counterpart, although typically

remaining earlier in development than TSC-derived organoids

(43–46).

Key advantages of organoid models over classic 2D cell lines

include their 3D configuration, as occurring in vivo, and their

competence to recapitulate key functional and phenotypical

properties of the original or targeted tissue (43–45). Moreover,

TSC-derived organoids are long-term expandable while showing

biological, functional, and genomic stability and can be

cryopreserved to generate ‘living’ biobanks (8, 43–46). Besides

their major potential in fundamental research, organoids, both

from normal and diseased tissue, can be harnessed to powerful

tools in clinical research. For example, diseased-tissue organoid

biobanks can be employed in drug screening explorations (e.g., to

predict patient drug response) while the healthy-tissue organoids

can be exploited as resources for regenerative therapy (45–50).

When starting from TSCs, a current limitation is that organoids

recapitulate the epithelial compartment of the tissue, not the other

tissue cell types. Therefore, protocols to set up more complex

organoid models (‘assembloids’) are being developed for multiple

tissues (e.g., endometrium, cancer), combining stromal/fibroblast

and/or endothelial cells with the epithelial organoids (51–54).
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2 Main: pituitary organoid models

Several organoid systems that have been derived from, or

replicate, pituitary tissue, have been established. Below, we give

an overview of these 3D organoid models (listed in Table 1), either

derived from primary pituitary stem cells or from PSCs (Figure 1).

Subsequently, we describe how these organoid approaches can be

used to model and study pituitary diseases.
2.1 Pituitary stem cell-derived organoids

In 2016, Yoshida and colleagues reported organoid-like structures

forming out of S100b+ stem/progenitor cell clusters isolated from rat

primary pituitary tissue (56). The dense cell clusters were suspended in

medium containing diluted Matrigel and seeded onto Matrigel-coated

coverslips. In the presence of fibroblast growth factor 2 (FGF2) and

EGF, most clusters (~90%) started to form cavities, resulting in an

organoid-like cystic conformation. UponWNT activation (through the

glycogen synthase kinase 3 beta (GSK3B) inhibitor 6-bromoindirubin-

3-oxime (BIO)), a mixture of hormone-expressing cells (16% of the

total number of cells) was detected in the 3D structures (56) (Figure 1).

Clonality and self-renewal and -developing capacity of the organoid-

like structures was not reported, thereby raising some reservations on

their genuine organoid nature according to the current concept (see

above (43, 44, 46)) (Table 1).

Organoids from pituitary, adhering to the criteria as described

above, were reported in 2019 by Cox et al. (58). The adult mouse

AL, containing the anterior MZ stem cell niche, was dissociated into

single cells which were seeded in a Matrigel dome and cultured in a

specified medium, encompassing the typical organoid-culturing

components (EGF, Noggin, RSPO1), together with pituitary-

specific growth and signaling factors known to be involved in

gland development and/or in stem cell regulation in general (e.g.,

sonic hedgehog (SHH), FGF8, FGF10)) (58, 72) (Figure 1). The

organoids clonally grow from SOX2+ pituitary stem cells and

recapitulate the pituitary stem cell phenotype with expression of

typical markers (SOX2, E-cadherin (E-CAD) and cytokeratin 8 and

18 (CK8/18)) (58, 72). Intriguingly, differentiation efficiency toward

hormone-expressing cells was limited, and found to be most

pronounced, although still moderate, following in vivo (subrenal)

grafting of the organoids in mice (58). These findings suggest that

adult pituitary stem cells do not possess high propensity to

differentiate. In accordance, lineage tracing has shown that

pituitary stem cells generate endocrine progeny especially in the

embryonic and neonatal period (3, 4). It is possible that stem cells in

the adult pituitary do not (need to) maintain this capacity, given the

very low turnover of the adult gland (73). A more pronounced role

in auto-/paracrine signaling (e.g., toward hormonal progenitor/

precursor or mature cells) than in differentiating to generate new

endocrine cells may explain why adult stem cell organoids do not

show pronounced differentiation capacity (9–11, 60, 74). However,

alternative explanations including the lack of fully optimal

conditions for organoid (stem cell) differentiation cannot be
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TABLE 1 Overview of 3D pituitary organoid/spheroid models.

Tissue/cells of origin Self-
forming? Expandability? Hormonal cell types

present?

