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Osteoporosis (OP) and Dermatoporosis (DP) are expressions of the aging process

at the skin and bone levels, respectively. Both conditions are associated with

increased morbidity for elderly people, and this requires necessary interventions.

They share many common risk factors; among these, vitamin D (VD) deficiency

appears to have a role. VD is involved in either disease with many mechanisms,

among which immunomodulation. VD deficiency has been linked to OP because

it inhibits the body’s capacity to absorb calcium and maintain optimal bone

health. Available evidence suggests that proper vitaminosis D also appears to be

vital in preventing skin age-related issues. DP is often seen in elderly individuals,

particularly those with long-term sun exposure and a history of chronic sun

damage. VD deficiency can be linked to DP, since its involvement in collagen

production, epidermal barrier function, inflammation regulation, wound healing,

and sun protection. Aim of this review is to summarize the most updated existing

evidence on the role of VD in the development of fragility syndromes such as DP

and OP and the possible benefits of VD supplementation as a simple and harmful

weapon against aging.
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alpha, Tumor necrosis factor-alpha; RANKL, Receptor activator of nuclear factor-Kappa B Ligand; OPG,
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dissecting hematomas; PTH, Parathyroid hormone; FGF-23, Fibroblast growth factor-23; IGF-1, Insulin-like

growth factor-1; VDPB, Vitamin D Binding Protein; VDR, Nuclear receptor of VD; APC, Antigen presenting

cells; ROR, Retinoic acid-related orphan receptors.
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1 Introduction

The most frequent metabolic bone disorder is osteoporosis

(OP). It is distinguished by low bone mineral density (BMD) and

decreased bone strength, which increases the risk of fragility

fractures. OP is the leading cause of bone fractures in the elderly,

making it a substantial public health issue with a large impact on

health systems (1). Kaya and Saurat created the term

dermatoporosis (DP) to describe an excessive cutaneous fragility

induced by increasing loss of the skin’s protective mechanical

function with age. The word DP derives its name from the

similarities to OP-induced bone fragility (2): just as in OP we

witness a decline in the mass and quality of skeletal tissue, so in DP

the structural elements of the skin barrier are lost (3). OP and DP

share many common risk factors, such as aging, sex and

corticosteroid use. Among these, a lack of vitamin D (VD) could

have a role. The VD impact on skeletal health is well known and it is

universally recognised the importance of its supplementation in

elderly patients suffering from bone loss (4), however VD actions

are involved in many tissues and skin is one of them. In fact, when

there is adequate UV-B irradiation, this organ is capable of

producing itself the active form of VD which is 1,25(OH)2D. The

latter 1,25(OH)2D has crucial roles such as the control of epidermal

barrier integrity (5). Recent findings indicate that VD regulates

aging in various tissues, including the skin (6). Our review sought to

investigate the links between OP and DP, as well as the available

information on the function of VD in the onset of these conditions

and the possible therapeutic use of VD supplements.
2 Osteoporosis in elderly

2.1 Definition and epidemiology

OP is a systemic skeletal illness marked by low bone mass,

micro-architectural degeneration of bone tissue, bone fragility, and

an increase in fracture risk (especially of vertebrae, femur, humerus,

wrist and ankle bones) due to even minimal trauma (7). The

epidemiological impact is very high: nowadays it is believed that

in Italy around 5 million elderly people are affected by OP and a

greater increase in its incidence is expected in the next future, since

the proportion of the Italian community of over 65 years is going to

rise by 25% in the next 20 years. Osteoporotic fractures raise the

relative risk of mortality, particularly for femur fractures: it is 5-8

times greater in the first 3 months after the occurrence, decreases in

the next 2 years, but stays high even after a 10-year follow-up.

Furthermore, 50% of women with hip fractures had a significant

loss in self-sufficiency which involves long-term institutionalization

in about 20% of cases. The economic burden of such a widespread

pathology is therefore very high (8, 9). The World Health

Organization operationally defines OP as the presence of a bone

mineral density (BMD) of 2.5 SDs under the average of young white

adult women (1). OP is classed as ‘primary’ when it is not caused by

medical conditions, and secondary’ when it arises as a result of

particular, well-defined clinical diseases or drug use (10).
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2.2 Elderly osteoporosis: pathogenesis

Under physiological conditions, skeletal homeostasis is

guaranteed by an appropriate ratio between formation and

resorption of bone tissue. Skeletal homeostasis is maintained

under physiological settings by a balance of bone production and

bone resorption. This adjustment is altered in pathological

circumstances in favor of osteoclast-mediated bone resorption (5).

