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Targeted radionuclide therapy plays an increasingly important role in managing

endocrine-related tumors and significantly advances the therapeutic landscape

for patients with these diseases. With increasing FDA-approved therapies and

advances in the field, come an increased knowledge of the potential for long-

term toxicities associated with these therapies and the field must develop new

strategies to increase potency and efficacy while individualizing the selection of

patients to those most likely to respond to treatment. Novel agents and

modalities of therapy are also being explored. This review will discuss the

current landscape and describe the avenues for growth in the field currently

being explored.
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Introduction

Targeted radionuclide therapy plays an increasingly important role in management of

neuroendocrine tumors. Currently available treatments include Lu-177 DOTATATE

which is approved for advanced gastroenteropancreatic neuroendocrine tumors (GEP-

NETs), and I-131 meta-iodobenzylguanidine (MIBG) which is approved for treatment of

advanced pheochromocytomas/paragangliomas (1, 2). Lu-177 DOTATATE is a form of

peptide receptor radionuclide therapy (PRRT) which targets somatostatin receptor (SSTR)

subtypes overexpressed by most well-differentiated NETs. I-131 MIBG relies on the

norepinephrine transporter mechanism which takes up amines in tissues derived from

the neural crest such as the adrenal medulla and sympathetic nervous system (3).

Peptide receptor radionuclide therapy (PRRT) is a targeted systemic therapy that uses

radiolabeled peptides to deliver cytotoxic radiation levels directly to tumors that overexpress

specific receptors (4). This systemic administration of targeted radiopharmaceutical delivers

therapeutic doses of radiation to specific disease sites while minimizing the radiation effect on

healthy tissue.
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In addition, several new therapies are currently being developed

preclinically, and currently approved therapies are now being

explored in other indications to see whether they can benefit

patient populations with unmet needs. The changing treatment

landscape of neuroendocrine tumors raises questions regarding

optimal dosing, patient selection, role of combination therapy and

sequencing of treatments.
Neuroendocrine neoplasms

Neuroendocrine neoplasms (NEN) represent a heterogeneous

family of cancers that can arise from various organ systems, primarily

in the gastroenteropancreatic tract and lungs (5). The incidence of

diagnoses has increased significantly in the last three decades (6).

NEN biology, primarily defined by tumor grade and differentiation,

dictates available therapies. Several treatment options are available for

well-differentiated NETs, including somatostatin analogs, targeted

therapies with mTOR inhibitors (everolimus), angiogenesis inhibitors

(sunitinib), and oral chemotherapy agents (capecitabine/

temozolomide) (7–9). In addition, clinical trials have explored

several other therapies, including pazopanib, lenvatinib, surufatinib,

and immunotherapy with checkpoint inhibitors, among other

treatments (10–22). Poorly differentiated neuroendocrine

carcinomas represent a different biology and are treated more

aggressively with cytotoxic chemotherapy, primarily with platinum-

based regimens (23–26). Therapy with radiolabeled somatostatin

analogs, broadly encompassed under the class of PRRT, represents

the newest treatment that has been approved for the GEP-NET

patient population.