In vitro hormone regula-
tion

(Treatment: effect on
hormone secretion)

Healthy

(55) Mouse ESCs Yes No Yes:
- ACTH: (secreted) protein,
Pomc mRNA
- GH, PRL, LH, FSH, TSH:
protein

Yes:
- CRH: ACTH↑
- Glucocorticoid: ACTH↓

(56) Adult rat S100b+ pituitary stem/progenitor cell
clusters

Yes Unknown Limited:
- GH: protein

Unknown

(57) Human ESCs Yes No Yes:
- ACTH, GH: (secreted)
protein
- PRL, LH, FSH, TSH:
protein

Yes:
- CRH: ACTH↑
- GHRH + DEXA: GH↑
- GHRH + SS: GH↓

(58) Adult mouse SOX2+ pituitary stem cells Yes Limited Limited:
- In vivo differentiation: GH,
PRL: protein
- In vitro differentiation:
ACTH, aGSU: protein

Unknown

(59) Human iPSCs Yes No Yes:
- ACTH: (secreted) protein,
Pomc mRNA

Yes:
- CRH: ACTH↑
- Low glucose: ACTH↑
- DEXA: ACTH↓

(60) Adult and aged mouse SOX2+ pituitary stem cells Yes Extended No Unknown

(9) Neonatal mouse SOX2+ pituitary stem cells Yes Extended No Unknown

Diseased

Hypopituitarism

(61) Patient-derived iPSCs (OTX2 mutation) Yes No Yes:
- ACTH, GH: (secreted)
protein

Yes:
- CRH: ACTH↑
- GHRH: GH↑

(62) Patient-derived iPSC (anti-PIT1 hypophysitis) Yes No Yes:
- ACTH, GH: protein

Unknown

Tumors

(63) Patient-derived corticotropinomas Yes Yes Yes:
- ACTH: secreted protein

Unknown

(64) Patient-derived corticotropinomas Unknown Unknown Yes:
- ACTH: secreted protein

- DEXA: ACTH↓

(65) Patient-derived prolactinoma Unknown Unknown Yes:
- PRL: secreted protein

Unknown

(66) Patient-derived somatotropinomas Unknown Unknown Unknown Unknown

(67) Patient-derived pituitary tumors Yes No No Unknown

Drd2-/- mouse SOX2+ pituitary (tumor) stem cells Yes Yes No Unknown

(68) Patient-derived pituitary tumors Yes Unknown Yes:
- ACTH: (secreted) protein
- GH, PRL, LH, FSH, TSH:
protein

Unknown

Patient-derived iPSCs (MEN1 mutation; CDH23
mutation)

Yes Unknown Yes:
- ACTH: (secreted) protein
- GH, PRL, LH, FSH, TSH:
protein

Unknown

(Continued)
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dismissed yet. Interestingly, it was discovered that addition of the

cytokine interleukin-6 (IL-6) greatly extended the expansion

capacity of the organoids, now achievable for over 6 months

(Table 1) (60, 72).

In addition to recapitulating the pituitary stem cell molecular

phenotype, the organoids also replicate functional pituitary stem

cell aspects, including their activation status and functionality

linked to specific ages (9, 60) and pathological states (58, 60, 67).

During the early-postnatal development and maturation phase of

the gland, the local stem cells are highly active regarding

proliferation, differentiation, and stemness-related pathway

expression. In accordance, postnatal contribution to the different

(expanding) endocrine cell types is highest in this neonatal period

(3, 8, 9, 74, 75). This activation status is reflected in the organoid
Frontiers in Endocrinology 05
formation efficiency, which is higher from neonatal than adult AL,

the latter containing stem cells that are predominantly quiescent

(9). Moreover, the neonatal AL stem cells need much less exogenous

growth factors than their adult counterparts to grow into organoids

and drive their expansion (e.g., no Noggin, SHH, FGF8 and FGF10

needed), due to higher endogenous expression and activity of

several stem cell-related (signaling) pathways in the neonatal

pituitary stem cells, as compared to their adult equivalents (9, 58).

In contrast, only limited numbers of organoids are established from

aging pituitary, thereby reflecting the declined functionality of the

stem cells in the aging gland, which is likely due to the process of

‘inflammaging’, a chronic low-grade inflammatory condition that

arises in body and organs with advanced age (60, 76, 77).

Intriguingly, the old pituitary stem cells regained their
TABLE 1 Continued

Tissue/cells of origin Self-
forming? Expandability? Hormonal cell types

present?