This bone regeneration cycle decoupling is exactly what

happens in elderly people: the decreased osteoblast activity

determine a longer time required to fill resorption cavities and

there is a low-grade systemic inflammation, especially involving

pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-

alpha), IL-1, and IL-6)] which determine an increase in the amount

and functioning of osteoclasts. As a result, in older persons there is

an overall decline in bone with time. A negative calcium balance

resulting from decreased dietary intake, reduced absorption and the

compromise of kidney function, reduces the activation of VD and

the calcium absorption from the gut (11). Osteoclasts indeed must

resorb calcium in order to fill this void (4). Estrogen deficiency is of

course another critical factor responsible for the increased bone

resorption both in men and women. For either sex, bone loss occurs

right after attaining maximal bone mass; nevertheless, this process

accelerates after menopause in women and after the age of 70 in

men (12). Estrogens are well known for regulating the synthesis

of bone. They have a bone-protective role by limiting bone

resorption and sustaining bone formation (13). As a result,

estrogen deprivation causes OP, which is associated with an

increase in bone resorption due to a boost in the number and

activity of osteoclasts, as well as osteocyte death. A growing body of

information suggests that OP related with estrogen loss of estrogen

is also due to the increase in oxidative stress and changes in immune

system homeostasis and inflammatory pathways, which are

accentuated by the aging process. Specific T-cell subsets, such as

T helper cells, can be activated, supporting the production of IL-17,

Receptor activator of nuclear factor-Kappa B Ligand (RANKL),

IL-1, TNF, and IL-6. These factors are able to stimulate osteoclast

maturation and activity by preventing the differentiation

of osteoblast, increasing apoptotic osteocytes, and raising

RANKL expression and the RANKL/Osteoprotegerin (OPG)-

ratio (14).
2.3 Elderly osteoporosis: clinical features

OP is asymptomatic for the majority of its clinical history;

approximately one-third of fracture occurrences are silent, while the

remainder present in pain. Osteoporotic fractures are fragility

fractures, meaning they occur spontaneously or as a result of little

trauma. In order of frequency, the most commonly affected sites are

vertebra, femur, major non-vertebral/non-femoral fractures (pelvis,

radial tip, proximal tibia, humerus, 3 or more ribs, etc.), minor

fractures followed by pain. Vertebral compression fractures (VCFs)

are the hallmark clinical presentation of OP. Unlike major

posttraumatic VCFs, which are invariably symptomatic, those
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caused by moderate trauma are frequently misunderstood and thus

go undiagnosed. They are typically asymptomatic or present with

symptoms such as back or low back pain that responds to analgesic

therapy (15, 16). They primarily impact the dorsolumbar junction

(T12-L1), followed by the mid-dorsal tract (T7-T8) and other

locations (17). The Genant classification, which takes into

account the level of vertebral body involvement by a semi-

quantitative evaluation of its deformity, is used to categorize the

severity of vertebral fractures (18). The reduction in the patient’s

height, which can be partly attributed to antalgic posture and

partially to the accentuation of the thoracic kyphosis, is the

evident and immediately observable result of vertebral collapse.

The latter causes a number of issues, including sleep disturbances

caused by adopting analgesic positions, limitations on daily

activities, respiratory (modest reduction of respiratory volumes

due to reduction of rib cage support) and gastrointestinal (early

satiety due to abdominal distension) disturbances. Neurological

deficits occur rarely, even when they cause compression of the

spinal cord (by sliding) (19). Hip fracture is a severe injury that

necessitates hospitalization and immediate medical surgery (20).

Such fractures account for a small percentage of fractures caused by

OP (about 15%), but they have a greater impact on health

expenditure (21) because they are associated with a higher rate of

morbidity and mortality, particularly in the first three months after

the fracture; numerous complications are in fact associated with this

event: embolism, pulmonary disease, infections, sepsis, heart attack,

and cardio-pulmonary problems in general (22). Hip fracture risk

increases with age, and so does mortality (by 5-8 times): this

connects with both BMD decline and an increase in the chance of

falling (which accounts for around 90% of fractures in the elderly)

(21). Colles fracture, or fractures of the distal epiphysis of the radius,

are more common in persons with a higher performance level

because they are more active and hence at a higher risk of falling. Its

prevalence rises gradually after menopause, then levels out at the

age of 65. In contrast, wrist fractures are uncommon in men,

regardless of age (M:F 1:6-1:10 at 65 years) (21). This disparity is

related to the male skeleton’s bigger cortex and lower endocortical

resorption (23). Other types of fractures (humerus, pelvis, proximal

radius, or distal femur) are more uncommon. Although the

association with age is indisputable due to the loss in BMD, it is

relatively weak for rib fractures and more meaningful for pelvic

fractures (21).
3 Dermatoporosis

3.1 Definition and epidemiology

Skin aging is not just an aesthetic problem. In fact, its effects also

weaken the skin on a functional level, reducing the crucial

protective properties of the skin. Since this growing knowledge in

recent years, it has been necessary to coniate a term as DP that could

focus the attention of clinicians on the urgency of preventing and

treating this condition as well as OP.

DP is a clinical entity that includes the whole broad spectrum of

skin alterations due to aging, including complications that can cause
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severe morbidity for the affected elderly person, taking the form of a

real chronic skin frailty syndrome (2). People with dermatoporosis

have particularly thin and fragile skin. This results in a poor

tolerance to friction and shear forces, and consequent

susceptibility to skin tears and more or less serious hematomas.

DP also tends to delay the healing of wounds once they have

formed. Additionally, skin failure leads to loss of temperature

regulation combined with the incapacity of keeping the core body

temperature. In more severe cases, it may result in percutaneous

loss of fluid with electrolytes and protein, as well as an increased

susceptibility to infection (24). For this reason, severe DP is a cause

of death in intensive care units (25). Similarly to OP, DP is classified

as ‘primary” and ‘secondary’ . Primary DP is caused by

chronological aging along with long-term, unprotected sun

exposure. Although data on genes associated in DP pathogenesis

are limited, genetic variables are known to play a substantial role in

the regulation and loss of extracellular matrix (ECM) components,

in the viscoelastic characteristics of the skin, and hence could be

involved in DP susceptibility. Chronic use of topical and systemic

corticosteroids causes the secondary type. These iatrogenic forms

may appear earlier and be more severe in people predisposed to

primary DP. Corticosteroids are known to affect the expression of

genes encoding collagens I, III, IV, V, decorin, elastin,

metalloproteinases (MMPs) 1, 2, 3, tenascin, and MMP 1 and 2

tissue inhibitors (2).

