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Histamine is a biogenic amine that acts as a neuromodulator within the brain. In

the hypothalamus, histaminergic signaling contributes to the regulation of

numerous physiological and homeostatic processes, including the regulation

of energy balance. Histaminergic neurons project extensively throughout the

hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in

key hypothalamic nuclei known to regulate energy homeostasis, including the

paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate

(ARC) nuclei. The activation of different histamine receptors is associated with

differential effects on neuronal activity, mediated by their different G protein-

coupling. Consequently, activation of H1R has opposing effects on food intake to

that of H3R: H1R activation suppresses food intake, while H3R activation

mediates an orexigenic response. The central histaminergic system has been

implicated in atypical antipsychotic-induced weight gain and has been proposed

as a potential therapeutic target for the treatment of obesity. It has also been

demonstrated to interact with other major regulators of energy homeostasis,

including the central melanocortin system and the adipose-derived hormone

leptin. However, the exact mechanisms by which the histaminergic system

contributes to the modification of these satiety signals remain underexplored.

The present review focuses on recent advances in our understanding of the

central histaminergic system’s role in regulating feeding and highlights

unanswered questions remaining in our knowledge of the functionality of

this system.

KEYWORDS

histamine, food intake, hypothalamus, neurometabolism, melanocortin, leptin,
histamine receptors, GPCR
Introduction

Histamine is a small biological molecule (biogenic amine) that is widely distributed

throughout the body. Although probably best recognized for its importance in arousal

regulation and allergic inflammatory reactions, histamine plays a role in a diverse range of

biological functions. This includes the regulation of energy balance, sleep and wakefulness,
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thermoregulation, gastrointestinal function, immune responses,

and learning and memory (1–3). Within the central nervous

system (CNS), a population of neurons located in the posterior

hypothalamus provide the sole source of neuronal histamine to the

brain (4–6) and can be identified based on the expression of

histidine decarboxylase (HDC), the enzyme required for

histamine synthesis (7, 8). These histaminergic neurons project

extensively throughout the CNS, and strongly innervate multiple

hypothalamic nuclei known to influence energy homeostasis and

feeding behaviors (9–11). While histamine is known to impact food

intake via its actions in the hypothalamus (12, 13), the precise

mechanisms by which it does so are still being uncovered. The

present review focuses on recent advances in understanding of the

central histaminergic system’s role in regulating food intake,

including potential interactions with satiety signals and
Frontiers in Endocrinology 02
neuropeptide/neurotransmitter systems implicated in energy

balance regulation.
Histaminergic neurons

Histaminergic neuron somas are confined to the

tuberomammillary nucleus (TMN) in the posterior hypothalamus

(Figure 1) but have widespread projections that extensively

innervate the CNS. This includes major brain regions including

the cortex, brainstem, hippocampus, striatum, nucleus accumbens,

amygdala , and substant ia nigra , as wel l as mult iple

intrahypothalamic projections (9–11, 14). The diffuse projection

patterns correlate with the multiple functions associated with

histaminergic neurons, which have been comprehensively
FIGURE 1

Histaminergic neuron distribution throughout the hypothalamus. RNAscope® in situ hybridization (ISH) targeting Hdc shows histaminergic neurons
(red) densely packed in the core region of the tuberomammillary nucleus (marked TMN) along with diffusely scattered histaminergic neurons
throughout the hypothalamus. The RNAscope® ISH was performed on hypothalamic brain slices (25µm) from male mice according to the
manufacturer’s instructions (Advanced Cell Diagnostics, Inc., USA).
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reviewed elsewhere (1, 3, 15). In contrast to the diffuse and well

characterized projections of histaminergic neurons, difficulties

occurred with initial attempts to identify afferent inputs to the

histaminergic neurons, likely due to the inherent limitations of

retrograde tracing studies, including potential spread to

surrounding tissue and labeling of fibers of passage (16, 17).

