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Liver-bone crosstalk in non-
alcoholic fatty liver disease:
Clinical implications and
underlying pathophysiology

Jiahui Zhao, Hongyan Lei, Tianyi Wang and Xuelian Xiong*

Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of
Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
Osteoporosis is a common complication of many types of chronic liver diseases

(CLDs), such as cholestatic liver disease, viral hepatitis, and alcoholic liver disease.

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic liver

disease, affecting almost one third of adults around the world, and is emerging as

the dominant cause of CLDs. Liver serves as a hub for nutrient and energy

metabolism in the body, and its crosstalk with other tissues, such as adipose

tissue, heart, and brain, has been well recognized. However, much less is known

about the crosstalk that occurs between the liver and bone. Moreover, the

mechanisms by which CLDs increase the risk for osteoporosis remain unclear.

This review summarizes the latest research on the liver–bone axis and discusses

the relationship between NAFLD and osteoporosis. We cover key signaling

molecules secreted by liver, such as insulin-like growth factor-1 (IGF-1),

fibroblast growth factor 21 (FGF21), insulin-like growth factor binding protein 1

(IGFBP1), fetuin-A, tumor necrosis factor-alpha (TNF-a), and osteopontin (OPN),

and their relevance to the homeostasis of bone metabolism. Finally, we consider

the disordered liver metabolism that occurs in patients with NAFLD and how this

disrupts signaling to the bone, thereby perturbing the balance between osteoclasts

and osteoblasts and leading to osteoporosis or hepatic osteodystrophy (HOD).

KEYWORDS

non-alcoholic fatty liver disease, osteoporosis, secreted protein, osteoblasts, osteoclasts
1 NAFLD and Osteoporosis, two possible linked
pathologies

1.1 NAFLD

Liver is the center of metabolism for the whole body, and liver communicates with

other tissues via secreted hormones and metabolites (Figure 1). Over the past 10–20 years,

non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of

chronic liver diseases (CLDs) inWestern countries, and the incidence is increasing steadily.
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However, it is noteworthy that the incidence of NAFLD is also

rapidly increasing in Asia, especially in China. Owing to the

development and long-term application of effective prevention

and control measures, the morbidity of viral hepatitis has

deceased consistently, and NAFLD has thus emerged as the most

common etiology of CLD (1). Without intervention, it is expected

that China will soon have the world’s highest number of patients

with NAFLD (2).

NAFLD is characterized by the accumulation of lipid in

hepatocytes, therefore, NAFLD has been considered the

manifestation of metabolic syndrome in the liver. Meanwhile, it is

also closely related to systemic metabolic disorder. NAFLD increases

the risk of many different diseases. It is possible for NAFLD to
Abbreviations: CLDs, chronic liver diseases; NAFLD, non-alcoholic fatty liver

disease; IGF-1, insulin-like growth factor-1; FGF21, fibroblast growth factor 21;

IGFBP1, insulin-like growth factor binding protein 1; TNF-a, tumor necrosis

factor-alpha; OPN, osteopontin; HOD, hepatic osteodystrophy; NASH, non-

alcoholic steatohepatitis; HCC, hepatocellular carcinoma; RANKL, NF-kB ligand;

M-CSF, macrophage colony-stimulating factor; OPG, osteoprotegerin; SOST,

sclerostin; TNF, tumor necrosis factor; c-Fms, colony-stimulating factor-1

receptor; GH, growth hormone; IGFBP, insulin growth factor binding protein;

ALS, Acid-labile subunit; BMI, body mass index; CaAb, cartilage-targeting single-

stranded human antibody fragment; TED, thyroid eye disease; WAT, white

adipose tissue; rhFGF21, recombinant human FGF21; PPAR-g, peroxisome

proliferator-activated receptor g; LCAT, Lecithin cholesterol acyltransferase;

CEs, cholesterol esters; HDL, high-density lipoprotein; PP2ACa, protein

phosphatase 2ACa; RCT, reverse cholesterol transport; rhLCAT, recombinant

human LCAT; apo, apolipoprotein; HFD, high-fat diet; MCD, methionine–

choline-deficient; LAMs, liver lipid-associated macrophages; WT, wild-type;