In vitro hormone regula-
tion

(Treatment: effect on
hormone secretion)

(69) Genetically engineered human iPSC (USP8
mutation, USP48 mutation)

Yes Unknown Yes:
- ACTH: (secreted) protein
- GH, FSH, LH, PRL: protein

Unknown

(70) Patient-derived CP tissue Yes Unknown Not applicable Not applicable
(ESC, embryonic stem cells; CRH, corticotropin-releasing hormone; DEXA, dexamethasone; SS, somatostatin; iPSC, induced pluripotent stem cell; GHRH, growth hormone-releasing hormone;
CP, craniopharyngioma).
A B

FIGURE 1

Pituitary organoids derived from primary tissue stem cells or pluripotent stem cells. Organoids from primary pituitary tissue develop from tissue-
resident stem cell populations. Single cells or isolated stem cell clusters are embedded in, or overlayed by Matrigel and supplemented with a specific
medium (A). Organoids from pluripotent stem cells (PSCs) can be derived from embryonic stem cells (ESCs), established from the blastocyst inner
cell mass (ICM), as well as from somatic cell-derived (induced) PSCs (iPSCs). Dissociated PSCs are grown into aggregates and transferred to
microwell dishes at day 30. By applying inducing signals in the culture medium, the aggregate differentiates into AL- and hypothalamus-resembling
tissue (B). gfCDM, growth factor-free chemically defined medium; KSR, knock-out serum replacement; RI, rock inhibitor; SAG, smoothened agonist.
Figure created with BioRender.com. Adapted from (71).
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functionality in organoid culture (i.e., proper organoid growth and

expansion), postulated to be due to their withdrawal from the

restrictive inflammatory in vivo environment (60). Similar

observations have been reported in organoid culturing from other

inflammatory diseases (such as intestinal organoids from ulcerative

colitis (UC) (78)). Interestingly, restoration of the inflammatory

phenotype was achieved by exposing the UC organoids to pro-

inflammatory cytokines to reproduce the in vivo environment (78).

Certain pituitary perturbations or diseases have been shown to

be linked to altered stem cell activity. Local injury in the adult

mouse pituitary, as inflicted by endocrine cell-ablation damage,

leads to an immediate proliferative reaction of the resident stem

cells, resulting in an increased number with higher activation status

including stemness gene expression (60, 79–81). This prompt

activation was recapitulated by higher organoid formation

efficiency when compared to unperturbed (undamaged) gland.

Whole-transcriptome sequencing of the organoids uncovered new

damage-associated stem cell markers (e.g., paired related homeobox

(Prrx) 1, Prrx2) which were also observed in vivo, thereby

underscoring the translatability of pituitary organoid-based

findings (58, 82). Of note, the stem cell reaction to injury is

declined in the aging pituitary (likely due to inflammaging, see

above), which is again reflected in lower organoid formation

efficiency and stemness gene expression from damaged old versus

young pituitary (60, 81).

Also in tumorigenic pituitary, local stem cells display an

activated phenotype (67, 83–86). It has been advanced that the

stem cells may contribute to the tumor development and/or growth,

be it in a direct or indirect (paracrine) manner (3, 85, 87). Again,

enhanced stem cell activity is found to be mirrored in organoid

culturing, resulting in higher formation efficiency and expression of

markers associated with the disease states (e.g., stemness marker

(Cd44), chemokines (C-X-C motif chemokine receptor 6 (Cxcr6)),

cytokines (interferon gamma (Ifng), Il1b), and associated Janus

kinase (JAK)/Signal transducer and activator of transcription

(STAT) and nuclear factor kappa B (NFkB) signaling components

(Stat1/3/4, Jak2, Rel)) (58, 60, 67).

Taken together, pituitary stem cell-derived organoids provide

an exciting and powerful tool, before not available, to grow and

expand pituitary stem cells and decipher their phenotype,

functionality, and underlying molecular mechanisms in a

reliable manner.
2.2 PSC-derived pituitary organoids

The pituitary gland is of dual embryonic origin, with the AL

derived from the oral ectoderm and the PL from the neural

ectoderm. AL development is initiated by thickening of the oral

ectoderm (marked by expression of paired-like homeodomain

transcription factor (PITX) 1 and PITX2), forming the

hypophyseal placode which is strategically located in front of the

future ventral diencephalon (VD). The placode invaginates and

detaches from the oral ectoderm to form the pituitary primordium,

known as Rathke’s Pouch (RP) (71, 88–94). Suga and colleagues

applied this knowledge and recapitulated consecutive steps of in
Frontiers in Endocrinology 06
vivo pituitary development to induce RP development starting from

mouse ESCs (55). The cells were first cultured as large floating

aggregates (containing 10,000 cells per aggregate) in a defined

medium to drive them into oral (Pitx1+, Pitx2+) and neural

(hypothalamic, Rax+) ectoderm. Then, BMP4 was added, since

the VD secretes BMP4 during the formation of the hypophyseal

placode, indeed favoring a non-neural fate in the ESC aggregates.