However, significant afferent input to the histaminergic neurons

has since been identified, with inputs originating from the

ventrolateral preoptic area (VLPO) (17–19) and the lateral

hypothalamus (20–23). Importantly, the TMN can be subdivided

into 3-5 different subregions depending on the classification

method used (9, 24, 25). While histaminergic neurons are usually

acknowledged to reside in the ‘TMN core’, their distribution within

the hypothalamus (including the dorsal and bridge regions of the

TMN) is much more widespread than typically appreciated

(Figure 1), with some degree of variability observed between

species (26, 27). However, the anatomical location of the

histaminergic neurons and distribution of fibers throughout the

brain appears comparable in humans to that described in

rodents (28).

The location of the histaminergic neurons within the hypothalamus

raises the potential for their involvement in the regulation of feeding.

Many of the histaminergic neurons lay in close proximity to the third

ventricle or are located on the ventral surface of the brain, suggesting,

like other hypothalamic neurons, a potential for the detection of

circulating hormones and neuropeptides (29). Moreover,

histaminergic neuron fibers densely innervate the hypothalamus,

including key hypothalamic nuclei known to regulate energy balance.

While early studies required colchicine treatment to visualize histamine

containing neurons (4), targeting of HDC (the enzyme required for

histamine synthesis) allowed for the identification of dense fiber

networks throughout the hypothalamus (6). Studies examining HDC

immunoreactivity alone or in combination with paired retrograde tracer

studies reveal high to very high density of histaminergic fibers in

hypothalamic regions that regulate energy homeostasis. This includes

the paraventricular nucleus of the hypothalamus (PVH), ventromedial

hypothalamus (VMH), lateral hypothalamus (LH), dorsomedial

hypothalamus (DMH) and the arcuate nucleus (ARC) (6, 9, 10). Use

of newer immunohistochemical methods, with increased sensitivity for

the visualization of histamine immunoreactive fibers and terminals,

provided additional support for a moderate density of histaminergic

fibers in the PVH, VMH, DMH, LH, and ARC (11). While

identification of fiber tracts does not necessarily indicate functional

connections, the presence of histamine receptors in these regions

supports the role of histamine in regulating the activity of key

metabolic neurons located in these areas of the hypothalamus.
Histamine receptor signaling

Histamine exerts its pleiotropic effects by binding to four

subtypes of histamine receptors (HR), three of which are located

within the brain (H1R, H2R, and H3R) (30–33). HRs belong to the
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family of G protein–coupled receptors (GPCRs), which interact

with G proteins located in the plasma membrane. When a ligand

binds to a GPCR, it causes a conformational change that triggers the

interaction between the GPCR and nearby heterotrimeric G

proteins. This promotes the exchange of a GDP for a GTP on the

Ga subunit, resulting in its dissociation from Gbg (34). There are
four main families of Ga subunits: Gai, Gaq, Gas, and Ga12 (35).
Ga subunits and Gbg can activate different signaling pathways.

Identified in 1966, the H1R subclass of histamine receptors (gene

symbol: HRH1) primarily couples to Gaq, resulting in the activation

of the phospholipase C (PLC) signaling pathway (36–40) (Figure 2).

This leads to the subsequent cleavage of phosphatidylinositol 4,5-

bisphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3). These second messengers respectively activate

protein kinase C (PKC) and promote the mobilization of Ca2+ (41).

Accumulation of IP3, DAG and Ca2+ following histamine was shown

to be prevented with the H1R inverse antagonist pyrilamine (42–45),

while the H1R inverse agonist chlorpheniramine was reported to

block the stimulatory effect of histamine on PLC and Ca2+ (46),

confirming the involvement of H1R in the Gaq-dependent actions of
histamine. One report also suggests that activation of H1R by

histamine increases cAMP levels through Gbg, an effect that is

prevented by the H1R inverse agonist pyrilamine (47). As such,

H1R activation and stimulation of it signaling cascade has excitatory

effects and is associated with membrane depolarization in neurons

(48–52).

The H2R subclass of histamine receptors (gene symbol: HRH2),

often referred to as the histamine gastric receptor, couples to both

Gaq and Gas proteins (39, 53). As a consequence, histamine

binding to H2R stimulates both PLC and adenylate cyclase (AC)

through Gaq and Gas proteins respectively (53) (Figure 2).