TRAP, tartrate-resistant acid phosphatase; PTH, parathyroid hormone; NK,

natural killer; CPPs, calciprotein particles.
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progress to non-alcoholic steatohepatitis (NASH) or even to

hepatocellular carcinoma (HCC). In cases of NAFLD, the

metabolic functions of liver are markedly affected, and

inflammatory cytokines secreted by liver increase (3). In this

regard, the pathophysiology of NAFLD is similar to other CLDs,

underscoring potential clinical significance of the relationships

between NAFLD and osteoporosis and the importance of

elucidating the underlying mechanisms of action in pathophysiology.
1.2 Normal bone metabolism

The key processes during bone metabolism are bone resorption

and bone formation. Maintaining a proper balance between these

two processes is critical for healthy bone growth and the

maintenance of normal bone mass. Bone resorption is mediated

by osteoclasts, which are multinucleated cells derived from

circulating monocytes. Bone formation is mediated by osteoblasts

that originate from mesenchymal cells. Osteoblasts replace bone

after resorption and mineralize osteoid seams (4). Hence, precise

coordination of osteoclast and osteoblast activity is required for

maintaining osteohomeostasis, and disruption of this balance can

manifest in diseases of the bone.

Osteoblasts secrete many factors, such as receptor activator of

NF-kB ligand (RANKL), macrophage colony-stimulating factor (M-

CSF), and osteoprotegerin (OPG), to regulate the functions of

osteoclasts (5). RANKL is widely considered to be a key

osteoclastic cytokine regulating bone turnover by binding the

RANK receptor on the surface of osteoclast precursors to induce

them to differentiate into mature osteoclasts; indeed, the RANKL–

RANK axis is critical for the differentiation and maturation of

osteoclasts. Osteoblasts also secrete OPG, which can block the

binding of RANK to RANKL, suppressing bone resorption.
FIGURE 1

Communication between liver and distant organs. Liver is the metabolic center of the body. Because it is distant from many organs, liver usually
secretes a variety of signaling molecules like hepatokines, cytokines, and enzymes into the circulation to modulate the function and metabolism of
other organs.
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Besides, M-CSF secreted by osteoblasts can positively regulate

osteoclast activity. Osteocytes in the bone matrix can produce

sclerostin (SOST), which increases osteoclast activity and decreases

osteoblast activity (6)(Figure 2).
1.3 Osteoporosis

Osteoporosis is a public health issue that affects more than 200

million people worldwide (7, 8). A cross-sectional study of 20416

individuals in China showed that the prevalence of osteoporosis

among those aged 40 years or older was 5.0% among men and

20.6% among women (9). Considering that the incidence of

osteoporosis increases rapidly with age, it has become a major

focus for researchers and clinicians. Osteoporosis is characterized

by low bone mass and microstructural destruction, which increase

bone fragility (7, 10). Bone fractures, particularly in the spine or hip,

are the most serious complications of osteoporosis and contribute

to significant morbidity and mortality (11). Primary osteoporosis is

associated with the process of aging and accounts for 60% of all

cases of osteoporosis. Of the more than 200 million individuals with

osteoporosis, about 40% will have osteoporosis that secondary to

some chronic conditions such as CLDs (11, 12). The specific

mechanism by which CLDs cause osteoporosis has not been

established. It is generally thought that primary cholestatic liver

disease, viral hepatitis, and alcoholic liver disease are directly related

to osteoporosis, and the possible link between these two diseases

might be the inflammatory liver environment. In the circumstance

of liver inflammation and fibrosis, hepatic stellate cells are activated

and release oncofetal fibronectin, which acts on osteoblasts to
Frontiers in Endocrinology 03
decrease bone formation (12, 13). Liver also secretes peripheral

