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Identification of endoplasmic
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biomarkers of diabetes
nephropathy based on
bioinformatics and
machine learning
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Yicheng Zheng1,2, Yuxin Guo1,2, Zhaoxi Dong1,2, Xianhui Zhang1,2

and Hongfang Liu1,2*

1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China, 2Key Laboratory of
Chinese Internal Medicine of Ministry of Education and Beijing, Renal Research Institution of Beijing
University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese
Medicine, Beijing, China
Backgrounds: Diabetes nephropathy (DN) is a growing public health concern

worldwide. Renal dysfunction impairment in DN is intimately linked to ER stress

and its related signaling pathways. Nonetheless, the underlying mechanism and

biomarkers for this function of ER stress in the DN remain unknown.

Methods: Microarray datasets were retrieved from the Gene Expression

Omnibus (GEO) database, and ER stress-related genes (ERSRGs) were

downloaded from the MSigDB and GeneCards database. We identified hub

ERSRGs for DN progression by intersecting ERSRGs with differentially

expressed genes and significant genes in WGCNA, followed by a functional

analysis. After analyzing hub ERSRGs with threemachine learning techniques and

taking the intersection, we did external validation as well as developed a DN

diagnostic model based on the characteristic genes. Immune infiltration was

performed using CIBERSORT. Moreover, patients with DNwere then categorized

using a consensus clustering approach. Eventually, the candidate ERSRGs-

specific small-molecule compounds were defined by CMap.

Results: Several biological pathways driving pathological injury of DN and

disordered levels of immune infiltration were revealed in the DN microarray

datasets and strongly related to deregulated ERSRGs by bioinformatics multi-

chip integration. Moreover, CDKN1B, EGR1, FKBP5, GDF15, and MARCKS were

identified as ER stress signature genes associated with DN by machine learning

algorithms, demonstrating their potential as DN biomarkers.
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Conclusions: Our research sheds fresh light on the function of ER stress in DN

pathophysiology and the development of early diagnostic and ER stress-related

treatment targets in patients with DN.
KEYWORDS

diabetic nephropathy, endoplasmic reticulum stress, WGCNA (weighted gene co-
expression network analysis), machine learning, immune cell infiltration,
molecular subtypes
1 Introduction

As a prevalent chronic microvascular complication of diabetes

mellitus (DM), diabetic nephropathy (DN) is one of the primary causes

of end-stage renal disease (ESRD), and the incidences of diabetes and

DN have increased over the past decade (1). By 2045, it is anticipated

that there will be 700 million diabetes individuals worldwide, of which

40% will develop DN (2). In terms of disability-adjusted life years

(DALYs), the burden of DN is one-third of that of chronic kidney

disease (CKD) (3). Consequently, DN is a huge global public health

issue that causes a substantial burden on the economy and the health

sector. The main clinical symptoms of DN are glomerular

hyperfiltration, a gradual increase in urine albumin excretion rate,

and a sustained decrease in glomerular filtration rate (GFR).

Morphologically, early-stage DN is characterized by glomerular

basement membrane thickening, mesangial matrix buildup, podocyte

and tubular cell damage, and diffuse/nodular glomerulosclerosis and

tubulointerstitial fibrosis with inflammation (4, 5). Currently,

treatment for DN focuses on the primary disease and delays the

disease’s progression. Controlling blood glucose and blood pressure,

inhibiting the activation of RASS, sodium-glucose co-transporter 2

(SGLT2), strengthening exercise, improving diet, and reducing body

weight are the primary means of preventing and treating DN (6, 7),

which are still difficult tomeet the clinical needs, with a large number of

DN patients developing ESRD irreversibly. Therefore, it is imperative

to investigate its pathogenesis further in order to identify effective

biomarkers for early diagnosis and treatment.

With the ongoing investigation of the pathophysiological

mechanism of DN, a potential emerging mechanism is the

endoplasmic reticulum (ER), the location of protein folding and

post-translational modifications and a key organelle of the secretory

pathway (8). The ER does have a robust homeostasis system that can

maintain the stability of its internal environment under normal

conditions. The accumulation of unfolded or misfolded proteins in

the lumen contributes to the pathological condition of ER dysfunction

known as ER stress, which can be induced by a range of clinical

conditions that affect ER homeostasis. Moderate ER stress is

advantageous for repairing and stabilizing the intracellular

environment, whereas prolonged ER stress can compromise ER

function and induce apoptosis (9). According to a substantial body

of evidence, the dysfunction of ER stress is associated with the onset

and progression of DN. The kidney’s native cells (podocytes, tubular

epithelial cells, endothelial cells, and mesangial cells) have a large and
02
intricate ER system, which is a prerequisite for the formation of ER

stress. Hyperglycemia, proteinuria, advanced glycation end products

(AGEs), and free fatty acids (FFA) have been identified as important

inducers of ER stress and its downstream signaling cascade activation

in diabetic kidneys (10). Frequently, excessive ER stress develops in the

renal intrinsic cells of DM patients, which can lead to cell damage,

apoptosis and finally the formation of DN (11). Notably, ER stress

inhibitors have been shown to enhance ER folding capacity, decrease

ER stress, and halt the progression of DN (12). Nonetheless, a number

of studies demonstrated that activated ER stress has a protective effect

on DN, which reflects the bidirectional control of ER stress in DN (13).

Consequently, a comprehensive analysis of ER stress should aid in the

elucidation of the molecular mechanisms underlying the

pathophysiology of DN and the expansion of the repertoire of

potential diagnostic biomarkers.

