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Clear cell renal cell carcinoma (ccRCC) is a malignancy that exhibits metabolic

reprogramming as a result of genetic mutations. This reprogramming

accommodates the energy and anabolic needs of the cancer cells, leading to

changes in glucose, lipid, and bio-oxidative metabolism, and in some cases, the

amino acid metabolism. Recent evidence suggests that ccRCC may be classified

as a metabolic disease. The metabolic alterations provide potential targets for

novel therapeutic interventions or biomarkers for monitoring tumor growth and

prognosis. This literature review summarized recent discoveries of metabolic

alterations in ccRCC, including changes in glucose, lipid, and amino acid

metabolism. The development of metabolic drugs targeting these metabolic

pathways was also discussed, such as HIF-2a inhibitors, fatty acid synthase (FAS)

inhibitors, glutaminase (GLS) inhibitors, indoleamine 2,3-dioxygenase (IDO)

inhibitors, and arginine depletion. Future trends in drug development are

proposed, including the use of combination therapies and personalized

medicine approaches. In conclusion, this review provides a comprehensive

overview of the metabolic alterations in ccRCC and highlights the potential for

developing new treatments for this disease.
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1 Introduction

Cancer is a disease characterized by uncontrolled cell growth, and to sustain this

growth, cancer cells acquire large amounts of energy by altering their metabolic pathways

(1, 2). Initially, it was thought that the enhanced glycolysis observed in tumor cells was

inefficient in generating energy (3). However, it is now clear that cancer and metabolism are

intricately linked, and metabolic reprogramming is a hallmark of cancer. This process

involves genetic mutations that alter various metabolic processes, including glucose and

lipid metabolism and oxidative phosphorylation (OXPHOS). In other words, cancer cells

adapt their metabolism to meet their energy and building block needs (4). The increased

glycolysis rate of cancer cells consumes most of the nutrients in the surrounding
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microenvironment. This metabolic restriction significantly

promotes the formation of the tumor microenvironment and

reduces the responsiveness of T cells (5).

Renal clear cell carcinoma (ccRCC) is a malignant tumor that

arises from the renal tubular epithelium and accounts for 75% of all

kidney cancer cases (6, 7). According to the American Cancer

Society’s estimates for 2022, approximately 79,000 new cases of

kidney cancer will be diagnosed in the United States with ccRCC

being the most prevalent subtype (8). This malignant tumor has a

poor prognosis, particularly when metastases occur. Surgical

resection is often insufficient to manage the disease, and

treatment decisions may involve targeted drug therapy,

immunotherapy combined with targeted drug therapy, or dual

immunotherapy combined (9). Evidence suggests that these

therapies can extend the overall and progression-free survival of

patients, but they are also associated with the occurrence of adverse

events (10, 11).Currently, the International Metastatic Renal Cell

Carcinoma Database score (IMDC score) is utilized to guide

treatment decisions by providing prognostic stratification.

Metabolic reprogramming is a key feature of ccRCC, and

altered gene expressions can lead to significant metabolic changes

that fuel tumor growth (12). In particular, ccRCC is associated with

abnormalities in glucose metabolism and OXPHOS, as well as

unique metabolic alterations such as glutamine addiction (13).

The Warburg effect, in which cancer cells preferentially use

glycolysis rather than OXPHOS for energy production, is also

commonly observed in ccRCC (14).

Understanding these metabolic changes and their impact on

tumor growth is essential for developing new and effective

treatments for ccRCC. In this article, we provided an overview of

ccRCC and the metabolic alterations that occur in the disease,

focusing on glucose metabolism, lipid metabolism, and OXPHOS.

We also reviewed the pharmacological treatments that have been

developed to target these metabolic modifications and discussed

potential future directions for drug development in ccRCC.
2 Metabolic reprogramming in ccRCC

Metabolic reprogramming provides tumors with a competitive

advantage in acquiring survival resources (15). The Warburg effect

is a prominent example of metabolic reprogramming in cancer cells,

promoting cancer cell proliferation and creating an acidic

environment that can facilitate cancer cell migration (16, 17).

Glutamine metabolism and enhanced pentose phosphate pathway

(PPP) promote macromolecular production and signal

transmission in cancer cells (18). Furthermore, the hypoxic

signaling pathway can activate neovascularization to facilitate

tumor cell proliferation, even in the hypoxic environments

surrounding the tumor cells (19). Despite these advantages,

modulating the metabolic pathways of cancer cells can limit their

metabolic dominance and prevent the development of ccRCC (4).

ccRCC is associated with changes in lipid and glucose

metabolism, as evidenced by the presence of the translucent

cytoplasm and significant lipid and glycogen accumulation

observed in these cells (20).
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Most cases of ccRCC arise from mutations in the Von Hippel-

Lindau (VHL) allele, which results in altered tumor metabolism in

90% of patients with ccRCC (4). The VHL oncogene, located on the

short arm of chromosome 3 encodes the Von Hippel-Lindau(VHL)

tumor suppressor protein (pVHL) (21).