Data on the prevalence of the disease are currently scarce,

however they show the high frequency among the elderly and

especially in women. The frequency of dermatoporosis is 32%,

based on a study of 202 hospitalized participants aged 60 to 80

years. DP was found in approximately 22% of females and 38% of

males (26). Another French study evaluated 533 people over the age

of 65 who went to see a dermatologist, resulting in an overall

prevalence of dermatoporosis of 37.5%, which was prevalent in

women (27). Finally, in a prospective analysis of 176 patients aged

60 years or more, Kluger et al. discovered DP in 30.7% of patients,

mostly in the upper extremities (94%) (28).
3.2 Dermatoporosis: pathogenesis

There are many factors implicated in the development of DP.

First of all, the decline with aging in dermal hyaluronic acid (HA).

In the elderly there is a thinning of the skin, which loses its

resistance to mechanical forces. The firmness of “healthy” skin is

provided by the ECM, whose major constituent is HA, a non-

sulfated glycosaminoglycan that is mostly produced by fibroblasts.

HA is a very hydrophilic material that decreases friction between

collagen fibers and provides shear force resistance. Yet, as people

age, fibroblasts lose their ability to make HA; as a result, the ECM

loses volume and consequently is protective mechanical function,

determining skin laceration from minimal trauma (2). The lack of

interaction between HA and the cell surface receptor CD44, which

normally increases keratinocyte proliferation, is a second

mechanism hypothesized. In mice models, the selective

suppression of keratinocyte CD44 determines skin atrophy (29).

This observation has served as the foundation for DP research: it
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has been shown that dermatoporotic skin has lower CD44 levels

than “healthy” skin from young persons (30). Expression of CD44 is

also decreased by UVA and UVB exposure (31) and topical

corticosteroid application (30–32). Corticosteroids can also cause

dermatoporotic alterations by modifying collagen I, collagen III,

collagen IV, and matrix MMP gene expression (33). With age, the

overexpression of MMP 1, 2, and 3 and the downregulation of the

tissue inhibitor of MMP 1 leads to the degradation of collagen and

elastin in the dermis (34). The malfunction of the hyalurosome, a

multimeric macromolecule complex comprising of components

involved in HA metabolism and cell signaling in keratinocytes

such as CD44, heparin binding epidermal growth factor, and its

receptor erbB, appears to be the most critical aspect of DP (35).
3.3 Dermatoporosis: clinical features

Clinical manifestation is variable and includes morphological

and functional alteration of the skin. Skin atrophy, senile purpura,

and stellate pseudoscars are morphological signs of skin fragility.

Sun-exposed areas of skin atrophy include the pretibial zones, the

back of the forearms, the dorsum of the hands, the presternal area,

and the scalp. Dermatoporotic skin is clinically very thin and

transparent, with many wrinkles, senile purpura, and pseudoscars

as compared to younger skin. There is a significant reduction in skin

thickness, demonstrated by ultrasound (1.4-1.5 mm “healthy” skin

thickness vs 0.7-0.8 mm in dermatoporotic skin). The dermis,

which contains the majority of the subcutaneous fat, shows

substantial elastosis, while the epidermis displays linearization

with lack of rete ridges (2). Senile purpura, also known as

Bateman purpura, is a benign superficial hemorrhagic lesion

caused by repeated spontaneous or minor trauma. Histologically,

it is distinguished by erythrocyte extravasation and enhanced

vascular fragility as a result of connective tissue injury and

atrophy in the dermis. These dermal bleedings are not associated

with any coagulation disorders (3). Senile purpura is very common

in up to 10% of the elderly population between the ages of 70 and 90

and in 90% of cases it is associated with pseudoscars. As these

purpuric plaques fade, a dark brownish pigmentation that

resembles hemosiderin pigment is left behind (36). Vitamin C,

whose protective role on blood vessels is well known, is often

deficient in elderly people with dermatoporosis, leading to dermal
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hematomas; so acid ascorbic replacement therapy should be

considered in this pattern (2). Stellate Pseudoscar is a superficial

lesion of the skin with a star shape, deriving from spontaneous

dermal laceration caused by minimal trauma. These lesions have a

hypocellular dermal zone in a background of fibrosis and elastotic

collagen fibers covered by an atrophic epidermis. As the senile

purpura, Stellate Pseudoscar appears on the backs of elderly

people’s hands and forearms and they show as pale lesions on

medical inspection. Pseudoscars are classified into three kinds based

on their shape: star-shaped, linear, and plaque (36).

Functional manifestations of DP are skin lacerations, delayed

wound healing, and subcutaneous bleeding with the development of

deep dissecting hematomas (DHH) and in the most serious cases

even large areas of necrosis (3). DHH is the most serious DP

complication. It occurs as a result of extensive bleeding between

subcutaneous fat and muscle fascia following a small injury (37).