Activation of Gas proteins in turn increases cAMP, an effect that

is prevented by the HRH2 antagonist lafutidine (54). Increased

cytosolic cAMP then leads to the activation of protein kinase A

(PKA), which has been shown to stimulate neurons (55). Therefore,

histamine binding to H2Rs also has excitatory actions within the

brain, and results in depolarization of neurons through increased

Ca2+, cAMP and PKA (56, 57).

The H3R subclass of histamine receptors (gene symbol: HRH3,

previously known as GPCR97) primarily couples to Gai proteins
(39, 58) and functions as an inhibitory auto- or hetero-receptor in

the brain (59–62). Activation of H3R results in AC inhibition and a

subsequent reduction of cAMP levels (63, 64) (Figure 2). In contrast

to the excitatory effects of H1R and H2R, binding of the H3R by

histamine results in a suppression of neuronal activity and

inhibition of neurotransmitter release (15, 60, 65, 66). Several

mechanisms can contribute to the inhibitory effects of H3R. First,

the Gbg subunit of Gai-coupled receptors has been shown to

activate G protein-gated inwardly rectifying potassium (GIRK)

channels (66, 67). Second, H3R activation can reduce

neurotransmitter release by inhibiting N- and P/Q-type voltage-

gated calcium channels again through the Gbg subunit (68, 69).

Third, H3R activation has been shown to reduce the activity of the
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sodium–proton exchanger (NHE), which is under the control of

Gai (70, 71). Therefore, activation of H3R has opposite effects on

neuronal activity to that of H1R or H2R activation.
Central histaminergic system and the
regulation of feeding

Histamine synthesis

The central histaminergic system has been implicated in the

regulation of food intake through multiple different strategies used to

manipulate the system. This includes altering the body’s ability to

produce histamine. Genetic knock-out of histidine decarboxylase

(HDC-KO) has been used to prevent the synthesis of histamine,

resulting in histamine deficient mice. Studies using these mice suggest

that HDC-KO animals are more susceptible to develop obesity as

they age, or after consumption of a high fat diet (72–74). Detailed

analyses of food intake in these mice are lacking, however, one study

suggests that HDC-KO mice are not hyperphagic, but have an

increased feed efficiency (72). However, the increased body weight

in HDC-KO mice could be confounded by the decreased locomotor

activity observed in these animals (75–77). An alternate method to

deplete histamine is the use of a-Fluromethyl-[S]-histidine (a-FMH)

which is a suicide inhibitor of histamine synthesis. Chemical

inhibition of histamine synthesis with a-FMH has consistently

been associated with an increase in food intake (78–82), suggesting

that overall, histamine may be anorexigenic. However, such genetic

or chemical methods preventing histamine synthesis provide limited

and unspecific information regarding histamine’s ability to influence
Frontiers in Endocrinology 04
feeding, due to a loss of histaminergic tone at all histamine

receptors simultaneously.
H1R activation suppresses food intake

The H1R is generally accepted to mediate the suppression of

food intake induced by histamine (Figure 3). Early studies

demonstrated that intracerebroventricular (ICV) injection of H1R

antagonists stimulated feeding (12, 83). Moreover, the effects of

pharmacological strategies increasing brain histamine levels, which

are associated with a suppression of food intake, are attenuated, or

abolished in the presence of H1R antagonists (78, 84). These actions

are consistent with the increased food intake and weight gain seen

with first-generation antihistamines used to treat allergies (85–87)

which are all inverse agonists of the H1R (88).

More recently, global H1R knockout (H1R-KO) mice have been

developed (89) and food intake and body weight studies in these

mice overwhelmingly backed up that obta ined with

pharmacological ligands targeting the H1R. The ability of a-FMH

to stimulate food intake is lost in H1R-KO mice (79) and

histamine’s ability to suppress food intake and body weight is

reduced in H1R-KO mice compared to control mice (90).