Currently, research on DN has reached the gene level, and

bioinformatics tools are routinely employed in the quest for

prognostic or predictive biomarkers (14). Due to the lack of

bioanalyses performed specifically for ER stress in DN to date, the

purpose of this study was to use bioinformatics multi-chip analysis and

theWGCNA algorithm to identify ER stress-related genes (ERSRGs) in

renal tissues of DN patients using the gene sequencing chip of DN

patients from the GEO database, and to combine machine learning

algorithms to select characteristic genes. In addition, the related genes’

particular enrichment pathway and immune infiltration mechanism

were studied. Finally, we hypothesized potential molecular subtypes

linked with ER stress in DN patients and compared their

immunological characteristics and molecular mechanisms. So as to

fully understand the molecular mechanism underlying the ES stress-

related pathophysiological process of DN and to discover appropriate

biomarkers, thus providing a theoretical reference and theoretical

underpinnings for early detection and targeted treatment of DN.
2 Materials and methods

2.1 Acquirement and processing of
multi-chip dataset

The GEO database (http://www.ncbi.nlm.nih.gov/GEO) was

accessed in order to retrieve DN microarray datasets. There were a

total offive glomerular DN datasets (GSE30122, GSE47185, GSE96804,

GSE99340, and GSE104948), one tubulointerstitial DN dataset
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(GSE104954), and one kidney biopsy DN dataset (GSE142025)

downloaded, with the specifics of each dataset shown in Table 1 and

Supplementary Table 1. Each cohort’s probe ID was initially annotated

and converted to “Entrez ID” according to platform annotation

documents. Within five glomerular DN datasets, R (version 4.2.0)

was used to construct a multi-chip dataset containing 100 healthy

controls and 90 DN patients. Then, the R package “SVA” (version

3.46.0) containing the “Combat” function was applied to themulti-chip

dataset to correct the batch effects. Using principal component analysis

(PCA) to evaluate if the batch effect has been abolished, with

GSE104954 and GSE142025 serving as the validation data set at last.
2.2 Recognition of differentially
expressed genes

Utilizing the R package “limma” (version 3.54.2) (15), a differential

expression analysis was conducted between the DN and control groups

using the multi-chip dataset. Then, genes with a |log-fold change (FC)|

> 0.5 and a Benjamini and Hochberg adjusted with p-value < 0.05 were

selected as differentially expressed genes (DEGs).
2.3 Functional annotation and enrichment
analysis of DEGs

To further illuminate the biofunction of the selected DEGs,

Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis, and Disease
Frontiers in Endocrinology 03
Ontology (DO) enrichment analyses were done on DEGs using

“ClusterProfiler” (version 4.6.2) within R and then visualized using

“ggplot2” (version 3.4.2). And the biological process (BP), cellular

component (CC), molecular function (MF), signal pathway, and

disease type were screened with a threshold of p-value < 0.05. In

addition, gene set enrichment analysis (GSEA) was utilized to

determine the functional words that were most significant

between the DN and control groups (16). The hallmark gene sets

“c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” were

obtained from the Molecular Signatures Database (MSigDB). These

gene sets summarize and represent well-defined biological states or

processes and have consistent expression. To obtain a normalized

enrichment score for each analysis, 1000 times gene set

permutations were performed. After 1000 permutations, a false

discovery rate (FDR) < 0.25 and p-value < 0.05 was considered

highly enriched.
2.4 Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is a

system biology technique used to examine gene connection patterns

between samples. It can be used to identify highly synergistic gene

expression matrices, and to identify candidate core genes based on

the interconnectedness of expression matrices and the degree of

association between genes and phenotypes (17). In the current

investigation, the “WGCNA” (version 1.72-1) function within R

was used to discover related gene modules and to screen gene sets
TABLE 1 Dataset details.

Datasets Platforms Tissue Citation(s) DN patients Healthy
controls Time

GSE30122 GPL571 (Affymetrix Human Genome U133A 2.0 Array) Glomeruli

PMID:
21752957
PMID:

26190114

9 26 2011

GSE47185
GPL11670 (Affymetrix Human Genome U133 Plus 2.0
Array)

Glomeruli
PMID:

23950145
14 17 2013

GSE96804 GPL17586 (Affymetrix Human Transcriptome Array 2.0) Glomeruli

PMID:
29242313
PMID:

30511699

41 20 2018

GSE99340
GPL19109 (Affymetrix Human Genome U133 Plus 2.0
Array)
GPL19184 (Affymetrix Human Genome U133A Array)

Glomeruli

PMID:
29242313
PMID:

30511699

14 11 2017

GSE104948
GPL22945 (Affymetrix Human Genome U133 Plus 2.0
Array)
GPL24120 (Affymetrix Human Genome U133A Array)

Glomeruli
PMID:

29724730
12 26 2018

GSE104954
GPL22945 (Affymetrix Human Genome U133 Plus 2.0
Array)

Tubulointerstitium
PMID:

29724730
17 18 2018

GSE142025 GPL20301 (Illumina HiSeq 4000) Kidney biopsy

PMID:
31578193
PMID:

32086290

27 9 2019
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that may be especially associated with glomerular damage in DN.