Under physiological conditions, pVHL ubiquitinates proline-

containing residues in the oxygen-dependent degradation domains

(ODDs) of hypoxia-inducible factors (HIFs), promoting their

proteasomal degradation (22, 23). HIFs are transcription factors

that regulate cellular adaptation to hypoxic environments (24).

HIF-1a is the most commonly expressed HIF family member in

cells and tissues (25), and its stability is negatively regulated by

oxygen levels (26), and cellular metabolism. However, under the

pathological hypoxic conditions, HIF-2a is less likely to degrade

and instead forms a heterodimer HIF-1b, also known as the

aromatic hydrocarbon receptor nuclear transporter (ARNT), that

enters the nucleus and activates the transcription of numerous

genes (27).

In ccRCC, mutations in VHL result in the accumulation of HIF-

2a, which creates a state of “pseudo-hypoxia” (28) and induces

metabolic changes, including angiogenesis, epithelial-mesenchymal

transition, invasion, and metastatic spread (29). Recent research

indicates that HIF-1a functions as a tumor suppressor, while HIF-

2a acts as an oncogene in the biology of ccRCC (30).
3 Glucose metabolism

Glucose metabolism is a multifaceted process of paramount

importance for cellular energy production. The first and foremost

step of glucose metabolism is glycolysis, which catalyzes the

breakdown of glucose to yield pyruvate (31). Pyruvate is then

subjected to aerobic oxidation via the tricarboxylic acid (TCA)

cycle, leading to the generation of ATP (32), reduced nicotinamide

adenine dinucleotide (NADH), and reduced flavin adenine

dinucleotide (FADH2) or anaerobic fermentation to produce

lactate and ATP (33). In addition, the pentose phosphate pathway

(PPP) contributes to the production of glucose for lipid metabolism

and nucleic acid synthesis by generating reduced nicotinamide

adenine dinucleotide phosphate (NADPH) and ribose 5-

phosphate (34).

In ccRCC, glucose metabolism undergoes significant alterations

due to the pivotal role played by HIF-1a. HIF-1a stimulates lactate

production and reduces pyruvate entry into the mitochondria,

leading to diminished TCA cycle activity and ATP production

(35). The Warburg effect, a metabolic reprogramming phenomenon

observed in cancer cells, is characterized by decreased pyruvate

entry into the mitochondria and increased lactate production,

regardless of oxygen levels and ATP production efficiency (4).

HIF-1a facilitates the expression of BCL2 Interacting Protein 3

(BNIP3), which decelerates mitochondrial metabolic activities (36)

and inhibits the enzymatic activity of pyruvate dehydrogenase,

thereby hindering the conversion of pyruvate to acetyl coenzyme

A and promoting lactate production (37). Additionally, in ccRCC,

HIF-1a upregulates the expression of glycolytic enzymes, such as

hexokinase (HK), neuron-specific enolase (NSE), phosphoglycerate
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kinase (PGK), and pyruvate kinase (PK), further corroborating the

Warburg effect (38, 39). Among these up-regulated key enzymes,

HK2 is one of the key factors involved in the development of a

variety of human cancers. Some literature shows that the high

expression of HK2 is positively correlated with the advanced tumor,

lymph node metastasis and the worst survival rate of renal cancer

patients. The high expression of HK2 has been identified as an

independent risk factor for RCC; It also shows a positive correlation

with immune cell infiltration and prognosis in kidney cancer

patients, playing an important role in the occurrence and

development of cancer (40).

Glucose metabolism involves the pentose phosphate pathway

(PPP), which is a source of NADPH and pentose phosphate (41).

The PPP is upregulated in ccRCC to produce more NADPH, which

is crucial for maintaining redox homeostasis and protecting against

cellular damage caused by reactive oxygen species (ROS) (42). In

ccRCC, the PPP is upregulated to produce more NADPH to

counteract oxidative stress and lessen the harm caused by excess

ROS to the tumor cells (43). Moreover, the pentose phosphate in the

PPP also satisfies the high demand for 5-carbon sugars required for

nucleotide biosynthesis (44).

In the TCA cycle of ccRCC, enzymes that replenish metabolic

fluxes from other pathways are often downregulated (41). Citrate

and cis-aconitate levels markedly increase in the TCA cycle of

ccRCC, while malate and fumarate levels significantly decrease (13).

These latter two decreases are linked to a reduction in succinate

dehydrogenase (SDH), leading to a constant depletion of fumarate,

and then malate (41), which contradicts the common perception

that tumor tissues exhibit high levels of fumarate.