Moreover, the ability of betahistine, which enhances histamine

levels and acts as an agonist of H1R, to reduce food intake and

body weight is absent in H1R-KO mice (91). Together, these data

strongly support the idea that histamine’s actions at the H1R are

anorexigenic. Interestingly, H1R-KOmice do not show any changes

in food intake or body weight when fed a standard chow diet (90,

92). However, with age or high fat diet feeding, H1R-KO mice
FIGURE 2

G protein–coupled receptor (GPCR) signaling from brain expressed histamine receptors. Histamine activation of H1R and H2R lead to neuronal
excitation via Gaq and/or Gas dependent mechanisms respectively. Activation of H3R leads to neuronal inhibition and suppression of
neurotransmitter release. PLC, phospholipase C; PKC, protein kinase C; AC, adenylate cyclase; NHE, sodium–proton exchanger; GIRK, G protein-
gated inwardly rectifying potassium channels; VGCCs, voltage-gated calcium channels; cAMP, cyclic adenosine monophosphate. Figure created with
BioRender.com.
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accumulate fat mass and develop obesity (90, 92, 93), which is

consistent with what was seen in mice completely deficient of

histamine (HDC-KO) as discussed above. Additionally, H1R-KO

mice display a decreased anorexigenic response to thyrotropin

releasing hormone (TRH), neurotensin, nesfatin-1, and estradiol

(94–97), suggesting that the H1R may contribute to the suppression

of feeding normally induced by these anorexigenic peptides.

While the ability of histamine to suppress feeding is well

demonstrated to occur via H1R, the exact neuronal populations

and mechanisms responsible for these effects are not well

understood. Studies where H1R antagonists were directly infused

into different hypothalamic nuclei have demonstrated that blockade

of H1R only in the paraventricular (PVH) and ventromedial

(VMH) hypothalamus stimulate feeding (12, 13) (Figure 3).

Similarly, micro infusion of a-FMH to decrease local histamine

concentrations, only has effects on food intake when infused in the

PVH and VMH (78, 82, 98). While H1R agonists have been shown

to induce markers of cell activity (c-Fos) only in the PVH (91),

extracellular recording techniques demonstrate that the H1R

antagonist chlorpheniramine inhibits neurons in the VMH (83).

Despite these studies suggesting that the PVH and VMH are the

sites where H1R activation has its anorexigenic effects, future

studies are required to further elucidate the mechanisms involved,

including the chemical phenotype of the cells in these nuclei

mediating the anorexigenic effects of H1R activation.
H2R activation does not influence
food intake

When it comes to central H2Rs, there is limited evidence

indicating that they have any role in regulating feeding.

Importantly, H2R antagonists administered ICV or directly to

hypothalamic regions have no effect on food intake (12, 83, 99,

100). Furthermore, the H2R antagonist ranitidine has been shown

to have no effect on histamine-induced suppression of food intake,

whereas both H1R and H3R antagonists influenced this effect (84).

It should be noted that while H2R antagonists can influence feeding

when taken orally or infused directly into the gut, peripheral
Frontiers in Endocrinology 05
mechanisms including H2R effects on gastric acid secretion and

gut hormones likely contribute to these effects (101–103).

Furthermore, it is unsurprising that centrally expressed H2Rs do

not influence food intake given that these receptors are most

strongly expressed in extrahypothalamic regions such as the

cortex, hippocampus, striatum, basal ganglia, and amygdala (30,

33, 104). Together, these data strongly suggest that central H2Rs do

not contribute to the homeostatic regulation of food intake.
H3R activation stimulates food intake

Pharmacological studies indicate that activation of the H3R is

orexigenic, with H3R agonist delivery directly to the brain

stimulating food intake (105–107) (Figure 3). In line with these

observations, blockade or inverse agonism of the H3R suppresses

food intake (78, 82, 84, 100, 107, 108). The capacity of H3R inverse

agonists/antagonists to reduce food intake has also been shown to

minimize weight gain occurring in models of diet-induced obesity

and to reduce body weight in obese rodents (108–112). Moreover,

H3R inverse agonists/antagonists suppress food intake in

conditions associated with an increased orexigenic drive, i.e., in

the fasted state or following neuropeptide Y (NPY) administration

(105, 113). In one study, food intake in rats that received a single

dose of thioperamide, a H3R antagonist, was significantly less for

two days compared to controls (82). The suppression of food intake

induced by H3R antagonists has also been demonstrated to occur in

non-rodent species including pigs and non-human primates (114).