DHH typically occurs in elderly patients with dermatoporosis who

underwent anticoagulation therapy or topical or systemic

corticosteroid therapy (33). Histologically, there is exposure of

deep skin vessels to the skin surface in the context of significant

skin thinning. Unlike the other clinical signs of DP, DHH occurs

mostly in the lower limbs of elderly adults with severe DP (M/F

ratio: 1/5) (38). Necrosis is caused by large hematomas that cut off

the blood flow to the skin. As soon as possible to prevent severe skin

damage in this situation, the bleeding area and necrotic tissue

should be surgically removed. It may be essential to make large

and deep incisions that reach the muscular tissue, determining a

significant loss of skin surface (39). The exact mechanism causing

the delay in wound healing in elderly is still unclear. Tissue

deterioration is caused by a reduction in the ability of

keratinocytes and fibroblasts to proliferate, a surplus of matrix

MMPs, which delay the production of renewed ECM (40).
4 Osteoporosis and dermatoporosis:
common risk factors

OP and DP share many common risk factors (Figure 1). The

major risk factor for both illnesses is advancing age. Aging

exponentially raises the likelihood of osteoporotic fractures, only

partially due to the observed reduction in BMD, but also due to

many other factors accompanying aging, namely alterations in bone
FIGURE 1

Dermatoporosis and Osteoporosis: common risk factors.
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quality, a rise in the number of falls, and a slowing of defensive

reactions. In fact, fracture risk can be higher in elderly than young

patients even if in presence of similar BMD (8). Clinical signs of DP

appear from the age of 60, and are more noticeable at between 70

and 90 years of age (41). Observational studies on subjects attending

dermatology units aged 60 or older (28, 42) or on geriatric

rehabilitation patients (43) showed that age was an independent

risk factor for the development of DP. Another well recognised risk

factor is smoke. Tobacco use is an independent risk factor for both

vertebral and limb fractures (8). Current smokers exhibit a weaker

inverse relationship between PTH and serum VD levels compared

to nonsmokers. They also lose more BMD over time, particularly at

the femoral site, and are more likely to experience fragility fractures

(44). Smoking was found to be significantly associated also with DP

(43). Use of systemic corticosteroids represent the main form of

secondary OP and is distinguished by a qualitative change in the

skeleton as well as in the macro and bone microarchitecture (45). As

seen above, corticosteroids are involved in the regulation of the

expression of genes that encode collagens I, III, IV, V, decorin,

elastin, MMPs 1, 2, 3, tenascin and tissue inhibitors of MMPs 1 and

2 (33). Kluger et al. discovered that use of both topical and systemic

corticosteroids was strongly linked with DP in a Finnish

observational research (28). Chronic renal failure causes the

condition named as “Chronic Kidney Disease-Mineral and Bone

Disorder” (CKD-MBD) which is characterized by a group of

alterations in calcium-phosphorus metabolism, changes in

hormones involved in bone homeostasis such as parathyroid

hormone (PTH), VD and fibroblast growth factor-23 (FGF-23),

anomalies in bone turnover and mineralization, and vascular

calcification. The risk of fracture and vascular disease increases as

a result of all these factors (46). Dermatoporosis and chronic renal

failure have also been linked in a strong, age-independent way (28,

42). Chronic renal failure was revealed to be the only age-

independent factor that significantly increased the incidence of

DP more than five times by multivariate analysis in the cross-

sectional observational investigation by Mengeaud et al. (26).

Hyperpigmentation and haematomas, which are seen in most

advanced stages of DP, are frequently documented in patients

with end‐stage renal disease; however, there is no convincing

understanding for the link between severe chronic renal disease

and DP. Anticoagulant use has shown the most important

association for the development of DP in observational studies

(27, 42, 43); anticoagulant use and chronic renal disease seems to act

as additional cofactors (28). The prevalence of OP in individuals

with chronic obstructive pulmonary disease (COPD) ranges from 9

to 69% (47). In this setting, OP-related fractures are associated with

several adverse health outcomes, including an increase in

hospitalization and mortality rates, in lung function, and poor

quality of life (48). In a cross-sectional analysis of individuals 65

and older, Reszke et al. found that those with COPD were at higher

risk to demonstrate senile purpura, although it could be a

consequence of systemic corticosteroid use (49). Lack of exercise

is seen as a moderate risk factor for OP and fragility fractures (8), as

well as for DP (50). Since the observation that DP and OP share

many common risk factors, Villeneuve et al. proposed that DP

could be a sign of underlying bone fragility. In their prospective,
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observational, cross-sectional, multicenter study on patients of 50

years or older, they found a link between DP and a history of

significant osteoporotic fracture, regardless of age or gender (51).

Not much research has been done on the role of VD insufficiency as

a risk factor that both diseases share. However, there is evidence

that VD is involved in both skin (52) and bone health (53).
5 Vitamin D

5.1 Metabolism

Besides being a lipid-soluble vitamin, VD is a steroid hormone.