HIF-1a enhances glucose uptake by activating the glucose

transporter protein (GLUT) gene and inhibits mitochondrial
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respiratory function by controlling the expression of microRNAs

such as miR-210 (45). In contrast, HIF-2a in ccRCC primarily

controls target genes related to glycolysis while also interact with

several important oncogenes (Figure 1). Furthermore, it stimulates

MYC and P53 activity and boosts the expression of cell cycle

regulators (46), thus highlighting its critical role in the

development of ccRCC (47). Notably, the selective antagonists of

HIF-2a have demonstrated clinical responses in several clinical

trials, particularly targeting xenograft tumor models in ccRCC (48).
4 Mitochondria metabolism

Recent research results indicate that the Warburg effect

promotes tumor growth to a certain extent, but tumor growth is

fundamentally dependent on functional mitochondria. In addition

to having basic bioenergy functions, mitochondrial metabolism

controls redox balance and coordinates cell death. Therefore,

mitochondria are promising targets for developing new anticancer

drugs (49).

In ccRCC, the TCA cycle undergoes changes. Firstly, there is a

reduction in pyruvate entering the mitochondria, followed by

changes in key enzymes such as fumarate hydratase (FH) and

succinate dehydrogenase (SDH) in the TCA cycle, resulting in

imbalanced metabolite content (50). Citrate and aconite levels are

significantly higher, while succinate and malic acid saline levels are

significantly lower (41). In addition, enzymes that supplement

metabolic flux to the TCA cycle through other pathways are

typically downregulated (50).

Oxidative phosphorylation (OXPHOS) is a major process in

which human cells generate energy in the form of ATP. However,
FIGURE 1

Glucose metabolic reprogramming in ccRCC. pVHL, the product of VHL gene mutation, is reduced. HIF-2a, which depends on pVHL for
proteasomal degradation, accumulates intracellularly and binds to HIF-1b and AhR into the nucleus, as well as regulates the expression of carriers
and enzyme genes related to glycolysis. It alters the whole glucose metabolism in cancer cells by upregulating glucose transporter protein GLUT,
upregulating enzymes HK and LDHA related to glycolysis, downregulating enzyme PDK1 of aerobic glucose metabolism, promoting pentose
phosphate pathway, and disrupting metabolites in the tricarboxylic acid cycle.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1195500
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2023.1195500
due to changes in the TCA cycle, ccRCC is associated with a

decrease in OXPHOS activity (41). The VHL gene mutation in

ccRCC leads to the accumulation of HIF-1a, which impairs the

oxidation metabolism of glucose and suppresses pyruvate entry into

the mitochondria, thereby reducing electron transfer efficiency (13,

51). The downregulation of complex-V and the repression of

peroxisome proliferator-activated receptor gamma coactivator-1a
(PGC-1a) in ccRCC also contribute to the impaired OXPHOS (52).

PGC-1a, a critical transcriptional coactivator of PPARg, regulates
mitochondrial biogenesis and respiration, and its inhibition leads to

delayed respiration, reduced mitochondrial transcription factor A

(TFAM) expression, and unfavorable prognosis of ccRCC (53).

In addition to HIF-1a, HIF-2a plays a role in the OXPHOS

alterations in ccRCC. HIF-2a is associated with the upregulation of

antioxidant genes, reducing reactive oxygen species (ROS),

decreasing DNA damage from excess ROS, and promoting tumor

cell survival (54). These changes in OXPHOS have implications for

tumor growth and potential therapeutic targets, including the

development of selective HIF-2a antagonists, which have

demonstrated clinical efficacy in treating ccRCC (55). Therefore,

understanding the mechanisms underlying the impaired OXPHOS

in ccRCC could lead to the development of novel treatments for this

aggressive cancer.

Mitochondria can promote malignant transformation through

three main mechanisms, including (1) mitochondrial reactive oxygen

species (ROS) support the accumulation of carcinogenic DNA

changes and activation of carcinogenic pathways to some extent;(2)

abnormal accumulation in specific mitochondrial metabolites,

including fumarate, succinate, and 2-hydroxyglutarate (2HG); (3)

functional deficits in MOMP or mitochondrial permeability

transition (MPT) are usually necessary for the formation and

survival of malignant precursors (49, 56).

Due to the high glycolysis rate of cancer cells and the gradual

consumption of oxygen in the local environment, the ratio of

NADH to NAD+in cancer cells increases, the redox imbalance,

and the production of reactive oxygen species (ROS) increases (57).