Together, these studies demonstrate that histamine’s actions at the

H3R stimulate feeding, and blockade of this receptor is associated

with anorexigenic effects.

The ability of H3R inverse agonists/antagonists to suppress food

intake is largely assumed to occur by removing the normal auto-

inhibition of histaminergic neurons (Figure 3), thereby increasing

histamine levels and enhancing action at the anorexigenic H1R (78,

105, 115). However, the H3R also functions as a heteroreceptor and

has been shown to be expressed in several brain regions other than

the TMN (32, 58, 60, 116). Importantly, the H3R can suppress the

release of multiple neurotransmitters including serotonin (117,
frontiersin.or
FIGURE 3

Histamine mediates its effects on feeding via activation of histamine receptors within the hypothalamus. Activation of the H1R is associated with an
anorexigenic effect and is believed to be mediated via H1Rs expressed in the PVH and VMH. In contrast, activation of the H3R is orexigenic and
occurs via autoinhibition of the histaminergic neurons. H3Rs in unidentified sites may also contribute to the orexigenic effects of H3R activation.
Figure created with BioRender.com.
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118), dopamine (119, 120), noradrenaline (118, 121), acetylcholine

(122, 123) and GABA (124–126), neurotransmitters that are

implicated in the regulation of feeding. This raises the potential

for H3R inverse agonism/antagonism to influence food intake via

transmitters other than histamine (Figure 3). However, such a

possibility has not been comprehensively assessed.

In comparison with pharmacological studies targeting the H3R,

experiments using global H3R-KO mice have generated diverging

and less consistent findings. H3R-KO mice were shown to consume

more food and have an increase in body weight from approximately

10 weeks of age (127). Such findings seem counterintuitive

considering that the KO of H3Rs should remove the auto-

inhibition of the histaminergic neurons and enhance anorexigenic

actions at the H1R. However, it has been demonstrated that H3R-

KO mice actually have decreased histamine levels in the

hypothalamus and cortex (127, 128) potentially contributing to

this effect. In contrast to the food intake effects reported by

Takahashi et al. (127), others have suggested that a decrease in

food intake occurs in H3R-KO mice, however, food intake was

normalized to body weight, making any absolute changes difficult to

assess (129). While genetic mouse models can reveal important

insights into the mechanistic underpinnings of physiology and

behavior, developmental and compensatory actions can occur,

especially in relation to fundamental processes such as eating.

Moreover, the function of the H3R as a heteroreceptor adds

another level of complexity, whereby knockout of H3R could

simultaneously influence multiple neurotransmitter systems.

Despite some conflicting results obtained in knockout animals, it

is clear that the H3R plays an important role in regulating food

intake, and its activation is generally orexigenic.
Histaminergic system and interaction
with key metabolic signals

Leptin

In addition to histamine’s ability to influence feeding, the

central histaminergic system has been suggested to interact with

other signals reflective of the metabolic state. This includes leptin, a

hormone produced by adipose tissue that acts in the CNS to

regulate energy metabolism (130). Circulating leptin levels occur

in proportion to fat mass and decrease with periods of fasting (131,

132), therefore, acting as a signal of energy reserves to the brain.

Exogenous leptin administration is associated with a suppression of

food intake, a reduction in body weight, and an upregulation of

uncoupling protein 1 (UCP1) expression in adipose tissue depots,

all of which have been suggested to require a fully functioning

histaminergic system (79, 80, 92, 133). Studies in which histamine

synthesis was chemically inactivated failed to observe the normal

leptin-induced suppression of food intake and decrease in body

weight (79, 80, 133). These effects have been linked to the H1R, as

studies performed in mice globally lacking H1R show similar effects.