The module analysis soft threshold b is obtained by assessing the

scale independence and average connectivity of modules under

various weighted coefficients. After determining the soft threshold

b, the scale-free topological distribution network was constructed,

and the correlation matrix was transformed according to the

pearson correlation coefficient between genes into the adjacency

matrix, then into the topological overlap matrix (TOM) to obtain

the differences between genes (1-TOM). In addition, the modules

incorporated hierarchical clustering and dynamic tree cutting

function detection. To classify genes with similar expression

profiles into gene modules, the average linkage hierarchical

clustering of the gene tree was performed using a “TOMbased”

difference measurement method with a minimum genome size of

50, and the module membership (MM, correlation between specific

genes and module characteristic genes) and gene significance (GS,

correlation between specific genes and clinical variables) were

calculated. Finally, the network of feature genes were shown.
2.5 Identification and enrichment
analysis of hub ERSRGs

First, we extracted 1406 ERSRGs from the MSigDB (GOBP

response to endoplasmic reticulum stress and GOBP regulation of

response to endoplasmic reticulum stress) and GeneCards database

(with relevance scores ≥ 10) (18), which are exhaustive datasets that

curate ERSRGs from research articles (Supplementary Table 2).

Second, we intersected these ERSRGs with the DEGs derived from

the multi-chip dataset and genes in the major modules of WGCNA

to obtain the gene expression profile of hub ERSRGs. Using the

“pheatmap” (version 1.0.12) R package, the heat map depicting the

expression of hub ERSRGs was created. As previously noted, GO

enrichment analysis and KEGG pathway analysis were performed

using the “ClusterProfiler” tool to show the biofunction of

hub ERSRGs.
2.6 Integrating multiple machine learning
algorithms to identify characteristic genes

The discovery of biomarkers has made extensive use of machine

learning algorithms, which can produce more detailed models.

Three machine learning classifiers were used to filter feature

genes in the current study: least absolute shrinkage and selection

operator (LASSO), support vector machine recursive feature

elimination (SVM-RFE), and random forest classifier (RF) (19).

Using the “cv.glmnet” function in the R package “glmnet” (version

4.1-7), a LASSO regression prediction model was developed that

could fit the generalized linear model, while variables were filtered

and complexity was simultaneously changed. The R package

“e1071” (version 1.7-13) was used to do SVM-RFE, the 10-fold

cross-validation algorithm was used as the resampling method for

SVM-RFE, and the features were sorted by recursion. Moreover,

using the “RandomForest” (version 4.7-1.1) function, a RF analysis

was conducted, and decision tree classifier models were configured
Frontiers in Endocrinology 04
to score the classification variables iteratively, thereby finding

features with high classification accuracy. The genes within the

intersection of three subsets were then selected for further study as

characteristic genes.

At last, to verify the selected intersecting genes reliability,

gradient boosting decision tree (GBDT) model was used as well.

GBDT is one of boosting methods, which uses the method of

gradient boosting to carry on each iteration and finally builds a

strong model (20). And the algorithm often needs to generate a

certain number of decision trees to achieve the accuracy of

satisfaction. So we used GBDT based on recursive feature

elimination with 10-fold cross-validation to test our result in

above three mode l s . Th i s par t was ca r r i ed ou t in

Python (version3.9).
2.7 Validation of characteristic genes

A co-expression pattern network diagram was developed using

the R package “corrplot” (version 0.92) based on the correlation

between gene expression levels in order to elucidate the interaction

between the characteristic genes. Besides, the tubulointerstitium

(GSE104954) and kidney biopsy (GSE142025) datasets were used

for external validation of the ability of the characteristic genes to

differentiate DN from healthy control. Using the unpaired t-test, it

was determined if there was a difference in the expression of specific

genes between the two groups at p-value < 0.05.
2.8 Construction and validation
of a nomogram

The R package “rms” (version 6.6-0) was used to combine a

total of the characteristic genes into a logistic regression (LR) model,

which was displayed as a nomogram. The area under the receiver

operating characteristic (ROC) curve (AUC) was recognized as the

quantitative evaluation criterion for determining the discrimination

capacity of each characteristic gene and the nomogram. The ROC

analysis was performed using the R package “pROC” (version

1.18.0) (21).
2.9 CIBERSORT immune cell
infiltration analysis

We used the CIBERSORT method to identify the ratios of

various immune cells in multi-chip data sets of DN and control

groups and to depict the abundance of immune cells based on the

gene expression matrix of multi-chip datasets. The “corrplot”

program was used to construct the heat map illustrating the

quantitative relationship between distinct immune cells, and p-

value < 0.05 indicates a statistically significant difference between

the two groups. In addition, “ggplot2” was employed to analyze the

correlation between the expression of characteristic genes and the

proportions of immune cells.
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https://doi.org/10.3389/fendo.2023.1206154
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Su et al. 10.3389/fendo.2023.1206154
2.10 Unsupervised clustering of ER stress-
related genes

Using the k-means algorithm of unsupervised clustering

analysis (“ConsensusClusterPlus” R package version 1.62.0) (22),

we classified 90 DN samples into distinct clusters based on the

expression level of the characteristic genes with a total of 1,000

iterations. The best number of categories was found through

cumulative distribution function (CDF) curves, a consensus

matrix, and a cluster score that was greater than 0.90. Then, PCA

analysis was done to illustrate the distributional distinction between

immune subtypes, which was shown graphically.
2.11 Gene set variation analysis

GSVA, which is a non-parametric and unsupervised method for

assessing the variation of gene set enrichment across a sample

population (23), is utilized to elucidate the molecular mechanisms

features between various ER stress subtypes. As reference sets,

“c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” were

selected from the MSigDB. The R package “GSVA” (version 1.46.0)

and the “ssGSEA” function were utilized to determine the GSVA

score for each gene set. The GSVA score indicates the enrichment of

each genome in absolute terms. And the “limma” package was

utilized to compare differences in GSVA score between subtypes for

each genome with a threshold of p-value < 0.05.
2.12 CMap analysis

The CMap (https://portals.broadinstitute.org/cmap) is a public

database that links diseases, genes, and medications based on

similar or opposite gene expression profiles (24). It was utilized to

identify prospective DN-targeting therapies. Upregulation and

downregulation ERSRGs were translated into chip-specific probe

sets for querying the CMap. Using norm cs and FDR, we created a

list of CMap instances predicted to invert ERSRGs.
2.13 Statistical analysis

Computer is running the Windows 10 64-bit system, with Intel

Core i5-13500H processor and RTX 4050 graphics card, and the

highest Rui frequency is 4.7 GHz. All data calculations and

statistical analysis were performed with the R (version 4.2.0) or

Origin (version 9.1) software. ROC curves and AUC values were

utilized to assess the predictive performance of the diagnostic

model. Pearson’s analysis was used to conduct correlation

analysis. In addition, an unpaired t-test was utilized to

assess the differential expression levels of the DN-specific genes.