To prevent the accumulation of ROS, cells can resist oxidation

through the thioredoxin system and glutathione system (58). In

addition, when ROS levels increase, the main regulatory factor of

antioxidant response, the nuclear factor erythroid 2-like 2 (NRF2),

stabilizes because its negative regulatory factor, Kelch like ECH

related protein 1 (KEAP1), is oxidized and loses its ability to chelate

NRF2 in the cytosol for proteasome degradation (57). Excessive

ROS production may exceed the antioxidant capacity of cancer

cells, therefore cancer cells often upregulate their antioxidant

defense mechanisms (59). In ccRCC, HIF-2 a Upregulation of

antioxidant genes, reduction of reactive oxygen species (ROS),

reduction of excessive ROS damage to DNA, and promotion of

tumor cell survival (54).
5 Lipid metabolism

Lipid metabolism is a functional process pivotal in energy

storage and signal transduction (30). Dysregulation of lipid

metabolism is a common abnormality in ccRCC (Figure 2), which
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is thought to contribute to the aggressive behavior of the tumor

(60). In ccRCC, lipid synthesis and storage are upregulated, while

utilization and oxidation are downregulated (61), resulting in the

accumulation of cholesterol (62), fatty acids (13), and triglycerides

(60). This lipid metabolism reprogramming promotes cell

membrane synthesis and cell proliferation while inhibiting the b-
oxidation of fatty acids (4). Specifically, increased cholesterol uptake

by upregulated lipoprotein receptors, such as the very low-density

lipoprotein receptor (VLDL-R) (63) and scavenger receptor B1 (SR-

B1) (64), and the expression of acyl-coenzyme A:cholesterol

acyltransferase (ACAT) contribute to the accumulation of

cholesterol in ccRCC (62). In addition, HIF-2 a activating the

expression of hypoxia induced lipid droplet associated protein

(HILPDA) and selectively enriching polyunsaturated lipids (65).

Furthermore, ccRCC exhibits fatty acid synthesis due to the

upregulation of fatty acid synthase (FAS) (38). However, in contrast

to other malignancies, ccRCC displays reduced fatty acid oxidation,

which is primarily attributed to the inhibition of carnitine

palmitoyltransferase 1A (CPT1A), the key enzyme for fatty acid

oxidation (20). In addition, ccRCC shows an increase in the

expression of fatty acid desaturase 1 (FADS1), a crucial enzyme in

the metabolism of polyunsaturated fatty acids (PUFAs), leading to

PUFA accumulation (60).

PUFA is one of the main targets of lipid peroxidation, and lipid

peroxidation is a sign of ferroptosis. Studies have identified acyl-

CoA synthetase long-chain family member 4 (ACSL4) as a key

determinant of iron mortality sensitivity (66). After ACSL4

activation, lysophosphatidylcholine acyltransferase 3 (LPCAT3) is

involved in ferrozotic signaling by inserting acyl groups in

lysophospholipids, specifically phosphatidylcholine and

phosphatidylethanolamine. It is important to note that iron death

may also occur in a way that is not dependent on ACSL4.

Pharmacologically induced ferroptosis in cancer cells is a

promising anticancer strategy, although its role in tumors is still

unclear (67).

Lipid metabolism is closely linked to glucose metabolism as

glycerol and glucose metabolism are related through glycerol kinase

and a-phosphoglycerol dehydrogenase, producing dihydroxyacetone
phosphate (34). During glucose overload, acetyl coenzyme A,

produced during glucose metabolism, and NADPH and H+ from

the PPP are converted into fatty acids by FAS. Phospholipid and

ketone body metabolism are also part of lipid metabolism (68).

Notably, lipids not only provide energy but also function as

signaling molecules that control cell growth and proliferation (30).

Thus, targeting lipid metabolism has emerged as a potential

therapeutic strategy for ccRCC. Identifying specific enzymes or

signaling pathways involved in lipid metabolism could lead to the

development of novel therapeutic approaches.
6 Amino acid metabolism

6.1 Glutamine metabolism

Glutamine is essential for maintaining the redox balance of

normal cells by serving as a precursor for the production of a-
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ketoglutarate (a-KG) and glutathione, which are critical for

intracellular redox homeostasis and the synthesis of other amino

acids (18). Glutamine is transported into the cells via specialized

transporter proteins, such as Solute Carrier Family 1 Member 5

(SLC1A5) (69), and is subsequently converted to glutamate by

glutaminase (GLS) (70). In addition to participating in protein

synthesis, glutamine also plays various synthetic and metabolic

roles in cells, such as promoting the production of nucleotides,

hexosamine units, and asparagine, participating in enhancing

cellular oxidative stress defense, and consuming many essential

amino acids (71). The activity of GLS is positively correlated with

the rate of cell growth and malignancy, making it a potential target

for anticancer therapies. Inhibition of GLS activity or expression

prevent tumor growth (72). The altered cellular metabolism in

ccRCC increases glutamine addiction and subsequent cellular

pathways (73). The increased demand for glutamine is necessary

to support the fast growth and proliferation of malignant cells (73).

In addition, high levels of glutamic acid can damage the input of

cystine, and can also lead to ROS imbalance and T cell dysfunction,

thus forming a tumor microenvironment conducive to tumor

survival (5).