Simultaneously, a SHH pathway activator (i.e., smoothened agonist

(SAG)) was added, since SHH is needed during RP development,

being secreted by the oral ectoderm (excluding the RP progenitor

region) and the VD. Treatment of the ESC aggregate cultures with

SAG increased the expression of the pituitary-specific marker LIM

homeobox 3 (LHX3; expression appearing in > 90% of the

aggregates), and RP-resembling vesicles started to form.

Importantly, in the absence of neural (hypothalamic) ectoderm,

vesicle development did not occur, thereby reproducing the

knowledge that interplay between the two juxtaposed tissues is

critical for RP morphogenesis (55, 88–93). Finally, development of

endocrine lineages in the RP-like structures was pursued, again

starting from in vivo knowledge. Blocking NOTCH signaling in the

cultures increased expression of T-box transcription factor 19

(Tbx19) - a transcriptional regulator required for corticotrope

differentiation -, and ACTH+ cells appeared, all based on the in

vivo understanding that Tbx19 expression is inhibited by NOTCH

signaling (95, 96). ACTH+ cells comprised around 35% of the non-

neural cells (which only represent about 11% of total cells) in the

aggregates (55). Following exposure to a WNT agonist, expression

of Pit1 was specifically augmented, the transcription factor that is

essential in the generation of the lacto-, somato-, and thyrotrope

lineages, in line with the knowledge that canonical WNT signaling

promotes Pit1 expression in vivo (97). Subsequently, GH+ and PRL+

cells appeared (around 5% of the non-neural cells) upon

glucocorticoid and estradiol exposure, respectively, indeed

previously shown to enhance differentiation toward these lineages

(98, 99). Very limited (< 3% of non-neural cells) differentiation

towards the other endocrine lineages (thyrotropes and

gonadotropes) was reported upon treatment of the aggregates

with conditioned medium from PA6 stromal cells (55)

(Table 1; Figure 1).

In a follow-up study, the group created similar structures

starting from human ESCs. Neural hypothalamus and non-neural

oral ectoderm fate were induced in the ESC aggregates by exposure

to BMP4 and SAG. After 4 weeks, FGF2 treatment led to the

formation of LHX3+ vesicles (in about 50% of the aggregates),

reminiscent of RP structures. While ACTH+ corticotropes emerged

spontaneously (12% of all PITX1+ cells), the PIT1+ lineage was

induced, although moderately (9% GH+, < 2% PRL+ and < 1% TSH+

of all PITX1+ cells), by glucocorticoid treatment, and NOTCH

inhibition promoted the gonadotrope fate (efficiency not stated)

(57, 100, 101) (Table 1), findings that are intriguingly different from

the mouse ESC-derived model. Of note, human iPSCs had already

before been driven into several pituitary endocrine cell types,

although in a 2D monolayer format (102, 103). The efficiency of

hormonal differentiation seems higher in this 2D format. Zimmer

et al. reported that 80% of the cells express at least one type of

hormone transcript after 60 days of differentiation. The most
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prominent cell type again was the corticotrope cell (55% of all cells

express POMC), followed by somatotropes (30%). Only few cells

expressed FSHB and LHB (around 3%) (103).

Next, the focus was turned to the hypothalamic compartment of

the model, simultaneously aiming at advancing the RP-resembling

development since interaction between hypothalamus/VD and RP

is important (and essential) in pituitary development (55, 90, 104).

Co-induction of hypothalamic tissue and RP in 3D human iPSC

aggregates resulted in ‘hybrid’ aggregates. To achieve this, culture

conditions were slightly modified (i.e., increasing the knock-out

serum replacement (KSR) concentration from 5 to 10% and the

BMP4 concentration from 5 to 10 nM, while doubling the number

of cells per well). From day 51 onward, the cultures were kept in

35% growth factor-free chemically defined medium (gfCDM), 35%

DMEM-based medium with recombinant ciliary neurotrophic

factor (CNTF), and 20% KSR. Finally, extending the culture

period (from 60 to over 200 days) resulted in hypothalamic

neuron-like cells (corticotropin-releasing hormone (CRH)+,

thyrotropin-releasing hormone (TRH)+, antidiuretic hormone

(ADH+)) emerging in the inner layers of the aggregate, and AL-

like cells (LHX3+, ACTH+) on the outer rim (Figure 1) (59, 71)

(Table 1). The composite organoid model displayed a functional

hypothalamic-pituitary axis regarding CRH-ACTH interaction, as

illustrated by, among others, decreased ACTH release upon

exposure to a CRH receptor inhibitor. Differentiation toward the

other pituitary endocrine lineages was not shown (59). Finally, the

question was addressed whether the pituitary cell compartment

could be enriched from the hybrid PSC-derived organoids (105).