CSF1 and inflammatory cytokine-like tumor necrosis factor (TNF)

which respectively bind the colony-stimulating factor-1 receptor

(c-Fms) and TNF receptor on osteoclast precursors, thereby

increasing bone resorption (14, 15). The correlation between

NAFLD and osteoporosis remains controversial: whereas some

researchers have concluded that there is no correlation, others

provided evidence that supports a correlation between NAFLD

and osteoporosis (16, 17). Several studies have demonstrated that

hepatic fibrosis may be more closely related to osteoporosis than

simple steatosis (18–21). However, the clinical trials that have

investigated the link between NAFLD and osteoporosis have

many limitations, including: 1) inconsistence of inclusion criteria

in different trial; 2) a large number of cross-sectional studies that

could not prove causality; 3) difficulty applying the gold standard

diagnostic method—liver biopsy—to diagnose NAFLD; and 4)

other confounding factors, such as comorbidities and medication.
1.4 HOD

Almost all patients with CLDs experience changes in bone

metabolism, with up to 75% of which showing clinical features of

osteoporosis. Because of its high prevalence, there is a name for this

syndrome—hepatic osteodystrophy (HOD)—which describes

hepatic dysfunction-related changes in bone metabolism, such as

decreased bone mineral density and deterioration of bone structure.

If no remedial measures are taken, patients with HOD are at high

risk for bone fractures that markedly affect quality of life and long-

term prognosis and increase the death rate (22).
2 Interorgan crosstalk between the
liver and bone

The physical distance separating liver and bone prevents direct

physical interaction between these two tissues. Rather, liver must

communicate with bone by secreting signaling molecules, such as

proteins, enzymes, and cytokines, that circulate and affect bone

function through endocrine signaling. Understanding the nature of

endocrine signaling between liver and bone may enhance the

prevention, diagnosis, and treatment of CLD-caused bone

metabolic diseases, such as osteoporosis or HOD (23). Here we

summarize recent studies on liver-bone hormonal signaling in bone

homeostasis and disease.
2.1 IGF-1

Insulin-like growth factor-1 (IGF-1) is a key growth factor

secreted by liver. It is also an endocrine hormone that is induced

by growth hormone (GH). The structure and function of IGF-1 are

similar to insulin, and IGF-1 can promote growth by enhancing

absorption of amino acids, glucose, and fatty acids.
FIGURE 2

Osteoclasts and osteoblasts balance in bone remodeling. Bone
remodeling is an orderly and coupled process of bone resorption
and bone formation mediated respectively by osteoclasts and
osteoblasts. RNAKL/RANK and M-CSF/c-Fms are the two most
important pathways governing osteoclast proliferation and
differentiation. OPG can bind to RANKL, inhibiting the interaction
between RANKL and RANK. Estrogen, vitamin D, and small doses of
PTH from the circulation can promote bone formation. Osteocytes
also secrete SOST, which negatively regulates osteoblasts and
positively regulates osteoclasts.
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2.1.1 Circulating and local IGF-1 play an
important role in bone metabolism

Liver is the primary source of circulating IGF-1, but it is not the

only source. Other tissues and organs, such as bone, secrete limited

amounts of IGF-1 locally (24). IGF-1 binds with IGF binding

protein 3 (IGFBP3) and Acid-labile subunit (ALS) to form a

ternary complex, which is the main storage form for IGF-1 that

can considerably extend its half-life (25, 26). In 1998, Cemborain

et al. reported that bone mass was decreased following CCl4

treatment in rodents with experimental liver cirrhosis. Although

IGF-1 is mainly induced by GH in the liver, they are not completely

dependent on each other for the function of promoting body

growth (27). In fact, liver and bone damages caused by chronic

CCl4 intoxication is reminiscent of the human pathology of HOD

(28), which is consistent with a relationship between NAFLD and

HOD. A study comparing various growth indicators of Ghr+/−

mutant, Igf1+/− mutant, and Ghr+/−/Igf1+/− double-mutant mice,

showed that GH and IGF-1 promote growth through both

independent and dependent functions. Although circulating IGF-

1 decreases without GH, local IGF-1 production is still active (29).