Data on therapeutic radionuclides in neuroendocrine

neoplasms began with In-111-labeled octreotide, a weakly

cytotoxic radiolabeled somatostatin analog (SSA). b-emitting

isotopes were subsequently developed with the potential to elicit a

more significant tumor response in patients with well-differentiated

GEP-NETs that express SSTRs (27–29). Y-90ttrium (Y-90) and Lu-

177-based radiolabeled SSAs (e.g., Y-90 DOTATOC and Lu-177

DOTATATE) have shown evidence of safety and efficacy in

multiple studies with objective response rates ranging from

approximately 15% to 40% and long median durations of

progression-free survival (PFS), typically exceeding 2 years (30–

38). The NETTER-1 trial was the first prospective phase III trial

evaluating Lu-177 DOTATATE versus high-dose octreotide in

patients with advanced small intestinal (midgut) NETs (34). The

primary endpoint of the study was met with a 79% improvement in

PFS. On final overall survival (OS) analysis, a secondary endpoint,

median overall survival (OS) improved from 36.3 months on the

high dose octreotide arm to 48 months on the Lu-177 DOTATATE

arm (39). However, this result was not statistically significant, likely

due to lack of power to detect OS differences and the effects of

crossover after progression on high-dose octreotide. Toxicity with

Lu-177 DOTATATE arm has generally been mild, with most side

effects limited to minor nausea, fatigue, and reversible

myelosuppression (38, 40–44). The risk of treatment-related

myelodysplastic syndrome (MDS) or acute myeloid leukemia
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(AML) is estimated to be 2-3% and typically develops more than

2 years after completion of therapy (34, 39, 40). Sequential or

combination therapy with alkylating-based chemotherapy agents

may result in a higher risk of developing a long-term hematologic

toxicity, with some series reporting up to a 10-20% risk (43–50).

Renal toxicity has been negligible, likely due to the nephroprotective

amino-acid infusion administered alongside the PRRT (42, 51–53).

Recent data point to risk of severe, and often irreversible bowel

obstruction among patients with extensive peritoneal or mesenteric

disease receiving Lu-177 DOTATATE (54, 55). Data from the

NETTER-1 study as well as a large Dutch cohort analysis of 610

NET patients led to approval of Lu-177 DOTATATE for patients

with progressive, SSTR positive GEP-NETs.

Limited data is available in patients with lung NENs, partly due

to typically heterogeneous uptake on SSTR imaging in this patient

population (30, 31, 56–60). Data are available from small studies

and phase II studies, showing mildly inferior PFS results compared

to patients with GEP-NETs.
Medullary thyroid cancer

Medullary thyroid cancer (MTC) is a neuroendocrine tumor of

the parafollicular thyroid cells that can occur sporadically or as a

component of multiple endocrine neoplasia (MEN) type 2 (61).

MTCs secrete calcitonin and carcinoembryonic antigen (CEA). The

primary systemic therapies approved for advanced MTC include

tyrosine kinase inhibitors (TKIs), primarily targeting RET mutations,

including selepercatinib, and pralsetinib, and multi-kinase inhibitors

such as vandetanib and cabozantinib (62–78). Several others,

sorafenib, sunitinib, and lenvatinib have also been studied (79–81).

Due to the expression of CEA on MTC cells, radiolabeled anti-CEA

monoclonal antibodies were developed. In an initial phase I trial of an

anti-CEA hMN-14 x m734 bispecific antibody (BsMAb) and I-131

di-diethylenetriamine pentaacetic acid (DTPA)-indium hapten, 9

MTC patients were enrolled, and another 29 in a phase II trial later

on (82). Ultimately, the drug has not been further developed in this

patient population, likely due to the significant hematologic toxicities

and lack of improvement in overall survival, despite its ability to

induce long-term disease stabilization.

A retrospective study of 21 MTC patients who received

treatment with Y-90 DOTATOC reported a radiographic disease

control rate (DCR) of 67% (10% complete response (CR), 57%

stable disease (SD)) (83). Biochemically (calcitonin and CEA levels),

the disease control rate was 43% and the duration of response

ranged from 3-40 months. Another retrospective analysis of 10

MTC patients treated with Lu-177 DOTATATE showed only 4

patients with disease stabilization at first follow-up (84). This

analysis evaluated the percentage of patients at their institution

with positive In-111 pentetreotide (OctreoScan) and found that

most patients (89%) had low uptake on scans, and the remaining

patients had only intermediate uptake (Krenning score grade 2).

The patients in this study who had disease stabilization were

characterized as those with uptake ≥ grade 3 on OctreoScan. Both

studies have shown that PRRT in this patient population is unlikely
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to be effective in most patients and should be limited to those with

high uptake on SSTR imaging (Cu-64 or Ga-68 PET DOTATATE)

and without any other treatment options (85).
Pheochromocytomas and
paraganglioma

Pheochromocytomas and paragangliomas are catecholamine-

secreting neuroendocrine tumors that arise from chromaffin cells of

either the adrenalmedulla (pheochromocytomas) or neuroendocrine cells

of the extra-adrenal autonomic paraganglioma (paragangliomas) (86).