Using magnetic-activated cell sorting, epithelial cell adhesion

molecule (EPCAM)+ cells were isolated that formed aggregates

expressing AL markers (PITX1, LHX3, ACTH), present in

enriched proportion when compared to unsorted hybrid

hypothalamic-pituitary culture (59, 105). EPCAM- cells did not

generate AL marker-expressing aggregates (105). It was theorized

that sorted cell aggregates could serve as source of stem/progenitor

cells and their endocrine descendants. However, the presence of

stem cells was not demonstrated (e.g., by immunostaining of SOX2)

and so far, only ACTH+ cells were shown to develop (105). Taken

all these studies together, it appears that differentiation toward

corticotropes is the most (and only) efficient path (30% of the

obtained organoids contain both LHX3- and ACTH-expressing

cells; (71)) presently achieved in these PSC-derived 3D models.

Recently, another study attempted to differentiate iPSC-derived

pituitary organoids more robustly toward the gonadotrope fate by

making some changes to the differentiation protocol (e.g., addition

of FGF8, FGF10, and a transforming growth factor-b (TGFb)
inhibitor), but did not succeed (106). Nevertheless, the PSC-

derived organoids showed promising in vivo production of

ACTH. Grafting the organoids in the subrenal capsule of

hypophysectomized mice rescued systemic glucocorticoid levels

through ACTH secretion in response to CRH loading, as assessed

7-10 days after transplantation (55, 57). Also, subcutaneous grafting

of (human ESC-derived) pituitary organoids in hypophysectomized

mice resulted in ACTH levels that were consistently higher than in

the sham-operated control group for up to 26 weeks post-

transplantation (107). The animals showed increased activity in a
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running wheel test and lost less weight than the control mice which

emaciated due to ACTH insufficiency after hypophysectomy.

Success after subcutaneous transplantation points to promising

translational perspectives.

Taken together, the above-mentioned PSC-derived pituitary

organoid models represent interesting tools to explore human

pituitary development and interactions with the hypothalamus.

However, it should be kept in mind that the set-up of these

cultures is labor-intensive and time-consuming, and their

expandability disappears once the PSCs have been driven into

differentiation. On the other hand, ESCs and iPSCs are readily

available, and currently represent the only way to obtain pituitary

organoids from human origin.
2.3 Organoids to model pituitary diseases

One of the main applications of organoid technology is disease

modeling. Here, we give an overview of organoid models of

pituitary diseases using the above-mentioned techniques (Table 1).

2.3.1 Organoids modeling hypopituitarism
As a model of congenital pituitary hypoplasia (61), patient-

derived iPSCs with a mutation in the OTX2 gene, a transcriptional

regulator expressed predominantly in the hypothalamus and

important for pituitary development, were subjected to the

method of simultaneously inducing hypothalamic and pituitary

fate (57, 59, 61) (Table 1). The initial tissue specifications (i.e.,

differentiation toward hypothalamic progenitor cells inside the

aggregates and oral ectoderm in the outer layer) were not

different between OTX2-mutant and control iPSC lines. However,

after long-term culture (100 days) endocrine cell types did not

appear in the OTX2-mutant organoids, whereas GH+ and ACTH+

cells emerged in the control condition. In accordance, the mutant

organoids did not secrete hormones in response to CRH or growth

hormone-releasing hormone (GHRH). Absence of LHX3

expression in the oral ectoderm, causing apoptosis in the pituitary

progenitor cells, was found to be the root of this impaired AL

lineage differentiation potential in OTX2-mutant organoids.

Correction of the mutation using CRISPR/Cas9 gene editing (i.e.,

generating an isogenic rescued iPSC line for rescue) reversed the

phenotype. In chimeric organoids, created using hypothalamic

tissue derived from a control iPSC line and oral ectoderm from

the OTX2-mutant iPSC line, LHX3 expression in the oral ectoderm

remained present, indicating that hypothalamic OTX2 is essential

for LHX3 expression in the oral ectoderm compartment (61).