In H1R-KO mice, leptin’s effect on food intake and body weight is

suppressed or absent compared to that seen in control animals (79,
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92). Additionally, leptin’s ability to decrease body fat percentage

and upregulate UCP1 in brown adipose tissue was suppressed in

H1R-KO mice (92). Moreover, genetic disruption of histamine

synthesis (HDC-KO mice) leads to impairments in leptin sensing

and regulation (72, 74, 134). While these studies suggest that the

histaminergic system may mediate some of the anorexigenic effects

of leptin, the mechanisms by which the histaminergic system

regulates the actions of leptin in the CNS remains to be

determined. Interestingly, the core region of the TMN, where the

histaminergic neurons reside, does not express the long form of the

leptin receptor (LepR) (135), which likely precludes direct effects of

leptin on the histaminergic neurons themselves. In contrast, LepR is

expressed in sub-populations of neurons located in the lateral

hypothalamus (136–138) a region known to directly and

indirectly influence the histaminergic neurons (139, 140).

However, the potential for leptin to influence the activity of

histaminergic neurons via presynaptic inputs has not previously

been investigated. Future studies are required to determine the sites

and mechanisms by which histamine and leptin signaling may

converge within the brain.
Melanocortin system

The central melanocortin system is one of the best-

characterized brain circuits regulating food intake and energy

expenditure (141–144). Melanocortin peptides, derived from the

proopiomelanocortin (POMC) pre-prohormone, form a crucial

component of this system and act at cognate melanocortin

receptors to influence energy balance (145, 146). Importantly,

recent work has identified that histaminergic neurons are

sensitive to activation of the melanocortin 4 receptor (MC4R)

(147). Using single neuron ex vivo electrophysiological recordings

from genetically identified histaminergic (HDC) neurons, we

demonstrated that approximately 40% of histaminergic neurons

are excited by the non-selective MC3R/MC4R agonist melanotan II

(MTII) or a selective MC4R agonist (THIQ) (147). These MC4R-

mediated effects were shown to modify glutamatergic tone to the

histaminergic neurons (147). Moreover, the interaction between the

melanocortin and histaminergic systems was shown to be

important for feeding regulation. Chemogenetic inhibition of the

histaminergic neurons using an inhibitory Designer Receptor

Exclusively Activated by Designer Drugs (DREADD) approach

(148–150), enhanced the anorexigenic response to central

infusion of MTII (147). This study found that melanocortin

system activation results in unabated anorexia once the

histaminergic neurons are silenced and suggests that, under

normal conditions, the melanocortin-dependent activation of

histaminergic neurons acts naturally as a negative feedback loop

of the anorexigenic effects of the melanocortin system (147).

Despite this important observation demonstrating histaminergic

neurons are sensitive to key metabolic signals conveyed by the

melanocortin system, the downstream mechanisms by which

histaminergic neurons restrain the anorexigenic effects of

melanocortin system activation remain to be identified.
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Other appetite-related hormones

The ability of other appetite-related hormones to influence the

activity and function of the histaminergic neurons has not been

intensively investigated. One previous study suggested that ghrelin

may activate the histaminergic neurons, as increased c-Fos

expression, an indirect marker of cellular activity, was observed in

the TMN following central administration of ghrelin (151).

However, the receptor for ghrelin, the growth hormone

secretagogue receptor (GHSR), is not expressed in the TMN (152)

and Ghsr mRNA is not detected in transcriptomic profiling of

histaminergic neurons (153). This likely prevents any direct post-

synaptic modulation of histaminergic neurons by ghrelin. Similarly,

in vivo work has suggested that the histaminergic system is

influenced by glucagon-like peptide-1 (GLP-1), as central GLP-1

infusion has been shown to increase histamine and histamine

metabolite levels in the hypothalamus (154). The same study also

indicated that the histaminergic system was required for the full

anorexigenic effect of GLP-1, as inhibition of histamine synthesis

(with a-FMH) attenuated the GLP-1 induced suppression of food

intake (154). While there are descriptions of GLP-1 receptor (GLP-

1R) expression in the TMN (155) and tuberal region (156), and

GLP-1R agonists have been reported to activate (c-Fos) in the

ventral region of the TMN (157) and the tuberal region (158), single

cell sequencing fails to detect Glp1r mRNA in histaminergic

neurons (153). Interestingly, the LH, a region strongly innervating

the TMN, has been shown to express Glp1rmRNA (155, 156) and is

involved in mediating some of the anorexigenic effects of GLP-1

(159). Thus, any influence of GLP-1 on the histaminergic neurons

may be indirect via neurons of the LH.