Humans obtain VD from either sunlight exposure to UVB rays or

minimally from the introduction with plant or animal foods, dietary

foods and supplements, as VD2 (or ergocalciferol) or VD3 (or

cholecalciferol) (54). VD is produced in the skin via 7-

dehydrocholesterol (7-DHC) present in keratinocytes; UVB rays

mediate a photochemical reaction that converts 7-DHC in vitamin

D3 (55). The latter is transported to the liver binded to a type of

alpha-globulin called Vitamin D Binding Protein (VDPB), where it

undergoes the first hydroxylation and is released in the form of 25

(OH)D3. Finally, VD3 is activated with a second hydroxylation at

the kidney level. The proximal tubule is the primary site of action

for this mechanism, and it is vulnerable to both negative and

positive feedback processes mediated by 1,25(OH)2D3,

phosphorus, calcium, and FGF-23 (56). The 1,25(OH)2D3 acts

through activation of the nuclear receptor of VD (VDR), a

transcription factor and part of the steroid receptor family, with

which VD has a high affinity. Although the primary function of VD,

which is the control of calcium-phosphorus metabolism and the

balance of bone mineral reserves, is well understood (57, 58), there

is also ample evidence of its numerous other activities in extra-

skeletal tissues (59, 60). In reality, the VDR is expressed everywhere

(61), and VD is essential for the immune system’s physiology (62),

for controlling the activity of other hormones like IGF-1 (63), in the

prevention of many types of neoplasms (64), in the maintenance of

a solid skeletal muscle (65), participates in carbohydrate

metabolism (66), of the cardiovascular (67) and reproductive

systems (68), of the neuro cognitive (69) and cell proliferation

(70, 71). As we will see in more detail later, it is relevant also in the

constitution of the skin (72). VD seems to act either directly on

organs such as bone and skin, and indirectly through influencing

the immune system and, in turn, inflammatory processes, which is a

major factor in the development of many diseases like OP and skin

aging. All immune system cells have VDR, and antigen-presenting

cells (APC) can create 1,25(OH)2D3 in response to immunological

stimuli by using the same enzyme that is produced in the

kidney (62).

Both innate and acquired immunity are affected by 1,25(OH)

2D3. VD and its metabolites influence innate immunity by

promoting macrophage development and activation, which results

in the production of defensins including cathelicidin and 2-defensin

(73). Mice on a diet lacking in vitamin D produced less IL-6, TNF-,

and IL-1, and their antibacterial activity was weak (74). The primary

inhibitory effects of VD on acquired immunity result in a
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phenotypic shift in T cells from an effector phenotype, which is

involved in autoimmune disorders, to a regulating and protecting

one (75).
5.2 Vitamin D deficiency: definition
and epidemiology

The interpretation of serum 25(OH)D has to take into account

many factors, as levels can vary widely in different life periods, based

on degree of exposure to sunshine (period of the year, latitude),

phototype, and nutritional status (76). There is also a large

variability in its dosage between different laboratories. In fact,

there is still no unanimous consensus among scientific societies

for the definition of the deficiency of VD, except for the condition of

serious deficiency represented by values of 25(OH)D <10 ng/mL

which are linked with higher risk of rickets and osteomalacia. Since

the observation that in the general population there is a relationship

between values of serum 25(OH)D < 20 ng/mL and increased risk of

fracture (77), the Italian Society for Osteoporosis, Mineral

Metabolism and Bone Diseases (SIOMMMS) suggests to consider

these cutoffs: “deficient” means a 25(OH)D level of 10 ng/mL;

“insufficient” means a level of 20 ng/mL; and “optimal” means a

level of 20-50 ng/mL (76). In patients with OP, especially those who

necessitate a treatment with OP drugs and subjects at risk of

hypovitaminosis D, an “optimal” level of at least 30 ng/mL is

instead indicated. This value is related with a considerable

reduction in the incidence of hip fractures in institutionalized

women and a 4.5 times better response in bisphosphonate-treated

patients (78). Globally, there are many people who have mild or

severe VD deficiencies. Around 7% of the world’s population has

severe VD deficit (serum 25(OH)D concentrations below 25/30

nmol/l (10/12 ng/ml)), while 37% has mild VD deficiency (serum 25

(OH)D concentrations below 50 nmol/l (20 ng/ml)) (79).
5.3 Vitamin D and bone health

5.3.1 Effects on bone homeostasis
VD is required to increase the active intestinal absorption of

calcium by 30-80% which, later, becomes available for multiple

physiological processes and for the mineralization of the skeleton.

Additionally, it promotes calcium reabsorption in the kidney’s

distal tubule. By encouraging osteoblast development and

regulation as well as the generation of proteins including collagen,

alkaline phosphatase, osteocalcin, and RANKL, 1.25 (OH)2D3 also

has direct effects on bone. It controls both bone formation and

resorption (80). Intestinal calcium and phosphate absorption

significantly decreases when serum 25(OH)D is less than 30 ng/

mL. The blood ionized calcium concentration is lowered as a result,

which leads to secondary hyperparathyroidism. Increased osteoclast

activity is caused by preosteoclast differentiation into mature

osteoclasts, which is induced by elevated PTH levels. Increased

bone resorption, loss of bone matrix, and resultant reduced bone

mass are the outcomes of this. Due to the PTH-induced increase in

osteoclast activity and quantity, VD-deficient osteons exhibit
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broader Haversian canals and greater lacunae. This increases

porosity. Additionally, osteoid mineralization is defective when

compared to that of normal bone (53). Clinical manifestations of

VD deficiency reflect all these functions. Severe deficiency leads to

an insufficient calcium-phosphate product: the result is broadly

deficient osteoid mineralizations. Rickets, which manifests as poor

mineralization throughout the developing skeleton, and

osteomalacia, which results from impaired skeletal mineralization

after the fusion of epiphyseal plates in adults, are the clinical

consequences (81). 25(OH)D levels in rickets and osteomalacia

patients typically fall below 15 ng/mL (82).