Anti-PIT1 hypophysitis, a syndrome in which PIT1+ lineages

(GH-, TSH-, and PRL-producing cells) are specifically targeted by

PIT1-reactive cytotoxic T lymphocytes resulting in deficiency of

these hormones, was also modeled using iPSCs (62). The patient-

derived iPSCs were induced into pituitary cells and cultured as

described above (57) (Table 1). Using the model, authors provided

novel insights into the pathogenesis of the disease by showing that

the PIT1 protein undergoes antigenic processing and presentation

(62), thereby further illustrating the potential of such pituitary

disease models.
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2.3.2 Organoids modeling pituitary tumors
Over the past decade, many studies have developed organoids

from tumors of diverse types of cancer (108–112). The tumor-

replicating organoid models are highly instrumental to decipher

cancer pathogenesis and can be applied to screen for new (and even

personalized) therapies.

To model pituitary tumors in 3D, tumor cell lines have been

applied. GH3 cells were subjected to spheroid formation by

centrifugation. However, the 3D spheroid conformation was

quickly lost, reportedly due to “rapid doubling time and surface

interferences” (113, 114). GH3 cells have also been employed in a

3D bioprinting approach (115). Cells were mixed with a gelatin and

alginate blend and printed in a grid-like structure arranged in

multiple layers, followed by layer crosslinking. Cells were found

uniformly distributed in the scaffold and grew into spheroids of

various sizes after 6-12 days. The 3D printed model was shown to

display several advantages above non-printed 3D and 2D systems,

including better growth and survival of the cells with more active

cell division and more robust intercellular junctions (115). In

another study, culture methods of hanging drop, spheroid

suspension, or embedding in (or layering on top of) Matrigel

were compared (116). The GH3 and RC-4B/C (rat) pituitary

tumor cell lines tested were found to favor the ECM (Matrigel)

environment, where cell viability was highest. Although pituitary

tumor 3D models using tumor or immortalized cell lines can be

interesting to explore basic tumor mechanisms, they do not emulate

primary pituitary tumor constellation and (epi-)genetic

modifications. Moreover, most available pituitary tumor cell lines

are derived from experimental animals, and only few from humans

(32, 117).

A first organotypic 3D model of primary human pituitary

tumor (prolactinoma) was obtained through aggregation (118).

The aggregates could be kept in culture for several (over 3)

months and were used to test effects of drugs (such as

dopaminergic agonists) on the PRL secretory activity of the

prolactinoma cells (118). Another approach cultured primary

human pituitary tumor cells in 3D (up to 4 months) in alginate

beads (119). Spheroids were derived from prolactinomas (65), GH-

overproducing somatotropinomas (66), and ACTH-overproducing

corticotropinomas (Cushing’s disease) (64)) (Table 1). The

enzymatically dissociated tumor cells were embedded in Matrigel

and cultured in DMEM with 10% fetal bovine serum (FBS). The

following day, drug screening was performed using the formed

spheroids, which most likely represent cell aggregates (of which the

morphology was not shown in the studies), and effects on PRL, GH,

and ACTH secretion were measured (64–66). In all these studies,

the obtained pituitary tumor spheroid models do not meet yet the

organoid criteria (see above), in particular lacking the

demonstration of clonality, expandability, and tumor-phenotype

recapitulation through deep characterization (Table 1).

Zhang and colleagues strived to develop organoids from

corticotrope tumors (63). Cells were embedded in a Matrigel drop

on top of a thick Matrigel coating and cultured in an optimized

medium containing 10% FBS and typical (pituitary) organoid
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growth factors, such as EGF, insulin like growth factor-1 (IGF-1),

FGF8, triiodothyronine (T3), TRH, and bovine hypothalamus

extract. After 5 weeks, the tumor organoids (referred to as

tumoroids), shown to contain corticotrope (ACTH+), stem/

progenitor (SOX2+) and intermediate (PITX1+, TBX19+) cell

populations, were moved to spinner flasks, which further

increased ACTH production. Comparing primary tumor tissue

with matched tumor-derived 2D and 3D cultures documented the

importance of 3D organotypic culturing. ACTH secretion was

rapidly lost in the 2D culture system, whereas hormone secretion

was sustained up to 18 weeks in the 3D tumoroid approach. The 3D

cultures were described to be expandable, although methodological

details are missing (63) (Table 1).