The pancreatic hormone insulin may also have a role in

regulat ing histaminergic neuron function. One study

demonstrated that a very small percentage of histaminergic

neurons displayed c-Fos expression following insulin-induced

hypoglycemia (160). Further work would be required to delineate

whether histaminergic neuron activation in these conditions was

mediated by the hypoglycemia or insulin itself. However,

histaminergic neurons have been shown to express the insulin

receptor (153). Another metabolically relevant neuropeptide

known to target the histaminergic neurons is orexin (also known

as hypocretin). Orexin is a potent stimulator of feeding and the

neurons synthesizing this orexigenic neuropeptide are located in the

LH (161, 162). Importantly, histaminergic neurons express the

orexin receptor type 2 (OxR2/Hcrt2) (153, 163) and are excited

by orexin-A (164, 165). Orexin actions on histaminergic neurons

have largely been demonstrated to influence arousal control (165,

166). However, it is important to note that the orexin neurons also

co-express glutamate and can signal to the downstream

histaminergic neurons via glutamatergic currents (22, 167).

Moreover, the glutamatergic tone at histaminergic neurons,

arising from the LH, has been linked to the modulation of food

intake (147). While it is interesting to speculate about the different

functional consequences of orexin neuronal transmission to

histaminergic neurons, delineating such multifunctionality

remains understudied. Overall, it appears that the ability of
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histaminergic neurons to detect, and interact with, metabolic

signals occur via indirect (presynaptic) mechanisms, or via

actions downstream of the histaminergic neurons themselves, i.e.

on neurons expressing the histamine receptors.
Medications regulating body weight
via the histaminergic system

Psychiatric medications for the treatment
of schizophrenia

Supporting the importance of histamine receptors in the

regulation of energy balance, antipsychotic medications that

interact with the histaminergic system are associated with

clinically significant weight gain (168, 169). Notably, the atypical

antipsychotics with the largest weight gain profiles, olanzapine and

clozapine, also display high affinities for the H1R (170–173).

Atypical antipsychotics act to antagonize histamine’s endogenous

actions at the H1R, which may partially explain the increased food

intake seen with these medications (174–177). While the exact

mechanisms underlying atypical antipsychotic-induced weight gain

remain somewhat elusive, these medications have been shown to

downregulate hypothalamic expression of the H1R (178). In

addition, atypical antipsychotics have been shown to increase

orexigenic neuropeptide Y (NPY) expression and activate the

cellular energy sensor AMP-activated protein kinase (AMPK) in

the hypothalamus, effects that are dependent on functional H1Rs

(171, 179). Moreover, combination therapies including betahistine,

a H1R agonist/H3R antagonist, have been shown to reduce weight

gain in people treated with olanzapine (180). Although the

histaminergic system is not the only transmitter system

implicated in atypical antipsychotic-induced weight gain, strong

evidence suggests its ability to influence food intake, and sensitivity

to these medications, plays a contributing role.
Therapeutic potential for the
treatment of obesity

Following the cloning of the H3R in 1999 (58), numerous

ligands were developed to manipulate the function of the

receptor, and the H3R was subsequently proposed as a potential

therapeutic target for the treatment of obesity (81, 116, 181, 182). In

addition to food intake effects of H3R antagonists/inverse agonists,

as discussed in this review, pre-clinical work demonstrated that

these compounds also improve metabolic health and are associated

with decreased body weight and fat mass, improved glucose

homeostasis, and increased insulin sensitivity (108–111). These

properties saw multiple pharmaceutical companies including

Novo Nordisk, Abbott Laboratories, and Gliatech pursue H3R

ligands for the treatment of obesity (183). While there was a brief

surge in interest in these compounds for their metabolic effects, few

ligands transitioned from the pre-clinical stage. Abbott laboratories

H3R antagonist (A-331440) was found to have the potential for
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genotoxic effects which prohibited its further development as an

anti-obesity therapeutic (184). Contradictory results were obtained

between ligands with some studies failing to demonstrate consistent

effects on food intake and anti-obesity properties (81, 185).