This implies that local IGF-1 production may play a broader role in

growth promotion than is currently appreciated. Another study

found that, in the circulation of liver-specific Igf-1 knockout mice

and ALS-specific knockout mice, IGF-1 decreased by 75% and 65%,

respectively, but those mice still displayed relatively normal growth

and development (25). In addition, in liver Igf-1 and ALS double-

knockout mice, circulating IGF-1 decreased further, and bone

growth was substantially attenuated. These findings suggest that a

threshold concentration of circulating IGF-1 (10%~25%) is

necessary for normal bone growth, and that the IGF-1/IGFBP3/

ALS ternary complex plays an important role in osteoporosis

pathophysiology (Figure 3). Yakar et al. showed that locally

produced IGF-1 in bone played a more dominant role than

circulating IGF-1 in maintaining bone integrity. However, when
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local IGF-1 production was blocked, circulating IGF-1

demonstrated a compensatory effect (30). In fact, it has been

demonstrated that both circulating IGF-1 and local IGF-1

participate in bone growth through different mechanisms (31).

Moreover, GH and IGF-1 are important regulators of bone

homeostasis and longitudinal bone growth before and during

adolescence and also play a crucial role in maintaining bone mass

during adulthood (29).
2.1.2 Decreased IGF-1 levels in patients
with osteoporosis

In 1995, Ravn et al. measured serum IGF-1 concentration in 107

healthy females and 116 females with osteoporosis. They found that

the level of serum IGF-1 in females with osteoporosis was 30%

lower than healthy females (32). A few years later, Kurland et al.

found that, in 14 male patients with idiopathic osteoporosis, 11 had

significantly reduced serum IGF-1 levels (33). Thus, decreased IGF-

1 levels have been observed in both male and female patients

with osteoporosis.
2.1.3 Decreased levels of IGF-1 in patients with
NAFLD

Normally, IGF-1 levels rapidly increase in adolescence and then

steadily decease with age. However, a cross-sectional study of 168

obese children and adolescents with or without NAFLD found that

IGF-1 levels of the NAFLD group were lower than IGF-1 levels of

the control group (34). Such a negative relationship is found not

only in young people but also in other age groups. Another cross-

sectional study of 142 patients found that low serum IGF-1 levels

were associated with increased histological severity of NAFLD after

strict control for age, body mass index (BMI), and many other

confounding factors (35). A meta-analysis of clinical trial data give

the same result: IGF-1 levels were lower in patients with NAFLD

compared to healthy controls (36). Therefore, IGF-1 may be used as

a potential biomarker for NAFLD.

2.1.4 IGF-1 is a potential therapeutic target
It has been proposed that low doses of IGF-1 constitute an

alternative therapy that normalizes IGF-1 serum levels, thereby

improving the expression of most proteins closely related with bone

formation and reducing bone resorption (37). However, IGF-1 has a

wide range of physiological effects as well as poor penetrance in the

bone. For example, IGF-1 can stimulate the growth of internal

organs, especially kidney and spleen. To address these obstacles for

IGF-1 therapy, Lui et al. developed a cartilage-targeting single-

stranded human antibody fragment (CaAb) that targets cartilage to

deliver therapeutic molecules to growth plates, thereby increasing

therapeutic efficacy while minimizing adverse effects on other

tissues. Subcutaneous injection of CaAb–IGF-1 fusion protein

increased overall growth plate height without increasing the

proliferation of renal cortical cells (38).

At present, an IGF-1 receptor monoclonal antibody, Tepezza, is

the first and only drug approved by the U.S. Food & Drug

Administration for the treatment of thyroid eye disease (TED).