A more recent study succeeded in developing organoids from

several different pituitary tumor types (i.e., hormone-producing/

functioning as well as non-hormonal/non-functioning tumors) (67)

(Table 1). Patient samples were dissociated, cells embedded inMatrigel

domes and cultured in optimized growthmedium (containing, among

others, hepatocyte growth factor (HGF) and IL-6). The established

organoids recapitulate several of the histological features of the tissue of

origin (such as differently sized and shapednuclei) and show a stem cell

phenotype (with expression of stem cell markers SOX2, S100b, SOX9,
KRT8/18, TACSTD2, and E-CAD), all as found in the tumor samples.

Moreover, the recently reported pituitary tumor-related genes

adhesion molecule with Ig like domain 2 (AMIGO2), ZFP36 ring

finger protein (ZFP36), BTG anti-proliferation factor 1 (BTG1), and

discs large MAGUK scaffold protein 5 (DLG5) were found not only

highly expressed in the tumors, but also in the derived stemness

organoids (120). However, expression of the (functioning) tumor’s

specific hormone(s) was not observed, indicating that only the stem

cell compartment in the tumors grows into the organoids which do not

spontaneously form the tumor’s endocrine cell type. As a shortcoming,

the tumor-derived organoids could not be expanded, in line with the

observation of upregulated expression of pro-apoptotic and hypoxia-

induced genes and downregulation of pro-survival genes in the

organoids compared to the corresponding primary tissue, as revealed

by RNA-sequencing analysis (67). Further optimization of culture

conditions is needed to generate robust and tractable pituitary tumor

organoid lines. Of note, organoids could also be established from

mouse tumorigenic pituitary, i.e., from the Drd2-/- mouse model

(homozygous knockout of the dopamine receptor D2 (DRD2),

leading to prolactinoma development in the AL at later age (121))

(67). The organoids recapitulate the activated phenotype of the

pituitary stem cells during tumorigenesis (84), regarding formation

and growth efficiency and stem cell marker expression (see above).

Addition of cytokines that were found to be upregulated in the

tumorigenic pituitary stem cells (see above), stimulated organoid

growth and expandability even further. Similar to the human

pituitary tumor-derived organoids, hormone expression (in this case

of PRL) was not observed in the organoid cultures. Thus, the present

culture method or organoid medium maintains the stem cells present

in the tumor or tumorous pituitary but does not endorse them to

differentiate into the tumor’s endocrine cell type (67), and further

studies are needed.
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Using a slightly adapted protocol (such as use of WNT-

conditioned medium and FGF18), organoids were developed

from corticotrope tumor samples of Cushing’s disease patients (as

well as from other PitNET subtypes: gonadotropinomas,

prolactinomas, somatotropinomas, and nonfunctional tumors)

(68). Since progressive development neither expandability was

shown, it is not clear whether the formed structures developed by

expansive cell proliferation or rather by aggregation, and whether

they were immediately used for downstream analyses or first

expanded for a certain period. In the former case, the 3D

structures would still contain primary differentiated cells which,

in contrast, are typically lost in expanding organoid cultures.

Authors detected ACTH expression in their culture system, and

ACTH secretion in the conditioned medium. Flow-cytometric

analysis showed the presence of different pituitary lineages (which

may originate from the tumor and/or adjacent tissue), as well as

enrichment of the TBX19+ (corticotrope) lineage and stem cells

(marked by SOX2, CXCR4 and CD133), similar to the patient’s

tumor (68). In addition, the organoids recapitulated the genetic

alterations of the patient’s primary tumor (e.g., single nucleotide

variations in BMP4, cadherin related 23 (CDH23), AKT serine/

threonine kinase 1 (AKT1)), as uncovered by whole-exome

sequencing. Finally, the organoids were harnessed into drug

screening with small-molecule compounds, showing patient-

dependent responses, as also observed in clinical treatment of

Cushing’s disease patients. Further deciphering the mode of

action of the identified active drugs could reveal new therapeutic

targets for Cushing’s disease patients. In a follow-up study, patient-

specific responses of these primary tumor- as well as iPSCUSP8/

iPSCUSP48 (see below) -derived organoids to somatostatin agonists

(e.g., pasireotide) and glucocorticoid receptor antagonists (e.g.,

relacorilant), used in the treatment of Cushing’s disease, were

noted (69). The study identified a potential therapeutic use of

relacorilant in combination with somatostatin analogs.