Additionally, human trials with betahistine, a H1R agonist/H3R

antagonist, failed to identify any striking weight loss effects in obese

women (186), or on food intake when presented a buffet meal

following a single day of betahistine treatment (187). Differences in

ligand affinity for the H3R found between species may also

contribute to some discrepancies observed among rodent and

human studies (63, 188). Even though the pharmaceutical

industry appears to have largely withdrawn its interest in

pursuing the H3R as an anti-obesity target (189), work endures to

optimize H3R ligands and explore their potential to influence food

intake and body weight, and H3R antagonists/inverse agonists

continue to be proposed for the treatment of obesity (190, 191).
Considerations and future directions

The central histaminergic system has received considerable

interest for its ability to regulate energy balance, however, many

unanswered questions remain. Generally, histamine is considered

an anorexigenic substance, as activation of H1Rs decrease food

intake, effects that are believed to be mediated through actions in

the PVH and VMH (12, 13). However, these hypothalamic nuclei

consist of multiple cell types, and the chemical phenotype or

identity of the cells mediating H1R agonism-induced suppression

of food intake remain unidentified. Moreover, the view of histamine

as an anorexigenic compound seems somewhat contradictory given

that feeding occurs during waking hours when histaminergic

neurons are active and histamine levels are highest (192–196). It

appears that the picture is more complex and likely involves

numerous interactions, some of which have yet to be uncovered.

Pharmacological and genetic knockout studies have provided

important insights into the functioning of the histaminergic system,

but the expression of histamine receptors in both the brain and

periphery, and effects of the H3R on multiple neurotransmitter

systems, likely complicate the interpretation of some of these

findings. The field now requires the ability to manipulate

individual histamine receptors in a cell-type specific way (e.g.,

histamine receptor floxed mice) to further delineate the precise

actions of histamine in different nuclei and different cell types, and

to overcome some of the inherent limitations of global

knockout models.

Evidence also continues to emerge that the histaminergic

neurons are heterogeneous. Differences have been demonstrated

in their basal electrophysiological properties, transcriptional

makeup, and their response to various pharmacological agents

(163, 197–199). Such heterogeneity combined with multiple

histamine receptors, differentially expressed within the

hypothalamus and in multiple cell types, contributes to the

complexity of the histaminergic system and highlights multiple

ways histamine may serve to influence neuronal activity and food

intake. Additionally, histamine itself has been proposed to function

more like a neuromodulator or neuropeptide than a classical
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“neurotransmitter” (1, 200). Histaminergic neurons rarely form

close synaptic contacts (201, 202), preventing their potential for

traditional fast synaptic signaling to clearly defined post-synaptic

targets. Rather, histaminergic neurons are believed to communicate

via volume transmission, with histamine being released non-

synaptically, allowing it to have longer lasting actions, and

modulate neurotransmission at extra synaptic sites similar to

other monoamines (203). The ability of histamine to signal in this

fashion raises the potential for histaminergic neurons to “prime”

other neurons’ responsiveness to additional incoming (metabolic)

stimuli during waking hours when histaminergic tone is highest.

However, future studies will be required to address such

a possibility.
Conclusion

In summary, histamine functions as a neuromodulator in the

brain and contributes to the central regulation of energy homeostasis.

Its effects on food intake largely depend on the histamine receptor

subtype activated, with agonism of H1Rs being anorexigenic and

agonism of H3Rs causing an orexigenic response. These important

metabolic effects of HR activation contribute towards the weight gain

side effects of some common medications and have seen HR ligands

proposed as anti-obesity therapeutics. The histaminergic system has

also been demonstrated to interact with key metabolic signals in the

brain. It is clear that the histaminergic system has a powerful ability to

influence food intake. Now we must turn our attention to elucidating

the exact mechanisms by which it does so and the circumstances in

which histaminergic signaling may contribute to an altered

homeostatic drive to eat.
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