In ccRCC, the upregulation of Solute Carrier Family 7 Member

5 (SLC7A5), an amino acid transporter that facilitates glutamine

entry into cells, is controlled by HIF-2a, which is a hallmark of this

malignancy (74). Once inside the cells, glutamine is converted to

glutamate by GLS and further metabolized to a-KG by glutamate
Frontiers in Endocrinology 05
dehydrogenase (GDH), serving as the primary mechanism for

carbon delivery to the TCA cycle that is essential for cellular

lifespan (75). Additionally, the reductive carboxylation of

glutamate produces isocitrate, which generates acetyl coenzyme A

for lipid synthesis (18, 41).

Elevated glutamine levels in ccRCC are associated with

enhanced glutamate production, which is a crucial mechanism for

neutralizing ROS (76). Glutamine also promotes glycolysis, cell

proliferation, and immortalization while decreasing cancer cell

death by inhibiting the expression of thioredoxin-interacting

protein[]. Therefore, the altered glutamine metabolism in ccRCC

highlights its potential as a therapeutic target for treating this

malignancy. Figure 3 illustrates the glutamine metabolism pathway.
6.2 Tryptophan metabolism

Tryptophan plays a vital role in promoting T cell-mediated

immune response against tumors. However, the excessive oxidation

of tryptophan to kynurenine pathway metabolites leads to T-cell

disfunction, allowing tumors to evade immune surveillance.

Moreover, kynurenine pathway inhibit T-cell activation (77). In

tumor-draining lymph nodes, overactive indoleamine 2,3-

dioxygenase (IDO) promotes dendritic cells to directly suppress

and inhibit T cells, thus impairing antigen responses and

recognition (78).
FIGURE 2

Reprogramming of fatty acid metabolism. In ccRCC, lipid metabolism is altered and characterized by increased synthesis, enhanced utilization, and
decreased oxidation to meet the metabolic demands of cancer cells. Renal clear cells upregulate VLDLR and SR-B1 to promote cholesterol uptake,
followed by upregulation of ACAT, which converts pure cholesterol into cholesteryl esters; downregulation of CPT1A, a key enzyme in fatty acid
b-oxidation, which reduces fatty acid consumption; and upregulation of FASN, which promotes fatty acid synthesis. All of these contribute to the
accumulation of lipids in cancer cells.
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In ccRCC, the dysregulation of immune checkpoint molecules

has been linked to elevated indoleamine 2,3-dioxygenase (IDO)

expression, which results in decreased levels of tryptophan

and activation of the kynurenine pathway. This metabolic

reprogramming promotes tumor cell proliferation by hindering the

effectiveness of IFN-a therapy and inducing immunosuppression (79,

80). Furthermore, IDO overexpression is strongly associated with

cancer metastasis. In vitro experiments utilizing lung cancer cells

demonstrate that IDO overexpression increases cell viability, while

IDO knockdown decreases cell viability. In animal models, injecting

human lung cancer cells that overexpress IDO into mice increases

metastases in the brain, liver, and bone (81) (Figure 3). These findings

indicate that IDO may serve as a potential therapeutic target for

ccRCC and other malignancies, highlighting the need for further

research in this area.
6.3 Arginine metabolism

In ccRCC, alterations in arginine metabolism can be observed,

including changes in arginine transporters and enzymes such as

arginase and arginine succinate synthase 1 (ASS1). Tumor cells

often display a downregulation or absence of ASS1, the enzyme

responsible for synthesizing arginine from citrulline. This leads to a

dependence on exogenous arginine for cancer cell survival, which

has been confirmed by proteomic profiling of biopsy samples from

patients with ccRCC (Figure 3). Therefore, targeting arginine

metabolism may be a viable strategy to inhibit cancer growth by

depriving cancer cells of arginine[]. Moreover, studies have

identified arginine deprivation as a promising therapeutic

approach to induce selective cytotoxicity in ASS1-deficient tumors

(82). Therefore, a better understanding of the altered arginine
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metabolism in ccRCC can provide insights into potential

therapeutic targets for treating this cancer (83).
7 Treatment

ccRCC is frequently associated with genetic mutations that lead

to hypoxic alterations, with the most commonly mutated gene being

VHL (84). VHL mutations lead to the intracellular accumulation of

HIF-a, which in turn upregulates the expression of vascular

endothelial growth factors (VEGFs) (19).

Previously, the main therapeutic approach for ccRCC was to

target angiogenesis using VEGF receptor (VEGFR) or VEGF

inhibitors like sunitinib (85). However, these inhibitors have

limited efficacy and can cause adverse effects such as vascular

toxicity and off-target effects (86).