Pituitary adenoma-mimicking organoids can also be derived

from iPSCs. In this method, iPSCs are first subjected to a directed

differentiation schedule in a 2D setting. At day 15 of differentiation,

cells are harvested and resuspended inMatrigel and cultured in 3D in

the gel domes for an additional 15 days (68, 69). Two approaches to

model corticotropinomas from iPSCs have been described. A first

method utilized Cushing’s disease patient-derived iPSCs (with

familial mutations in multiple endocrine neoplasia link type 1

(MEN1) and CDH23) (68), while a second approach introduced

somatic mutations in genes known to be involved in

corticotropinoma tumorigenesis (i.e., ubiquitin specific peptidase

(USP) 8 and USP48 (31, 122)), using CRISPR/Cas9 in iPSCs from

healthy donors (69). Both approaches resulted in organoids that

showed increased expression (compared to control (CTRL), i.e., non-

mutated iPSCCTRL-derived pituitary organoids) of TBX19 and

ACTH, whereas development of other lineages was suppressed (as

revealed by decreased expression of PIT1 and hormones such as GH

and FSH/LH). Also, increased expression of the PitNET marker

synaptophysin (SYPH) was observed as well as an elevated

proliferative index (68, 69). Moreover, in the iPSCCDH23-derived

organoids unique proliferative cell populations were revealed using
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multicolor flow cytometry analysis, including stem/progenitor cell

clusters, mesenchymal cells, and endothelial progenitor cells. Authors

hypothesized that the presence of these different cell populations

might indicate that they support or contribute to the adenoma

growth and progression, and that the expanded stem/progenitor

cells might be the targets for tumor recurrence (68). The genetically

engineered organoids (iPSCUSP8/iPSCUSP48) were used to assess the

effects of the glucocorticoid receptor modulators mifepristone and

relacorilant. Organoids exhibited divergent responses to these

different modulators regarding somatostatin receptor expression,

ACTH secretion, and apoptosis/proliferation (69). Hence, such

models may have important translational perspectives regarding

drug discovery and mode of action identification.

Craniopharyngiomas (CP) represent a subtype of pituitary

tumors, most prevalently seen in children, and are believed to

originate from embryonic pituitary tissue remnants (123). Recently,

an organoid model derived from resected CP tissue was described

(70). CP cells were mixed with Matrigel and organoid medium,

seeded in ultra-low attachment plates with DMEM/F12

supplemented with B27, EGF, and FGF10, and grown for 30 days.

The organoids’ morphology was found similar to that of the

primary tumor, and organoids expressed typical CP markers,

including cytokeratin 7 (CK7), CD133 and catenin beta 1

(CTNNB1). The organoids were exploited to assess the cell-killing

effects of B7-H3-targeted chimeric antigen receptor (CAR) T cells

and antibody-DM1 conjugate, revealing that B7-H3 might be a

promising target for antibody-drug conjugate therapy against

craniopharyngioma (70).
3 Conclusion

Over the years, multiple different 3D models of the (anterior)

pituitary have been established, both from healthy and diseased

conditions. Although often referred to as organoids, the models do

not always (strictly) adhere to the ‘organoid’ definition, as described

above and, among others, formulated by NCI-NIH as “A tiny, 3D

mass of tissue that is made by growing stem cells (cells from which

other types of cells develop) in the laboratory. Organoids that are

similar to human tissues and organs, or to a specific type of tumor,

can be grown” (124).

Organoid technology can also be harnessed into regenerative,

cell replacement purposes. Differentiation of pituitary endocrine

cell types has been achieved, particularly in the PSC-derived

models, although not yet at high efficiency and thus should be

further optimized if successful cell replacement is envisioned.

Moreover, since organoid culturing from TSCs is in general

easier, faster, and less labor-intensive than from PSCs, it would be

valuable that efficient differentiation is also achieved in pituitary

stem cell-derived organoids. However, it is not clear yet whether the

(postnatal) pituitary stem cells have the capacity to efficiently do so

or whether they rather play other (auto-/paracrine-regulatory)

roles. Another hurdle toward regenerative applications is the

current lack of primary pituitary organoids from humans since

healthy tissue samples are obviously not easy to come by.
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Finally, current organoid-typical models recapitulate the

epithelial compartment of the originating tissue. Including other

tissue cell types such as endothelial and mesenchymal cells, believed

to be an integral part of the pituitary stem cell niche, to establish

‘assembloids’ will further advance the in vitro pituitary mimicry. In

the end, it would be highly interesting to combine cell/organoid

models from different organs of the endocrine axes. Mimicking

entire hypothalamus-pituitary-target organ axes would give new

insights in how the different entities interact in development and

(organismal) functioning in healthy and diseased conditions.
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