All p-values were bilateral, and p-value < 0.05 was deemed

statistically significant.
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3 Results

3.1 DEGs identification and functional
enrichment analysis

The multi-chip dataset included 100 healthy controls and 90 DN

patients. After batch correction, PCA analysis revealed that the data

distribution of each data set tended to be uniform (Figures 1A, B),

implying that normalization was likely done properly. According to

the screening criterion (|logFC| > 0.5, p-value < 0.05), 497 DN-

specific related DEGs were found across five databases, 242 of which

were downregulated and 255 of which were upregulated compared to

healthy controls (Supplementary Figure 1A).

Further functional enrichment analysis uncovered the following

GO terms to be the most significantly enriched: BP: urogenital

system development; CC: collagen-containing extracellular matrix;

MF: glycosaminoglycan binding (Supplementary Figure 1B).

Further significantly enriched KEGG pathways were screened:

PI3K-Akt signaling pathway, complement and coagulation

cascades, focal adhesion, phagosome, AGE-RAGE signaling

pathway in diabetic complications, protein digestion and

absorption, ECM-receptor interaction, and renin-angiotensin

system et al. (Supplementary Figure 1C). DO analysis revealed

that majority of the genes were involved in urinary system and

kidney diseases (Supplementary Figure 1D). In addition, the GSEA

results demonstrated that in the renal tissue gene expression matrix

of DN patients, active GO functions are mainly enriched in

biological processes including activation of immune response,

adaptive immune response, and external encapsulating structure

organization and extracellular matrix-related functions (Figure 1C).

The active KEGG pathway were mainly enriched in cell adhesion

molecules cams, chemokine signaling pathway, ECM receptor

interaction, and focal adhesion (Figure 1D).
3.2 Weighted gene co-expression
network construction

This work did a WGCNA analysis on the multi-chip dataset,

and 100 healthy controls and 90 DN samples were chosen to cluster

the samples and remove the obviously aberrant samples by

establishing a threshold, as depicted in Figure 2A. Then, as shown

in Figure 2B, when R2 is greater than 0.90 and the average

connectivity is high, we set the soft threshold to 6. After

combining the strongly linked modules using a 0.25 clustering

height restriction, 13 modules were chosen for further

investigation and displayed beneath the clustering tree

(Figure 2C). Using the frontal correlations between ME values

and clinical characteristics, the relationship between modules and

clinical symptoms was investigated. The brown module was

positively correlated with control (r = 0.54, p = 6e-16) and

negatively linked with DN (r = -0.54, p = 6e-16), and the salmon

module was positively correlated with control (r = 0.51, p = 5e-14)
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and negatively linked with DN (r = -0.51, p = 5e-14), while the black

module was negatively connected with control (r = -0.6, p = 9e-20)

and positively correlated with DN (r = 0.6, p = 9e-20), and the green

module was negatively connected with control (r = -0.51, p = 9e-14)

and positively correlated with DN (r = 0.51, p = 9e-14) (Figure 2D).

Transcriptional correlation study within modules validated the

reliability of module delineation by revealing no meaningful

relationship between modules (Figure 2E). The findings of an

examination of the correlation between modules revealed that

there was no significant relationship between them (Figure 2F).

Clinically relevant modules have been discovered. The findings

revealed that the brown, black, green, and salmon modules were

strongly associated with DN (Figure 2G). All genes within the four

modules were investigated in greater detail.
3.3 Identification and characterization of
hub ERSRGs

After overlapping major module genes from WGCNA, DEGs,

and ERSRGs using a Venn diagram, we discovered 49 overlapping

genes (Figure 3A; Supplementary Table 3). A heat map was then

created to illustrate the change and cluster relationship of hub

ERSRGs (Figure 3B). In addition, we performed functional analysis

in order to acquire a deeper comprehension of the biological

functions of the hub ERSRGs. These genes were discovered to be
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linked with oxidative stress, collagen-containing extracellular

matrix, endoplasmic reticulum lumen, extracellular matrix

structural constituent, Toll-like receptor binding, and additional

GO terms (Figure 3C). Further KEGG analysis showed that hub

ERSRGs mainly participated in AGE-RAGE signaling pathway in

diabetic complications, PI3K-Akt signaling pathway, focal

adhesion, fluid shear stress and atherosclerosis, lipid and

atherosclerosis, ECM-receptor interaction, endocrine resistance,

phagosome, IL-17 signaling pathway, Fc gamma R-mediated

phagocytosis, and HIF-1 signaling pathway et al. (Figure 3D).
3.4 Selection of characteristic genes via
machine learning algorithm

Separately, the LASSO, SVM-RFE, and RF algorithms were used

to identify feature genes. When the construction of LASSO based on

10-fold cross-validation was applied, the minimal error value

corresponded to twenty-one characteristic genes, including CCL2,

CDKN1B, COL1A1, COL4A1, COMP, EGR1, ELOVL4, EXT1,

FKBP5, FOS, GDF15, IGF1, KPNA2, LPL, MARCKS, NQO1,

NUPR1, PLA2G4A, RSAD2, and S100A9 (Figure 4A;