Most are benign, however approximately 10% of pheochromocytomas

and 25% of paragangliomas are malignant.

For patients with distant metastases, systemic therapies can

include somatostatin analogs such as octreotide or lanreotide

(although benefit is unproven), systemic chemotherapy with

cyclophosphamide, vincristine and dacarbazine (CVD) or

temozolomide, sunitinib, or radionuclide therapy with beta-

emitting isotopes iobenguane I-131 MIBG (for patients with

MIBG positive scans) or PRRT with Lu-177 DOTATATE (for

patients with positive SSTR imaging) (87–94).

Iobenguane I-131 MIBG is a I-131 labeled radiopharmaceutical

that is similar in structure to the neurotransmitter norepinephrine

that is taken up by the norepinephrine transporter in adrenergic

nerve terminals and accumulates in innervated adrenergic tissues as

well as tumors of neural crest origin. Pheochromocytomas and

paragangliomas express high norepinephrine transporter levels on

cell surfaces. Patients must have positive metaiobenzeneguanidine

(MIBG) scans to be eligible for treatment.

I-131 MIBG is the first FDA approved therapy for this patient

population and is typically administered as a total of 2 doses,

minimum of 90 days apart, at a weight-based dose of 8 mCi/kg for

patients who weigh less than 62.5kg and a flat dose of 500 mCi for

patients who weigh >62.5kg. Several small case series showed

objective response rates of around 30% and stability in 40% of

patients receiving treatment. A large phase II trial of 81 patients

led to FDA approval of the drug (95). Patients were assigned to

receive 2 dosimetric doses of MIBG, followed by up to 2

therapeutic doses, then followed for 12 months for efficacy and 4

years for overall survival. The study’s primary endpoint was at

least 50% reduction in all antihypertensive medications lasting ≥ 6

months from the beginning of the efficacy period. Secondary

endpoints included objective response rate (ORR) and OS. 68

patients received at least one therapeutic dose and 50 received both

doses. Primary endpoint was met by 25% of those who received

one therapeutic dose and 32% of those who received both doses,

meeting pre-specified protocol criteria for a positive study. In

addition, 23% of patients who received one dose and 30% of those

who received two doses achieved a partial response (PR) per

RECIST 1.1. Median OS was 36.7 months, and five-year OS was

64%. Most common treatment-related toxicities included

significant myelosuppression, with ≥ grade 3 neutropenia and

thrombocytopenia in 87% of patients. 4 patients required

autologous hematopoietic cell rescue and 2 patients developed
Frontiers in Endocrinology 03
MDS. 2 patients each developed grade 4 acute respiratory distress

and cryptogenic organizing pneumonia.

Several retrospective studies of I-131 MIBG have also been

reported (96). For example, one study of 125 patients with

metastatic pheochromocytoma/paraganglioma reported a median

survival post-treatment of 4 years, an ORR of 34%, and DCR of

86%; the median PFS was two years. In addition, 59% of patients

achieved a biochemical response, with the median time to

laboratory progression of 2.8 years.

PRRT with Lu-177 DOTATATE or Y-90 DOTATOC has been

evaluated in retrospective studies and small case reports/case series in

patients with SSTR-expressing pheochromocytomas/paragangliomas

(92, 97). One study evaluated the outcomes of 28 patients who

received Y-90 DOTATOC alone or with Lu-177 DOTATATE (88).