5.3.2 Vitamin D and osteoporosis
Less severe degrees of deficiency may also produce skeletal

disease. In fact, long-standing VD deficiency/insufficiency (serum

25(OH)D level lower than 30 ng/mL) is considered a risk factor of

OP because of the mechanisms that increase resorption seen above

(53). Epidemiologic studies show that VD deficiency is associated

with lower BMD and fractures. In the Longitudinal Aging Study

Amsterdam (83) 25(OH)D levels and BMD of lumbar spine and hip

of 1319 subjects (643 men and 676 women) between the ages of 65

and 88 yr were correlated. It was found a threshold around the

serum 25(OH)D level of 50 nmol/liter for the relationship between

serum 25(OH)D and BMD of total hip and femoral trochanter.

Kuchuk and colleagues also found an association between VD

deficiency and fractures. Serum 25(OH)D levels below or equal to

30 nmol/L were associated with an increased fracture risk in persons

aged 65 to 75 years (83). Also longer follow-up studies show a

similar increase in fracture among subjects with the lowest VD

status (84). Besides epidemiologic observations, contradictory

findings have been obtained from the numerous intervention

trials conducted in elderly individuals to determine if VD

supplementation alone or with calcium can reduce the risk of

fractures (85). VD’s anti-fracture impact has mostly only been

observed for femoral fractures and non-vertebral fractures, not

vertebral ones. It also appears to be mediated by the reported

decline in the risk of falling (86). Data on elderly people indicate

very clearly that the skeletal benefits of the VD supplementation are

seen in those who are severely VD and not if they have mild or no

VD deficit (87, 88). In the New Zealand Vitamin D Assessment

(ViDA) study of older community-resident men and women

treated with monthly dosing of 100,000 IU VD for 2 years,

clinically significant reductions in bone loss at the spine and

femoral neck, were found only in participants with a baseline

serum 25(OH)D < 30 nmol/L (87). Subsequently, in the Aberdeen

study (88), authors aimed to verify if the baseline 25(OH)D

threshold of <30 nmol/L was confirmed. 305 postmenopausal

were randomized to receive either VD 400 IU/day or 1000 IU/

day, or placebo over 1 year. Results of a post-hoc analysis confirmed

the usefulness in terms of increasing BMD of the VD

supplementation only in the group with a baseline level of 25

(OH)D ≤ 30 nmol/L (88). Benefits of VD supplementation seem to

be enhanced when combined with calcium, a non surprising

observation since it is well known that elderly people are often at

high risk of contemporary VD and calcium deficiency (89). In the

2019 meta-analysis by Yao and colleagues, VD reduced the risk of
frontiersin.org

https://doi.org/10.3389/fendo.2023.1231580
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Romano et al. 10.3389/fendo.2023.1231580
any fracture by 6% and of hip fracture by 16% but only when

supplementation consisted also in calcium (90). In any case, an

adequate intake of calcium and VD is the prerequisite for any

specific drug treatment since calcium and/or VD shortage is one of

the most frequent reasons for failure or a poor response to

osteoporosis medication (91, 92). This could obviously enhance

the risk of future further fracture (93). As discussed earlier, OP may

have also an inflammatory etiology (14); it is possible, given the

immunoregulatory effects of VD (62), that its benefits on fracture

risk may at least be partially mediated, at least in part, by an

influence of VD on cytokine concentration. In the research

conducted by Inanir et al., 70 post-menopausal women diagnosed

as osteoporotic were randomized to receive calcium and calcitriol or

calcium alone. At baseline and six months into the course of

treatment, measurements of BMD and serum levels of IL-1, IL-6,

and tumor necrosis factor-alpha (TNF-alpha) were made.

According to study findings, taking 20 IU of calcitriol every day

for six months enhanced BMD and lowered IL-1 and TNF-a

concentrations (94).
5.4 Vitamin D and skin

5.4.1 Effects on skin
Skin and VD have a special relationship: skin is in fact the only

organ that can produce VD and its metabolites, also being at the

same time a major target for this hormone as well (95).

Keratinocytes express all enzymes of the VD metabolic pathway

and can produce hormonal 1,25(OH)2D3 when exposed to enough

UV-B irradiation. Thusly produced 1,25(OH)2D3 acts in many

ways at the skin level, with three most important actions: regulation

of keratinocyte proliferation and differentiation, control of

epidermal barrier integrity (5), and modulation of the immune

skin system (96). Different receptors in the skin have varied

affinities for VD and its CYP11A1-derived hydroxyderivatives,

which allows them to exert a variety of partially overlapping

actions. The binding to the nuclear VDR plays a significant role

in mediating the biological consequences (97). A non-genomic,

membrane-associated approach based on a different ligand-binding

site (98) or the action on the 1,25D3-MARRS receptor (99) can also

be used by the activated VDR to cause rapid response signaling.