Supplementary Table 4). The SVM-RFE algorithm was validated

by 10-fold cross-validation as well, and when the algorithm was

most accurate and the estimation error was smallest, nine genes,

including CCL2, CDKN1B, EGR1, FKBP5, GDF15, MARCKS,
D

A B

C

FIGURE 1

Identification of DEGs in glomeruli of DN patients. (A) Gene expression profiles without the removal of the batch effect. (B) Gene expression profiles
with removal of batch effect. (C) Active GO functional enrichment of gene expression matrix in DN. (D) Active KEGG pathway of gene expression
matrix in DN.
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NQO1, PLA2G4A, and PLN, were determined (Figure 4B;

Supplementary Table 5). RF in combination with feature selection

was used to determine the association between error rate, number of

classification trees, and the top 20 genes by weight were selected

(Figure 4C). Consequently, five overlapping genes (CDKN1B,

EGR1, FKBP5, GDF15, and MARCKS) were recognized based on

the findings of above machine learning models (Figure 4D).

Moreover, when testing the five overlapping genes reliability,

these genes were selected by GBDT in the same way (Figure 4E).
3.5 Validation of characteristic genes
expression and diagnostic capacity

Based on the microarray expression matrix, the expression

patterns of characteristic genes were investigated and validated. A

heat map of co-expression correlations among the five genes were

produced and displayed a significant interaction relationship

(Figure 5A). Then we verified the expression of these five genes in

the multi-chip dataset and found that CDKN1B, EGR1, FKBP5, and

GDF15 expression was significantly lower in DN samples than in

control samples, but MARCKS expression was significantly higher

(Figure 5B). Significantly, gene expression patterns were found to be

consistent between the tubulointerstitium (GSE104954) and kidney

biopsy (GSE142025) testing cohorts (Figures 5C, D).

LR generated the prediction model based on the multi-chip

dataset and displayed it as a nomogram with a c-index of 0.994
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(Figure 5E), indicating a high correlation degree. Five genes

identified in the multi-chip dataset (AUC > 0.6) exhibit

diagnostic efficacy in differentiating DN patients from healthy

controls, as confirmed by the ROC curve analysis of diagnostic

power of characteristic genes (Figure 5F). In addition, external

validation of nomogram in the validation data set (GSE104954 and

GSE142025) showed that the c-index was 0.941 and 0.63,

respectively (Supplementary Figures 2A, B). Notably, compare to

single-core genetic models, the model of prediction nomogram had

the best diagnostic performance. According to our findings, the

aforementioned ER stress-related characteristic genes possessed a

high diagnostic power and had the potential to act as diagnostic

biomarkers for DN.
3.6 The results of immune cell infiltration

Through the CIBERSORT method, we measured the

characteristics of immunocytes between DN and control groups

to further investigate the differential expression of immune

components, and the cumulative histograms displayed the relative

proportions of 22 immune cells (Figure 6A). The results indicated

that activated Mast cells, activated Macrophages M2, activated

Monocytes, activated NK cells, naive T cells CD4, and plasma

cells constituted the majority. The correlation heat map for 22

immune cell types revealed a strong positive link between activated

NK cells and Macrophages M1 and a significant negative
DA
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FIGURE 2

Construction of WGCNA co-expression network. (A) Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) The
screen of the best soft thresholds. Six was considered the best soft threshold. (C) The merging of similar modules. (D) Correlations between different
modules and clinical traits. Red represents a positive correlation, and blue represents a negative correlation. (E) Clustering dendrogram of module
feature genes. (F) Collinear heat map of module feature genes. Red color indicates a high correlation, blue color indicates opposite results. (G) The
significance of genes related to DN in the brown, black, green and salmon module (a dot represents the genes in the module).
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correlation between activated Mast cells and resting Mast cells,

Neutrophils and Macrophages M2, as well as Plasma cell and

Macrophages M1 (Figure 6B). In addition, the violin plot

regarding the difference in immune cell infiltration revealed

significantly more B cells memory, T cells gamma delta, NK cells

activated, Macrophages M2, Dendritic cells resting, and Mast cells

resting in the experimental group than in the control group,

whereas B cells naive, Macrophages M0, and Mast cells activated

were significantly decreased (Figure 6C). Via analyzing immune cell

correlations, we determined that specific genes may be implicated in

the advancement of DN by controlling immune cells such as mast

cells, neutrophils, and NK cells (Figure 6D).
3.7 Construction of ER stress
subtypes in DN

To illustrate the ER stress-related patterns in DN, we designed a

new consensus clustering approach to classify 90 DN samples based

on the expression landscapes of five ER stress-related characteristic

genes. The optimal number of subtypes was two, which was

determined using a consensus matrix plot, a CDF plot, relative

alterations in the area under the CDF curve, and consistent cluster

score (> 0.9) (Figures 7A–D). We thus divided DN samples into two
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distinct subtypes, including subtype1 (n = 49) and subtype2 (n =

41). The PCA analysis demonstrated the striking distinction

between the subtypes (Figure 7E).
3.8 Differentiation of immune
characteristics and molecular mechanisms
between ER stress subtypes