Two patients experienced a PR; overall DCR was 71%, of whom 50%

maintained their response at 19 months mean follow-up. Another

study reported the outcomes of 30 patients who received 4 cycles of

Lu-177 DOTATATE. 23% of patients achieved a PR per RECIST 1.1,

and stable disease in 67%. Median PFS for patients with

parasympathetic paragangliomas was 91 months, 13 months in

patients with sympathetic paragangliomas, and 10 months in

patients with pheochromocytoma. 20% of patients experienced ≥

grade 3 hematologic toxicities, and 2 patients had reversible cardiac

failure following catecholamine release. Patients must be monitored

and pre-treated with alpha blockade therapy if functional tumors are

present to prevent hypertensive crises after treatment with any of

these types of treatment (98).
Future of PRRT and novel
approaches to treatment

Dosimetry and predictive biomarkers

Individualized dosimetry strategies have been proposed and

primarily focus on minimizing renal and bone marrow exposure

while maximizing the potential for anti-tumor activity (42, 51, 99–

103). Unfortunately, these approaches have been limited by the lack

of standardization in dosimetric methodology, lack of clear

thresholds for renal exposure, and difficulties in accurately

measuring bone marrow exposure.

The European Association of Nuclear Medicine (EANM)

recommends dosimetry, where feasible, in patients receiving

radiolabeled somatostatin-receptor ligands and radiolabeled

MIBG therapy, particularly for patients with larger tumor volume,

due to the relatively limited spatial resolution of MIBG

imaging (104).

Biomarkers to predict responders to PRRT are being

investigated. Ki67% has been noted to significantly impact OS in

both GEP NETs and pheochromocytoma/paraganglioma but is

likely more of a prognostic than predictive factor (105–107).

Tumor imaging with baseline MIBG scans, PET DOTATATE,

and FDG-PET scans can help delineate who is likely to respond

(or be eligible). Obtaining baseline FDG-PET scans, particularly in

patients with the higher-grade disease, can help delineate the avidity
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of disease, and for patients with higher avidity on FDG-PET, PRRT

is likely to be less effective (108). It is also essential to confirm that

all lesions express SSTRs, particularly in patients with higher-grade

disease. A genomic signature (blood and tumor-based NET

transcript assay – PRRT Predictive Quotient or PPQ) to identify

NET responders to PRRT with Lu-177 DOTATATE has been

developed and is currently being evaluated in a large, multi-

center, clinical trial (109–111).

A blood-based RNA assay was developed to identify gene

expression differences in patients receiving I-131 MIBG and

demonstrated the ability to use biodosimetric gene expression panels

as predictive biomarkers of internal exposure and differentiate exposed

individuals up to 15 days after exposure to treatment (112). However,

data on predictive biomarkers for all radioisotopes are limited, and

further research is necessary to advance this field.
PRRT retreatment

Retreatment with Lu-177 DOTATATE beyond the standard 4

cycles is often recommended for patients who benefit from initial

treatment (52, 113, 114). The lifetime maximum of standard dose

Lu-177 DOTATATE (200mCi per treatment) is roughly 6-8 cycles.

Retreatment is typically reserved for patients who initially

experience at least 12 months of disease response or stability

following completion of initial treatment. In one cohort of 168

patients retreated with 2 additional cycles of Lu-177 DOTATATE,

the median PFS was 14.6 months (115). Similarly, 131I-MIBG is

typically given as a set of 2 cycles, 3 months apart, but retreatment

with additional cycles, usually at 6-month intervals after treatment

with the initial regimen has been reported; however, the optimal

dosimetry is not yet established (116). Reports have described

cumulative doses of 557 – 2322 mCi with individual doses

between 100 – 200 mCi.
Intra-arterial and liver directed therapy

For patients with liver dominant disease, intra-hepatic

administration of PRRT provides a unique opportunity to target

progressing disease with higher concentrations of the therapy and

reduce systemic toxicity. This approach has been evaluated in

patients with GEP-NETs retrospectively, showing that patients

with liver-limited disease had longer median PFS and OS than

those across the entire cohort of patients (33.4 and 75.8 months vs.