Retinoic acid-related orphan receptors (ROR) a and g, which are

expressed in the skin, are two additional nuclear receptors that VD

metabolites can use to control some skin activities (100). Last but

not least, the traditional 1,25(OH)2D3 and CYP11A1 derivatives

can bind to the liver X receptors (LXR) and aryl hydrocarbon

receptors (AhR) and operate as agonists (101, 102). Through

intracrine, autocrine, and paracrine effects, 1.25(OH)2D3

produced in keratinocytes controls their own development,

differentiation, and death (103). Specifically, VD causes in vitro

keratinocyte growth to be stimulated at low doses and inhibited at

higher concentrations (108 M) (104). Additionally, it preserves the

integrity of the epidermal barrier by promoting the synthesis of

ceramides, key players in the control of the skin’s water-holding

capacity and homeostasis (105). In a feedback loop, ceramide boosts

the pro-differentiating effect of calcitriol on keratinocytes when VD
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stimulates the neutral Mg2+-dependent sphingomyelinase (106).

Physiological levels of calcitriol inhibit the effects of pro-apoptotic

ceramides, UV radiation, and TNF-a, whilst pharmaceutical doses

cause keratinocytes and other epidermal cells to undergo

apoptosis (107).

As previously reported, the presence of VDRs in almost all

immune cells suggests that they are one of vitamin D’s primary

targets, and various immunological indicators are controlled by

VDRs action (108). This happens also in the skin, where VD and its

metabolites exert multiple actions on T-cells, dendritic cells,

keratinocytes and myeloid cells (109, 110).

Overall, VD has an immunomodulatory effect on T cells (52).

VD inhibits proinflammatory Th1/Th17/Th9-Lym T-cells

activation (111), as well as the generation of inflammatory

cytokines (interferon gamma, TNF-a, IL-2, IL-17/21) (111–113),

while increasing the levels of anti-inflammatory IL-10 and IL-4

(114, 115). As a consequence, VD increases the production of CD25

+/CD4+ regulatory T cells, shifting the Th1 inflammatory response

towards the more tolerogenic Th2 response (116). Following

antigen stimulation, VD directly controls the expression of the

antimicrobial peptide (AMP) gene in innate immune cells,

promoting tolerance and inhibiting immunity (117, 118). VD

causes the surface of T-cells to express the CCR10 receptor,

which enables them to migrate from dermal blood arteries to

epidermal keratinocytes (119).

5.4.2 Vitamin D and dermatoporosis
Several studies on VD receptor mutant mice have put the basis for

the knowledge of VD relevance in controlling aging in skin and many

other tissues, as these mice developed typical phenotypic traits of

premature aging such as skin and overall body atrophy as well as OP.

By normalizing mineral VD, these phenotypic traits can be reversed (6,

120–122). Surprisingly, the aging phenotypes of mice with

hypovitaminosis D (VDR−/− and CYP27B1−/− mice) are strikingly

comparable to those of mice with hypervitaminosis D (including FGF-

23−/− and Klotho−/− mice) (6, 121). Keisala et al.’s study used VDR

“Tokyo” knockout (KO) mice to examine growth, skin and cerebellar

morphology, as well as general motor function. They discovered that

the phenotype of old VDR KO mice was comparable to old

hypervitaminosis D3 mouse models, indicating that VDR genetic

ablation accelerates early mouse aging (121). Therefore, vitamin D

deficiencies, both mild and severe, may speed up aging. According to

VD status, aging actually appears to follow a U-shaped curve, making

adequate levels of VD important regulators of the physiological aging

process and essential for avoiding premature aging (120).

Aside from its potential application in the treatment of skin

aging for aesthetic purposes, there is evidence that VD can also play

a role in the prevention and management of DP and its severe

repercussions. Here we summarize some key ways in which VD

influences skin health and its potential impact on DP.

First of all, in DP there is an impairment of the collagen

component of the skin (2). As discussed above, collagen, a

protein responsible for skin strength and elasticity (123), tends to

decrease with age, contributing to the thinning and fragility of the

skin (2). VD has been found to stimulate collagen synthesis,

promoting skin thickness and resilience (124). By enhancing
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collagen production, VD may help counteract the effects of DP and

support overall skin health. A second aspect is the regulation of

epidermal barrier function. The latter is vital for maintaining skin

hydration and protection against external stressors (125). VD affects

the expression of genes that contribute to skin barrier development

and maintenance. It helps strengthen the protective layer of the

skin, reducing water loss and improving the skin’s ability to defend

against environmental factors that contribute to DP (126). Anti-

inflammatory effects are of course involved. Chronic inflammation

is a key contributor to skin aging and DP. An immunological

change and an imbalance between pro- and anti-inflammatory

mechanisms cause a chronic low-grade inflammation state known

as “inflammaging” (127, 128), which is brought on by both

persistent oxidative stress and chronic antigen stimulation (129,

130). With advancing age, skin immune system presents a deep

remodeling, resulting in a decrease in its capacity for adaptation

(131, 132). As deeply discussed before, VD possesses anti-

inflammatory properties, modulating the immune response in the

skin and reducing inflammation (52). By mitigating inflammation,

VD may help alleviate the symptoms associated with

dermatoporosis and promote healthier, more resilient skin.

Impaired wound healing is a common characteristic of

dermatoporotic skin (2). VD has been demonstrated to improve

wound healing by encouraging cell proliferation and migration and

facilitating collagen synthesis (133). By supporting the healing

process, VD may help improve the recovery time of wounds and

minimize the risk of complications in dermatoporotic skin.