Tepezza can markedly improve exophthalmos and diplopia
FIGURE 3

Circulating and local IGF-1 both positively effect bone remodeling.
Seventy-five percent of IGF-1 in the circulation is liver derived,
whereas twenty-five percent of IGF-1 originates from other tissues.
Bone itself can secrete a small amount of IGF-1; although the
quantity is relatively small, this locally produced IGF-1 plays an
important role in bone remodeling.
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symptoms in different subgroups of patients with TED, and most

patients achieve long-term remission (39). However, no studies

have been conducted to determine whether this drug has any

beneficial effects on bone metabolism—something that may be

apparent during long-term use.
2.2 FGF21–IGFBP1 axis

Fibroblast growth factor 21 (FGF21) is a protein secreted

primarily by the liver, but it can also be expressed in white

adipose tissue (WAT), pancreas, adipocytes, and skeletal muscle

in response to physiological stimuli and/or pathological conditions

(40, 41). FGF21 is primarily involved in the regulation of cell

proliferation, growth and differentiation, and cell metabolism, but

it is also an important endocrine regulator of glycolipid metabolism,

playing an important role in enhancing b-oxidation, ketogenesis,
gluconeogenesis, browning of WAT, and insulin synthesis in

pancreas. It is generally thought that FGF21 could be a potential

therapeutic agent for metabolic diseases, such as diabetes (including

NASH), and synthetic recombinant human FGF21 (rhFGF21) has

now entered clinical trials. Whether rhFGF21 could lead to

osteoporosis needs to be addressed. Clinical tiral data revealed

that FGF21 analog could lead to osteoporosis complications (42).

Recently, other studies have found that FGF21 promotes IGFBP1

expression and also boosts bone resorption (43).
2.2.1 Increased serum FGF21 levels in patients
with NAFLD/NASH

It was shown in a prospective study that serum FGF21 levels

were increased in patients with NAFLD/NASH, and this study was

also the first to find that FGF21 mRNA expression was significantly

increased in human liver with NAFLD (44). It is thought that

elevated serum FGF21 levels in obese people reflect the existence of

fatty liver, and FGF21 may be a biomarker of hepatic lipid

accumulation in obesity (45). Another study measured FGF21

levels by ELISA in 82 patients with biopsy-confirmed NAFLD

and in 77 control subjects and subsequently analyzed the

association between FGF21 and NAFLD patient characteristics

using multiple linear regression analysis. Serum FGF21 levels

were elevated in patients with NAFLD independent of potential

confounders and represented an independent predictor of hepatic

steatosis (46). Thus, it is likely that elevated FGF21 in patients with

NAFLD/NASH may serve as a protective mechanism.
2.2.2 The FGF21–IGFBP1 signaling axis promotes
bone loss

FGF21 has been widely studied for its beneficial effect on

improving glucose and lipid metabolism. Interestingly, Wei et al.

showed that FGF21 is a negative regulator of bone turnover. FGF21

forms a feed-forward loop to mediate and enhance the activity of

peroxisome proliferator-activated receptor g (PPAR-g), thereby
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inhibiting formation of osteoblasts and stimulating adipogenesis

in bone marrow mesenchymal stem cells. Importantly, this suggest

that, despite the fact that FGF21 is beneficial for insulin resistance

and type 2 diabetes, long-term use of FGF21 may lead to increased

bone fragility (47).

It has been demonstrated that the hepatokine IGFBP1 can

promote osteoclast production and bone resorption and is also an

important mediator of FGF21-induced bone loss. The main

function of IGFBPs is to form protein complexes with IGF to

regulate its circulating levels, half-life, distribution in tissues, and

binding of IGF to its receptors. In addition, IGFBP has some

independent functions, including regulating transcription, cell

migration, and apoptosis, which have received considerable

attention in tumor and kidney disease. Wang et al. found that

FGF21 induces the expression and secretion of IGFBP1 in liver, and

IGFBP1 secreted by liver acts as an endocrine hormone by binding

to receptor integrin b1 on osteoclast precursors, thereby enhancing

RANKL signaling and osteoclast differentiation (48).

A search in PubMed found no relevant information about the

levels of FGF21 and IGFBP1 in patients with osteoporosis, and

future studies are needed to determine whether either or both of

these proteins may be differentially expressed by patients

with osteoporosis.