To clarify the molecular differences between these subtypes, the

differential expression of characteristic genes among different ER

stress-related subtypes was first evaluated. Subtype1 exhibited

higher expression of CDKN1B, EGR1, FKBP5, and GDF15,

whereas subtype2 was characterized by higher MARCKS

expression (Figure 8A). However, there was no substantial

difference in immune cell infiltration between the two subtypes

(Figure 8B). Then, the GSVA analysis was conduct to evaluate the

differences of molecular mechanisms in the subtypes with different

ER stress expression patterns. The functional enrichment results

suggested that negative regulation of cell substrate adhesion,

positive regulation of hematopoietic stem cell proliferation,

negative regulation of cell matrix adhesion, and negative

regulation of intracellular steroid hormone receptor signaling

pathway were prominently upregulated in subtype2 (Figure 8C).
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FIGURE 3

Identification of hub ERSRGs in the modules. (A) Venn diagram. (B) Heat map of hub ERSRGs. (C) GO enrichment analysis of hub ERSRGs. (D) KEGG
enrichment analysis of hub ERSRGs.
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In addition, pathways enrichment results revealed that TGF-b
signaling pathway, WNT signaling pathway, focal adhesion, and

ECM receptor interaction were significantly elevated in subtype2

(Figure 8D). We determined that subtype2 is more closely related

with ER stress in DN.
3.9 Results of CMap analysis

Moreover, we performed a CMap (http://portals.broadinstitute.

org/cmap/) analysis to find potential drug candidates for DN to

reverse the altered expression of hub ERSRGs. Table 2 displays the

top10 CMap compounds, with the protein synthesis inhibitor

bruceantin having the highest negative connectivity score.
4 Discussion

DN is the most prominent type of CKD and the leading cause of

ESRD in adults, accounting for 40% of patients requiring renal

replacement therapy (25). Notwithstanding, the deficiency of
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existing diagnostic markers, the heterogeneity of pathogenesis and

the lack of pathological diagnosis in clinical, which increases the

difficulty of defining and comprehending of DN, causing a large

number of patients have not achieved satisfactory results.

Consequently, it is necessary to uncover more potent diagnostic

markers and more appropriate molecular subtypes and to develop a

diagnostic paradigm for DN.

ER stress refers to the aberrant structure and function of the ER

as a result of many pathophysiological causes, including high

glucose, hypoxia, oxidative/nitride stress, acidosis, calcium

homeostasis imbalance, nutrient deficiency or excess, infection,

etc. And therefore to block the protein processing and secretion

are blocked in the ER, leading to an excessive accumulation of

unfolded and misfolded proteins in the ER lumen (26). According

to, the well studied unfolded protein response (UPR) is the primary

signaling pathway of ER stress (27). UPR is mediated by three ER-

resident sensors located on the ER membrane: protein kinase RNA-

like ER kinase (PERK), inositol requiring protein-1a (IRE1a) and
activating transcription factor-6 (ATF6). When the unfolded/

misfolded proteins in the ER accumulated, the ER chaperone BiP/

GRP78 is dissociated from the luminal domains of the ER stress
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FIGURE 4

The selection of characteristic genes of DN via machine learning algorithm. (A) Twenty-one characteristic genes of LASSO. (B) Nine characteristic
genes of SVM-RFE. (C) Top twenty characteristic genes of RF. (D) Visualization of intersecting genes. (E) GBDT to verified the selected intersecting
genes reliability.
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sensors to activate three transmembrane proteins. Each mechanism,

upon activation, causes downstream reactions, such as the PERK-

eIF2a-ATF4-CHOP signaling pathway, IRE1-TRAF2 signaling

pathway, ASK1 signaling pathway and ATF6 signaling pathway

(28). Thus triggering UPR, which includes slowing mRNA

translation, increasing mRNA degradation, decreasing new

protein synthesis, enhancing unfolded protein folding, and

encouraging misfolded protein degradation to alleviate ER stress

(29). Nonetheless, severe and chronic ER stress may result in

aberrant activation of the UPR, which ultimately leads to

apoptosis or autophagy-dependent cell death (30). In addition to

UPR, ER over response (EOR) and sterol response element binding

protein steroid regulatory cascade (SREBP) are essential

components of ER stress, and there is a complex interaction

between the three to reduce ER stress.

Under DN status, hyperglycemia, proteinuria, FFA, and AGEs

disrupt proteostasis, resulting in the accumulation of unfolded/

misfolded proteins in the ER lumen, thereby inducing excessive ER

stress in renal intrinsic cells and promoting the activation and

interaction of autophagy, apoptosis, inflammation, and oxidative

stress-related pathways mediated by ER stress (31, 32). Which could

have a crucial role in the etiology and progression of DN. ER stress

is well-documented in DN, mRNAs encoding several ER
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chaperones were shown to be higher in the kidneys of humans

with DN (33), for instance, recent studies shed light on the crosstalk

between ER stress and oxidative stress in peripheral blood

mononuclear cells (PBMC) of DN subjects, and significantly

contributing to the onset and progression of DN (34).

Importantly, the ER stress-mediated mechanism offers DN

patients a possible treatment target. By inhibiting Fyn kinase-

mediated ER stress, the Pan-Src kinase inhibitor described by

Dorotea et al. (35) reduces proximal tubular cell damage in a

diabetic milieu. In addition, Zhong et al. (36) discovered that

dioscin protected against DN by decreasing oxidative stress,

inflammation, and apoptosis caused by mitochondrial and ER

stress. Nonetheless, the specific biological activities and immune-

related molecular patterns of ER stress in DN are not

entirely understood.