Finally, VD is involved in protection against harmful UV radiation.

DP skin is more vulnerable to sun damage and should be shielded from

excessive sun exposure (134). The idea that 1,25(OH)2D3 has a

cytoprotective effect against the harmful impacts of UV and other

agents, that may aid in preventing premature skin aging, is strongly

supported by a number of in vitro investigations (135–138). Oral

administration of high-dose vitamin D3 immediately following

exposure to UVB light reversed photo-induced cutaneous injury

quickly in a double-blinded, placebo-controlled interventional trial

on 20 healthy adults by reducing inflammation and inducing the

epidermal barrier’s repair mechanisms (139).

Only one MR trial has looked at vitamin D status and skin

phenotype. Higher observed serum 25OHD concentrations were

linked to perceived age, skin wrinkling, and pigmented spots,

according to research by Noordam et al. on facial skin aging features

in about 4500 Dutch individuals. However, according to genetic

predictions, serum 25OHD was not linked to these skin

characteristics. This seems to suggest that the cause of skin aging is

exposure to UV-B l ight rather than serum 25OHD

concentrations (140).
5.5 Vitamin D deficiency: therapy

Everyone in the aging population, regardless of bone health

status, should get enough VD (together with an adequate calcium

intake of 800-1000 mg/day as well) (4). The Bone Health and

Osteoporosis Foundation (BHOF) advises 800 to 1000 international

units (IU) of VD per day for persons over the age of 50, while the
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Institute of Medicine (IOM) recommends 600 IU per day till the age

of 70 and 800 IU per day for adults over the age of 71. It is however

very common that older individuals develop VD deficiency, which

is caused mostly by being institutionalized or chronically ill with

inadequate sun exposure, absorption problems, chronic renal

illness. If enough and non-hazardous solar exposure is insufficient

to obtain the necessary amounts of VD for skeletal occurrences

(fractures and falls), oral supplements should be used. Treatment

must be personalized. Cholecalciferol is the first line therapy in

most patients. No one who requires supplementing will respond to

a single set dose; instead, a dose between 800 and 2000 IU per day

should be taken into consideration (141). The daily method of

supplementing is the most physiological; however, from a

pharmacological perspective, the use of similar weekly or monthly

doses is recommended in order to increase adherence to therapy. In

individuals who require quick vitamin D level normalization

(symptomatic osteomalacia or zoledronic acid or denosumab

initiators) it is recommended to use a initial loading dose of

either cholecalciferol in a single dosage of 60,000 to 150,000 IU,

followed by a maintenance dose, or 3,000–10,000 IU/day (mean

5,000 IU/day) for 1–2 months (142). As an alternative, it is feasible

to utilize calcifediol for 20 to 30 days before moving to

cholecalciferol for maintenance dose. Since its pharmacokinetics

are different from the cholecalciferol’s one because it has a lower

volume of distribution, calcifediol causes a 25(OH)D level increase

more quickly. In obese subjects it is suggested to use either

cholecalciferol at a dosage increased by approximately 30% of the

usual dose or calcifediol. The latter can also be indicated in other

conditions of 25-hydroxylation deficiency which are often observed

in older people, such as severe liver failure, male hypogonadism or

intestinal malabsorption (79). Chronic renal disease is another

ailment that is typically common in aged persons. In this setting

it is recommended to use cholecalciferol and to restrict the

administration of active vitamin D compounds (calcitriol or

synthetic analogues) to dialysis patients or those in the G4-G5

phase with severe and progressive hyperparathyroidism (143).
6 Conclusions

Aging is marked by the continuous and progressive decline in

organic functions and the increase of prevalence of chronic

degenerative disease. OP and DP are expressions of this process

at the bone and skin levels, respectively. Both conditions are

associated with increased morbidity for elderly people, and this

makes preventive interventions necessary. A first conclusion of our

study is that since DP is a frequently observed condition by

dermatologists, its presence might serve as a straightforward

clinical indicator of bone frailty, encouraging healthcare providers

to recognize and treat underlying OP. Furthermore, the two

conditions share many risk factors, some not always editable such

as corticosteroid use, others on which it is possible to intervene as

VD deficiency. VD is involved in either disease with many

mechanisms, among which immunomodulation (Figure 2). VD

deficiency has been linked to OP because it inhibits the body’s

capacity to absorb calcium and maintain optimal bone health.
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When it comes to skin, VD is involved in the formation, growth,

and repair of skin cells. Both hypo and hypervitaminosis D appear

to accelerate skin aging, with a U-shaped response curve to VD

status. As a result, proper vitaminosis D appears to be vital in

preventing age-related issues. DP is often seen in elderly individuals,

particularly those with long-term sun exposure and a history of

chronic sun damage. VD deficiency can be linked to DP, as it affects

the quality and the composition of the skin. Although further

research is needed to establish a definitive link between VD and

DP, the existing evidence suggests its potential benefits in

supporting skin health and mitigating the effects of this age-

related condition. VD’s role in collagen production, epidermal

barrier function, inflammation regulation, wound healing, and

sun protection makes it a promising avenue for addressing DP.

More research with rigorous and reproducible evaluation is

required to better understand the role of VD in the development of

fragility syndromes as DP and OP, but since now it is advisable to

maintain adequate levels of VD to prevent these conditions, as VD

deficiency is a simply avoidable and curable condition with major

health effects.
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