2.2.3 IGFBP-1 is a possible therapeutic target
The metabolic effects of FGF21 have been exploited

therapeutically, with rhFGF21 in clinical studies (49). However,

the problem of osteoporosis caused by rhFGF21 treatment has not

been resolved (50). It has been proposed that blocking IGFBP1

could prevent bone loss while preserving the insulin-sensitizing

benefits of FGF21 therapy in patients with diabetes (48). In the

future, IGFBP1 antagonists are expected to be tested for the

potential to decrease bone loss and alleviate osteoporosis.
2.3 LCAT

Lecithin cholesterol acyltransferase (LCAT) is an enzyme

synthesized and secreted by liver and mainly circulates as free

protein or bound to lipoproteins. LCAT can convert free cholesterol

on the surface of lipoproteins into cholesterol esters (CEs), which

are essential for normal maturation, mutual conversion, and

rearrangement of lipoproteins. The CEs produced by LCAT are

stored in the core of high-density lipoprotein (HDL) particles,

gradually increasing the size of HDL particles and causing HDL

particles to mature, and eventually the cholesterol is sent to the liver

(50, 51). LCAT-mediated cholesterol esterification is a rate-limiting

step in the reverse transport of cholesterol and is considered a

potential target for the prevention of atherosclerosis (52).

2.3.1 HDL inhibits osteoclast production and
induces osteoclast apoptosis

We have not identified any relevant research documenting

changes in LCAT in patients with NAFLD and osteoporosis, but

studies in mouse models have shown that dysfunctional and/or
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disordered HDL can affect bone mass in several different ways.

Preclinical experiments in rodent models mostly show that HDL

content is positively correlated with bone mass (53, 54), and clinical

trials in postmenopausal women have reached a similar conclusion

(55, 56). It has been shown that HDL is closely related to bone

metabolism and that HDL can transport cholesterol from

extrahepatic tissues to the liver for further metabolism (57). In

bone, cholesterol forms an important part of the lipid raft, which is

involved in signal transduction during osteoclast formation (58). In

addition, the outflow of cholesterol from osteoclasts to HDL plays

an important role in osteoclast apoptosis and fusion. HDL has been

shown to inhibit osteoclast production and to induce osteoclast

apoptosis (59).

2.3.2 The relationship between LCAT
and bone

LCAT is a key molecule for HDL maturation and reverse

cholesterol transport, and its relationship with bone metabolism

was recently described (53). A study of Lcat−/− mice showed that

they are sensitive to the development of diet-induced obesity,

especially to liver lipid deposition associated with NAFLD, and

that obese Lcat−/− mice are more likely to develop osteoarthritis.

Further, Lu et al. reported that, when chronic liver injury was

induced during the pathogenesis of HOD, liver protein phosphatase

2ACa (PP2ACa) was upregulated, which led to a decrease in the

expression of LCAT by liver as well as a defect in the reverse

transport of cholesterol from bone to liver (Figure 4). The loss of

LCAT function significantly aggravated bone loss related to HOD in

mice. In addition, studies have shown that LCAT improves liver

function in mouse models of HOD and alleviates liver fibrosis by

promoting reverse cholesterol transport (RCT) from bone to

liver (22).
2.3.3 Potential therapeutic benefits of LCAT
Most data from preclinical studies suggest that increasing LCAT

stimulates RCT and reduces atherosclerosis. Based on the fact that

recombinant human LCAT (rhLCAT) can improve lipid

metabolism, rhLCAT has been developed mainly for the

treatment of cardiovascular diseases, such as atherosclerosis, and

has entered phase II clinical trials with promising results from

earlier phase studies (60). In addition, an activator of LCAT,

synthetic apolipoprotein (apo)C-I, is being studied as a potential

therapeutic for cardiovascular indications. If it is determined that

rhLCAT, synthetic APOC-I, or other drugs to increase LCAT

activity can also improve bone metabolism, their clinical

applications will be much broader, and they could be prescribed

to regulate lipid metabolism to improve obesity and obesity-

induced cardiovascular disease, metabolic syndrome, and even

diabetes, as well as to prevent related bone complications (61).
2.4 OPN

Osteopontin (OPN) is a phosphorylated glycoprotein secreted

mainly by osteoblasts and osteoclasts that was originally found in
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the bone marrow. It has since been reported that immune cells can