Using bioinformatics analysis, we built a comprehensive and in-

depth evaluation system for ERSRGs and biochemical pathways

involved in DN patients. Firstly, a total of 497 DEGs were detected

between 90 DN patients and 100 healthy controls using the GEO

database, revealing 255 upregulated genes and 242 downregulated

genes. Subsequent GO enrichment analysis results supported that

extracellular matrix (ECM) deposition and immune response may be

involved in DN, whereas KEGG enrichment analysis demonstrated
D

A B

E F

C

FIGURE 5

Validation of characteristic genes in the gene chip datasets. (A) Correlation analysis of characteristic genes. (B) Representative violin plots present
the expression of characteristic genes in the multi-chip dataset. (C) Representative violin plots present the expression of characteristic genes in
tubulointerstitium dataset (GSE104954). (D) Representative violin plots present the expression of characteristic genes in kidney biopsy dataset
(GSE142025). (E) Prediction model of nomogram. (F) The ROC curves for evaluating the diagnostic performance. *p-value < 0.05; **p-value < 0.01;
***p-value < 0.001.
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that oxidative stress and inflammatory reaction were closely related to

the pathological changes of DN, which is consistent with previous

research, similarly, DEGs were closely related to the pathological

changes of DN. Next, we utilize the WGCNA to weight and classify

co-expressed genes in multi-chip datasets, with thirteen modules

listed. Each module and its associated traits are ultimately connected,

so identifying module genes with the strongest relationships with DN

samples for future examination. As a results, we found that 49 hub

ERSRGs were strongly related with DN, the focus of our

investigation, by comparing the ERSRGs in the database with those

reported in the literature.

Additional enrichment analysis revealed the biological

functions and pathways mediated by all hub ERSRGs, with the

imbalance in ECM synthesis and degradation was particularly

remarkable. The chronic infiltration of an immunological
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microinflammatory state in DN and the persistent stimulation of

hyperglycemia prolong the repair of ECM protein following injury,

resulting in pathological alterations. Renal fibrosis resulted from the

excessive accumulation of ECM protein (37). Recent experimental

evidence suggests that a megacluster of miRNAs (including miR-

379 and others) and its host lncRNA (lncMGC) are increased by ER

stress in the kidneys of diabetic mice and cause ECM accumulation

of DN (38–40). In the second place, current evidence suggests that

AGEs and ER stress are mutually induced in the pathophysiology of

hyperglycemia, hypoxia, oxidative stress, RAGE-mediated

inflammation, and aging in a variety of metabolic diseases (41).

AGE exposure elevates the ER stress marker GRP78 and changes

the ER protein folding sensor proteins, while targeting advanced

glycation may be advantageous for ER homeostasis maintenance

(42). In addition, the disruption of the insulin-PI3K-Akt signaling
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FIGURE 6

Immune cell infiltration analysis. (A) Distribution of 22 kinds of immune cells in tissues of DN and control groups. (B) Correlation diagram between
immune cells. (C) Expression of immune cells in DN and control groups. (D) Immune cells correlation with the expression of characteristic genes.
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pathway in podocytes of the kidney leads to ER stress, podocyte

apoptosis, and proteinuria in DN (43). Other inflammation-

mediated pathways, including the IL-17 signaling pathway, the

HIF-1 signaling pathway, and the Toll-like receptor signaling,

were activated in response to ER stress (44), which may be

associated with oxidative stress and chronic inflammation in renal

tissue. It is concluded that ER stress is indisputable in the

pathophysiology of DN.
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Increasingly, machine learning algorithms are utilized to

develop decision models that aid in the detection and treatment

of disease. Five possible biomarkers linking DN and ER stress

(CDKN1B, EGR1, FKBP5, GDF15, and MARCKS) were tested in

the current study after merging the findings of three machine

learning models and additional selection of verification sets.

Moreover, although we confirmed that all five characteristic genes

expression level can be used as an independent diagnostic marker,
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FIGURE 7

Identification of ER stress-associated molecular patterns in DN. (A) Consensus clustering matrix when k = 2. (B) Representative CDF curves when k =
2 to 6. (C) Relative alterations in CDF delta area curves. (D) Consensus score in each subtype when k = 2 to 6. (E) PCA analysis demonstrates that
the DN patients are classified into two distinct subtypes.
D

A B

C

FIGURE 8

The different immune characteristics and molecular mechanisms between two subtypes. (A) Vio plots showing the mRNA expression of
characteristic genes in two ER stress subtypes. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001. (B) Vio plots demonstrating the infiltration
levels of immune cell components in two ER stress subtypes. (C) Differences in enriched biological functions between ER stress subtypes ranked by t
value of GSVA score. (D) Differences in the enriched hallmark pathways between ER stress subtypes ranked by t value of GSVA score.
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we intend to develop a more comprehensive diagnosis pattern by

converting it into a score and taking all these five characteristic

genes into consideration. Then, a nomogram was created and

showed the improvement of diagnostic efficacy, but its external

validity was poor in external validation, which may restrict its

effective in clinical applications for DN diagnosis.

Cyclin-dependent kinase inhibitor 1B (CDKN1B), also known

as p27Kip1, slows cell cycle transition following DN, causing cells to

remain in the G1 phase and inhibiting cell proliferation (45). The

CDKN1B upregulation has been linked to glomerular hypertrophy,

mesangia l expansion , and ECM deposi t ion, whereas

downregulation could slow the course of DN (46), according to

studies. Dong et al. (47) revealed the decrease of CDKN1B mRNA

expression in the glomeruli of DN patients in the Nephroseq data

set and confirmed that the expression level of CDKN1B mRNA in

podocytes decreases gradually as glucose concentration rises, which

is consistent with our findings. Additionally, it has been established

that CDKN1B upregulation can inhibit ER stress-induced apoptosis

(48). All evidence suggests that CDKN1B may play a crucial role in

the pathophysiology of DN. Early growth response-1 (EGR1) is an

immediate-early transcription factor that has been demonstrated to

contribute to diabetic atherosclerosis by boosting ECM synthesis

through interaction with TGF-b and promoting proinflammatory

responses (49). Fan et al. (50) observed a reduction in the expression

of EGR1 mRNA in the DN. Cheong et al. (51) discovered a

correlation between EGR1 expression and genes for ER stress and

anti-apoptosis in human pancreatic tissues. However, more

research has to be done on EGR1, a promising clinical indication

of DN under ER stress. In reaction to stress, FK506-binding protein

51 (FKBP5) modifies the sensitivity of the glucocorticoid receptor.