29 and 70 months, respectively) (37, 117).
Combination therapy

Several studies have explored Lu-177 DOTATATE and Y-90

DOTATOC combined with different cytotoxic agents: primarily

capecitabine and temozolomide (49, 50, 118, 119). Patients were

either treated concurrently, sequentially, or in one instance, in a

“sandwich” fashion, where patients received 2 cycles of PRRT

followed by cycles of chemotherapy before they received the
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these patient populations, with ORR as high as 57%, however, long-

term follow-up of these cohorts revealed higher rates of treatment-

related MDS or acute leukemia and no significant improvement in

PFS or OS compared to PRRT alone. A recent study of 49 patients

who received PRRT and chemotherapy with capecitabine/

temozolomide reported a 10% risk of developing t-AML/AL, a

significantly higher risk than PRRT alone (120).

Other avenues being explored in primarily the GEP-NET

population are combinations with mTOR inhibitors, radiation

sensitizers (such as cell signaling inhibitors, DNA damage repair

inhibitors, and DNA damage inducers), and tandem PRRT with

multiple radioisotopes (121–127). The majority of research thus far

has been preclinical in mouse models and xenografts, however a few

clinical trials have recently begun enrollment and are exploring the

combinations of radiosensitizers and DNA-damage-repair

inhibitors in combination with PRRT. Table 1 summarizes

ongoing and currently recruiting clinical trials.
Alpha-emitting isotopes and somatostatin-
receptor antagonists

Alpha-emitters allow for more precise targeted therapy due to

their shorter penetration range and higher linear energy (102, 128).

A phase I study of Pb-212 DOTAMTATE reported a response rate

of 80% among PRRT naïve patients on the highest dose of the drug

(129). In addition, a cohort study with Ac-225 DOTATATE

reported a >44% ORR in GEP-NET patients who had previously

received Lu-177 DOTATATE (130). These data are promising, and

further development is ongoing, with several clinical trials currently

recruiting patients.

SSTR antagonists can occupy more binding sites and have lower

dissociation rates than somatostatin analogs, which can lead to

higher tumor uptake and a lower risk of radiation to healthy

surrounding tissue (131). Several studies are ongoing in this arena

in patients with NETs; however, no final data has been published.

Lu-177 OPS201 (also known as Lu-177 DOTA-JR11 or Satoreotide

tetraxetan) is one of the antagonists that is now being tested in

clinical trials NCT02592707, NCT03773133 (132).
Conclusions

Radionuclide therapies represent a significant advancement in

the therapeutic landscape for patients with endocrine-related

cancers with limited availability of FDA-approved systemic

therapies for advanced, progressive disease. The field has seen

significantly more advances in patients with GEP-NETs and

pheochromocytoma/paraganglioma, with the approval of I-131

MIBG and Lu-177 DOTATATE. Despite these advances, there

remains a great deal of research to be done on other cancer types

and indications. With increased knowledge of potential long-term

toxicities associated with these therapies, we must develop

strategies to increase the potency and efficacy while also

individualizing the selection of patients who will most likely
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respond to treatment by employing biomarkers and imaging

studies. Novel agents with a-emitters and SSTR antagonists,

combination treatments (whether with other radionuclides or

systemic targeted/chemotherapies), radiosensitizers, or unique

modalities of treatment administration such as intra-arterial

therapies are all promising advances in the field, however, most

of the effort is currently focused on GEP-NETs. Clinical trials

focusing on refining this therapy in other endocrine cancers will

be important to expand impact of radiopharmaceuticals.
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A, et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)–results and
side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE or 90Y/177Lu-
DOTA TATE therapy in patients with disseminated NET. Radiother Oncol (2012)
102:45–50. doi: 10.1016/j.radonc.2011.08.006

122. Seregni E, Maccauro M, Chiesa C, Mariani L, Pascali C, Mazzaferro V, et al.
Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of
neuroendocrine tumours refractory to conventional therapy. Eur J Nucl Med Mol
Imaging (2014) 41:223–30. doi: 10.1007/s00259-013-2578-5

123. Kunikowska J, Pawlak D, Bak̨ MI, Kos-Kudła B, Mikołajczak R, Królicki L.
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