As ccRCC is characterized by metabolic reprogramming,

targeting specific enzymes or proteins implicated in dysregulated

metabolic pathways has shown promise in developing drugs that

can selectively kill tumor cells with minimal adverse effects on

normal cells (87). Among these metabolic changes, the most classic

is the increase in glycolysis. In ccRCC, we can use glycolysis

inhibitors to inhibit tumor cells, following the treatment methods

of hepatocellular carcinoma (15). Unfortunately, although early

clinical studies have shown that targeting the glycolysis pathway as

a treatment method to inhibit cancer progression is effective, there

have been no clinical trials to confirm it (88), so there is no detailed

explanation in this article. Table 1 and Figure 4 provide an overview

of the specific enzymes and proteins targeted in this manner.

Focusing on these dysregulated metabolic pathways offers the

potential to develop more effective and better-tolerated treatment

options for patients with ccRCC (41, 87).
FIGURE 3

Metabolism of glutamine, arginine, and tryptophan. Glutamine is available intracellularly for various anabolic pathways. Tumor cells exhibit glutamine
dependence in ccRCC, upregulating SLC7A5 glutamine transporter protein and GLS enzymes to take up more glutamine and promote its conversion
to glutamate, which maintains the redox state in vivo or to a-KG, an alternative substrate for the tricarboxylic acid cycle and synthesis of lipids.
Tryptophan is degraded in the kynurenine pathway to produce immunosuppressive products, while in ccRCC, this process is upregulated by IOD,
leading to the activation of the entire pathway. Arginine is synthesized from citrulline via ASS1, but AAS1 is not expressed or downregulated in ccRCC
and cannot synthesize this amino acid and can only be taken up from the blood.
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7.1 HIF-2a inhibitor

Targeting the HIF-2a pathway represents a promising

approach for treating ccRCC, as HIF-2a is a key downstream

effector of the VHL tumor suppressor protein, which is frequently

mutated in ccRCC (47, 89). HIF-2a promotes tumorigenesis and

metastasis by regulating angiogenesis, cell proliferation, and

metabolism, making it an attractive therapeutic target.

Although the HIF-2a pathway was once considered

“undruggable” (90), recent technological advancements have

revealed a structural defect in HIF-2a, specifically PAS-B, leading

to the development of first-generation HIF-2a antagonists,

including PT2399 and PT2385. These antagonists induce a

conformational change in PAS-B, thereby impeding the formation

of the HIF-2a/HIF-1b heterodimer, and represent a promising

avenue for the treatment of ccRCC (91).

PT2399 has exhibited superior activity to sunitinib and has been

effective against sunitinib-resistant tumors. However, its long-term

use can lead to drug resistance through mutations in the HIF-2a
binding site or HIF-1b second site inhibition mutations (92).

Moreover, PT2399 does not affect the expression of HIF-2a target

genes, which can prevent the segregation of HIF-2a and maintain the

expression of the HIF-2b gene. In contrast, PT2385 has demonstrated

encouraging results in a phase I trial, exhibiting good tolerance with

no dose-limited toxicity or discontinuation of treatment due to

adverse events. Remarkably, 2%, 12%, and 52% of patients achieved

complete, partial, and stable remissions, respectively (48, 93).

Second-generation HIF-2a inhibitors, such as PT2977 (MK-

6482, belzutifan), have been developed to overcome some of the

limitations of first-generation compounds (94). PT2977 binds to

HIF-2a at a site adjacent to the PAS-B domain and induces a

conformational change that prevents HIF-2a from binding to its

target genes. PT2977 has demonstrated excellent pharmacological

properties, including low lipophilicity, high oral bioavailability, and

a favorable safety profile. In a phase II clinical trial, patients with

ccRCC who received 120 mg of PT2977 orally per day had an

objective response rate of 49%. The main adverse events reported

were grade 1 and grade 2, which can be managed with appropriate

measures (95, 96).
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In summary, selective HIF-2a antagonists a promising

therapeutic strategy for treating ccRCC. Second-generation

inhibitors such as PT2977 have shown improved efficacy and

safety compared with first-generation compounds, highlighting

their potential as a new class of anticancer agents.
7.2 FAS inhibitors

ccRCC is characterized by specific genetic mutations that

dysregulate cellular processes, including lipid metabolism. In

particular, upregulation of FAS expression in ccRCC increases

fatty acid levels that fuel the cancer cells and post-translationally

modify proteins. Fatty acids also play a crucial role in maintaining

redox homeostasis and energy levels, which are vital for tumor cell

growth and survival (97). Given the importance of lipid metabolism

in ccRCC, limiting the production of fatty acids is an effective

strategy for treating this type of cancer.
TABLE 1 Metabolic drug for ccRCC.