Additionally, the pathophysiology of DN has been connected to

aberrant FKBP5 methylation. Lee et al. (52) discovered that the

expression of FKBP5 mRNA was elevated in the urine of DN

patients, which may account for the reduction of FKBP5 in renal

tissue samples of DN observed in this investigation.

The TGF-b family member growth differentiation factor-15

(GDF15) is emerging as a diagnostic and therapeutic target for
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metabolic disorders (53). In preclinical kidney injury, kidney

GDF15 expression appears to have a protective role, since

GDF15-deficient diabetic animals exhibited more severe

interstitial damage (54, 55). In humans with DN, the expression

of GDF15 in plasma and urine has been discovered as a possible

biomarker for early diagnosis of DN, and has been shown to

independently correlate with renal risk in prior research (56–58).

Meanwhile, the kidney was hypothesized to be a source of

circulating and urine GDF15 (59). Also reported is the

pathophysiological function of GDF15 in regulating ER stress.

Through UPR signaling, ER stress promotes GDF15 expression

and release (60). Moreover, ablation of GDF15 lowers ER stress-

induced b-cell apoptosis in diabetes (61). These findings suggest

that GDF15 is a possible diagnostic marker for DN and may play a

crucial role in its progression. Myristoylated alanine-rich C kinase

substrate (MARCKS) is a biological substrate with high affinity for

protein kinase C (PKC), with one of its most essential functions

being to provide PI3K with PIP2 pools and so activate AKT (62). To

yet, however, no research on the role of MARCKS in DN have been

documented. Hence, the association between them remains

unknown. To sum up, based on these five characteristic genes

closely related to the progression of DN, we may formulate a new

diagnosis workup, estimate prognosis, and provide targeted

treatment in the clinical, which could provide a new therapeutic

target for DN and contribute to personalized medicine.

Despite the fact that DN is not a “immune-mediated” kidney

disease, numerous studies have shown that both innate and adaptive

immune pathways can promote or control renal function degradation

in DN (63).We found significant differences in the type and abundance

of infiltrating immune cell populations between the two groups,

including B cells memory, T cells gamma delta, NK cells activated,

MacrophagesM2, Dendritic cells resting, andMast cells resting, among

others, highlighting the importance of immune cells in the

development of DN. In the meantime, it was discovered that all five

of these characteristic genes are implicated in immune cell infiltration

during DN glomerular damage. Improving aberrant immunological

status by focusing on them may be a promising therapy strategy for
TABLE 2 CMap analysis indicated potential treatment options for DN.

Rank CMap name Moa norm_cs FDR

1 bruceantin Protein synthesis inhibitor -2.013 15.654

2 IKK-16 IKK inhibitor -1.933 15.654

3
mycophenolate-
mofetil

Inosine monophosphate dehydrogenase inhibitor|Dehydrogenase inhibitor|Hydroxycarboxylic acid receptor
agonist|Immunosuppressant|Inositol monophosphatase inhibitor

-1.905 15.654

4 verrucarin-a Protein synthesis inhibitor -1.872 15.654

5 teroxirone DNA inhibitor -1.859 15.654

6 adapalene Retinoid receptor agonist -1.849 15.654

7 mitomycin-c DNA alkylating agent|DNA inhibitor -1.834 15.654

8 honokiol AKT inhibitor -1.833 15.654

9 ASC-J9 Androgen receptor agonist -1.828 15.654

10 irinotecan Topoisomerase inhibitor -1.810 15.654
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DN. In addition, we generated two subtypes based on the expression

profiling of five distinctive ER stress regulators using an unsupervised

cluster approach. Analysis of functional enrichment revealed that

subtype2 was closely associated with TGF-b signaling pathway (64),

WNT signaling pathway (65), and ECM deposition (66), which were

shown to mediate excessive ER stress. Therefore, it is plausible to infer

that subtype2 may be more closely associated with ER-stress, which

could aid in the early detection and treatment of DN. Finally, CMap

identified potential small-molecule medicines that could reverse the

expression of ERSRGs. Mycophenolate-mofetil and honokiol have

been demonstrated to slow the course of DN (67, 68), although the

underlying mechanism remains unknown.

Our study has a number of limitations. First, the present study

based on public open-source databases; additional clinical and

experimental studies on the identification of ER stress-related

biomarkers, as well as the scope and precision of particular

applications, are required. In addition, several clinicopathological

characteristics, such as particular clinical classification, follow-up

information, and complications, are not taken into account in our

research, necessitating additional clinical investigation. Last but not

least, more research is needed to fully understand the possible

effects because there hasn’t been much documented on the

molecular interactions between these five characteristic genes and

immune cells.
5 Conclusions

In summary, our study provides new insights into the role of ER

stress in the pathophysiology of DN and the development of new

targets for early diagnosis and treatment of DN. In addition, five

characteristic genes (CDKN1B, EGR1, FKBP5, GDF15, and

MARCKS) have been preliminarily identified as sensitive

potential biomarkers that could influence the development of DN

by controlling ER stress. Further research is required to determine

the precise molecular mechanism and functional pathway of these

proteins in DN.
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