Classification name of drug expericence classification

HIF-2 a inhibitor

PT2399 Not yet in progress

PT2385 clinical trail phasel

PT2977 clinical trail phasel, 2

FAS inhibitors
C75 Not yet in progress

TVB-2640 clinical trail phase (not ccRCC)

Glutaminase inhibitors CB-839 Not yet in progress

IDO inhibitors

epacadostat clinical trail phasel

navoximod clinical trail phasel

KHK2455, LY3381916, MK-7162 Not yet in progress

Arginine loss ADI-PEG20 clinical trail phase3
FIGURE 4

Inhibitors that target metabolic reprogramming in ccRCC. Glycolysis
can be inhibited with HIF-2a inhibitors such as PT2385, PT2399, and
PT2977; FAS can be suppressed with FAS inhibitor TVB-2640;
tryptophan metabolism can be inhibited with IDO inhibitors
epacadostat, navoximod, KHK2455, LY3381916, MK-7162; glutamine
metabolism can be inhibited using the GLS inhibitor CB-839;
extracellular arginine can be depleted using ADI-PEG20.
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Studies have shown a positive correlation between FAS

expression and tumor aggressiveness and a negative correlation

with prognosis in ccRCC (98). Hence, the use of FAS inhibitors

could be a promising treatment strategy for ccRCC. Preclinical

experiments have demonstrated the inhibitory effect of C75, a FAS

inhibitor, on the aggressiveness and proliferation of ccRCC (99).

TVB-2640 is a noval FAS inhibitor that has shown great

promise in clinical studies (100). In a phase I clinical trial, TVB-

2640 effectively reduced fatty acid production in patients with non-

small cell lung cancer. In subsequent clinical trials for breast and

ovarian cancer, TVB-2640 exhibited favorable clinical activity and

safety, with no gastrointestinal or serum toxicity observed (101,

102). Adverse events were mainly mild and included skin and eye

effects, which were manageable with appropriate measures. TVB-

2640 is currently being evaluated in multiple ongoing clinical trials

for various types of cancer, including ccRCC.

Overall, these findings suggest that FAS inhibitors such as TVB-

2640 represent a promising therapeutic approach for ccRCC, and

ongoing clinical trials will provide further insight into their

effectiveness and safety.
7.3 Glutaminase inhibitors

Glutamine plays a critical role in energy production,

maintenance of redox stability, and macromolecule synthesis in

cancer cells, making it an attractive target for clinical cancer

treatment. In ccRCC, GLS functions as a compensatory

mechanism to restore the TCA cycle and stimulate cell

proliferation to a lesser extent (4). CB-839 is a GLS inhibitor that

has shown promising results in preclinical studies. When combined

with Everolimus, an mTOR inhibitor commonly used in the

treatment of ccRCC, it has been shown to enhance antitumor

activity in animal models. While there is a lack of clinical trials

exploring this potential treatment strategy for ccRCC, the

preclinical data suggests that it could be an effective approach (103).

Therefore, it is important to conduct clinical trials to explore the

effectiveness and safety of combining CB-839 with Everolimus for

the treatment of ccRCC. Such trials will provide valuable insights

into the potential of this treatment strategy and whether it can be

used as an effective therapeutic approach for ccRCC patients.
7.4 IDO inhibitors

IDO is an enzyme that plays a role in the catabolism of

tryptophan via the kynurenine pathway. By depleting tryptophan

and activating T cells, IDO inhibits the immunosuppressive effect in

the local tumor microenvironment and suppresses antitumor T

cells, thereby promoting tumor metastasis (80). Therefore, IDO has

emerged as a potential therapeutic target for cancer treatment.

Epacadostat, a selective IDO-targeted inhibitor, has shown

promising results in preclinical trials by improving the lysis of

tumor antigen-specific T cells (104). However, its efficacy in clinical

trials has been disappointing, with some studies reporting adverse

effects such as toxicity and lack of efficacy. Although phase I clinical
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trials have demonstrated promising antitumor activity against

various advanced solid tumors with the combination of

Epacadostat and the PD-1 inhibitor pembrolizumab, further

investigation is necessary to determine its optimal use and

potential limitations (93, 105).

Navoximod is another IDO inhibitor. It is well tolerated at a

dose of 800 mg BID, with rapid absorption and moderate

bioavailability. Despite its promising pharmacokinetic profile,

Navoximod as a monotherapy has demonstrated only modest

efficacy against tumors (106, 107). However, a combination

therapy of Navoximod and Atezolizumab has demonstrated

acceptable safety and observed antitumor activity. Nonetheless, it

remains uncertain whether adding Navoximod to Atezolizumab

confers any additional benefits to patients (108).

To fully activate the host immune system, a combined regimen

that involves one or more specific immunotherapeutic agents may

be required, as IDO inhibitors have demonstrated limited efficacy as

monotherapies (106). Several other IDO inhibitors, such as

KHK2455, LY3381916, and MK-7162, are undergoing clinical

trials to assess their safety, tolerability, and antitumor activity

(78). These agents have different mechanisms of action and

pharmacokinetic profiles, which may result in improved clinical

outcomes when combined with other immunotherapeutic drugs.

Further investigations are needed to fully elucidate the optimal

combinations and dosing regimens for these agents in different

cancer types and patient populations.
7.5 Arginine loss

Arginine dystrophy is a metabolic alteration in some tumors

where cells become addicted to extracellular arginine supply due to

the absence or low levels of ASS1 (109, 110). Arginine is essential for

metabolic pathways, including nitric oxide synthesis and protein

biosynthesis (111). In ccRCC, the use of polyethylene glycol form of

arginine deaminase (ADI-PEG20) can lower circulating arginine

levels by catabolizing arginine to citrulline, thereby limiting tumor

growth. However, this therapeutic approach may be limited by the

re-expression of ASS1 (4).

Clinical trials have demonstrated the safety, tolerability, and

clinical efficacy of ADI-PEG20 in reversing medication resistance in

patients with arginine-dystrophic tumors (112). Furthermore,

promising results have been reported in clinical studies evaluating

ADI-PEG20 as a potential therapy for various cancer types, such as

non-small cell lung cancer, acute myeloid leukemia, and uveal

melanoma (113, 114).

Considering the potential of arginine depletion as a therapeutic

strategy, further studies are warranted to optimize its clinical use in

combination with other cancer therapies and investigate the

mechanisms of resistance to this approach.
8 Conclusions

Clear cell renal cell carcinoma (ccRCC) is characterized by

significant metabolic reprogramming, leading to altered energy
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requirements and redox homeostasis. Cancer cells predominantly

utilize anaerobic glycolysis and HIF-driven lactate metabolism,

while efficient TCA cycling is downregulated. NADPH synthesis

in the PPP is upregulated to protect against ROS and nucleotide

damage. The high lactate content of the tumor microenvironment

promotes immunosuppression and migration, while tryptophan

breakdown leads to increased synthesis of immunosuppressive

kynurenine metabolites. Lipid synthesis and utilization are

elevated, whereas lipid oxidation is suppressed in ccRCC.

However, glutamine absorption is increased to produce fatty acids

and counteract oxidative stress and ROS. Further research is needed

to fully understand the complex metabolic alterations in ccRCC and

develop effective therapeutic strategies targeting these pathways.

The development of drugs that specifically target abnormal

metabolism represents a promising avenue for the treatment of

ccRCC, which currently has limited therapeutic options in clinical

practice. Targeting enhanced or altered metabolic pathways that

selectively affect proliferating cancer cells while sparing normal cells

is a feasible strategy for the development of novel therapies for

ccRCC, given its unique metabolic properties.

However, there are potential drawbacks to targeting metabolic

pathways, including the possibility of affecting other rapidly

proliferating cells, and the effectiveness of antimetabolic drugs is

related to cancer cell mutation patterns.

Nonetheless, the benefits of developing antitumor cell metabolism

drugs outweigh the drawbacks. Anti-metabolites may offer a more

favorable safety profile for ccRCC compared with traditional anti-

angiogenic medications, potentially reducing cardiovascular side effects.
Frontiers in Endocrinology 09
Furthermore, metabolomics can aid in the discovery of targeted

treatments for ccRCC. With the anticipated emergence of new

techniques in novel metabolism, we expect to see an increase in

therapeutic options for treating ccRCC in the near future.
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Glossary

ccRCC clear cell renal cell carcinoma

IMDC International Metastatic Renal Cell Carcinoma Database

PPP pentose phosphate pathway

VHL Von Hippel-Lindau

pVHL Von Hippel-Lindau tumor suppressor protein

HIF hypoxia-inducible factor

NADH reduced nicotinamide adenine dinucleotide

FADH reduced flavin adenine dinucleotide

PDK1 pyruvate dehydrogenase kinase 1

BNIP3 BCL2 Interacting Protein 3

GLUT glucose transporter protein

TFAM mitochondrial transcription factor A

ACAT Acyl coenzyme A-cholesterol acyltransferase

CE cholesteryl ester

SR-B1 scavenger receptor B1

VLDL very low-density lipoprotein receptor

FAS Fatty acid synthase

CPT1A carnitine palmitoyltransferase 1A

FADS1 Fatty acid desaturase 1

PUFA polyunsaturated fatty acid

GLS Glutaminase

GDH glutamate dehydrogenase

IDO indoleamine 2,3-dioxygenase

TDO tryptophan-2,3-dioxygenase

ASS1 arginine succinate synthase 1

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

OXPHOS oxidative phosphorylation

HK hexokinase

NSE neuron-specific enolase

PGK phosphoglycerate kinase

PK pyruvate kinase

ROS reactive oxygen species

NRF2 nuclear factor erythroid2-related factor 2

KEAP1 kelch-like ECH-associated protein-1

SDH succinate dehydrogenase

PGC-1a PPARg coactivator-1a

FA fatty acid

SLC1A5 Solute Carrier Family 1 Member 5

(Continued)
F
rontiers in Endocrinolo
gy 12
Continued

SLC7A5 Solute Carrier Family 7 Member 5

a-KG a-ketoglutarate
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