secrete OPN as well (62), and OPN has also been detected in other

organs, such as liver. OPN concentration is high in breast milk and

is an important protein for immune activity, which is beneficial for

infant development and also improves infant immunity (63, 64). In

healthy humans, OPN expression is low, but it can be stimulated to

be secreted in large quantities and can participate in the immune

response (65, 66), resisting mechanical stress, promoting fibrosis

(67), and accelerating bone resorption, but the specific mechanisms

of these functions remain to be fully elucidated (68).

2.4.1 Increased OPN expression
in NAFLD/NASH

In a clinical study, it was shown that patients with NAFLD had

significantly higher serum OPN levels compared to the control

group (69). Also, in a mouse model of NAFLD induced by a high-fat

diet (HFD)/methionine–choline-deficient (MCD) diet, expression

of OPN was increased in the liver of NAFLD mice, and silencing

OPN improved liver lipid accumulation (70). In fact, OPN plays a

role in the development of inflammatory chronic liver disease: liver

lipid-associated macrophages (LAMs) express OPN, and OPN can

activate hepatic stellate cells, promote liver fibrosis, and accelerate

the development of NAFLD to NASH and even to HCC (71). Thus,

OPN can be used as a biomarker for patients with NASH (72, 73).
2.4.2 OPN is essential for bone metabolism
OPN can influence bone remodeling to regulate bone mass (74),

and many studies have found OPN to be associated with the

occurrence of various bone diseases. Yoshitake et al. constructed

an OPN-knockout mouse model and found that, after

oophorectomy, the bone volume decline in knockout mice was

much lower compared to wild-type (WT) mice (75), indicating that
FIGURE 4

LCAT ameliorates bone loss by mediating RCT. Normally, liver
secretes LCAT, which converts cholesterol obtained as HDL from
surrounding tissues into cholesterol esters that are transported to
liver for further metabolism. However, in the context of CLD, liver
secretion of LCAT is blocked, resulting in restriction of RCT and
accumulation of cholesterol in the bone that promotes osteoclast
formation and inhibits osteoblast production.
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OPN deletion can resist estrogen-deficiency-induced bone loss.

Over a decade later, it was shown that the number of tartrate-

resistant acid phosphatase(TRAP) positive cells in WT bone

increased significantly after parathyroid hormone (PTH)

treatment (76). However, no significant changes were observed in

OPN-deficient bone. OPN deletion can resist PTH-induced bone

resorption and is achieved by inhibiting the increase of osteoclasts.

Clinically, some investigators have found that elevated serum OPN

content is a risk factor for osteoporosis for postmenopausal women

through cross-sectional studies (46).
2.4.3 OPN as a potential therapeutic target
OPN not only plays a crucial role in the pathogenesis of NAFLD

but is also implicated in a variety of chronic liver diseases (70). OPN

is also inextricably linked to various bone diseases, and OPN is a

downstream signaling molecule activated by RANK/RANKL that

promotes osteoclast differentiation and proliferation (77). OPN

deficiency can improve hepatic lipid accumulation and fibrosis

and can also abrogate bone resorption. It is tempting to speculate

that OPN may provide a potential therapeutic target for the

treatment of NAFLD/NASH and its metabolic bone disease-

related complications.
2.5 TNF-a

TNF-a is produced mainly by activated macrophages, T cells,

and natural killer (NK) cells. It is a pro-inflammatory factor that

participates in the immune response and plays an important role in

controlling infection and protecting the body from invasion.

Besides, TNF-a also affects metabolism and aggravates abnormal

glucose and lipid metabolism, and it is probable that TNF-a also

has adverse effects on bone reconstruction.
2.5.1 Elevated TNF-a levels in patients with
NAFLD/NASH

NAFLD is a chronic inflammation of the liver. In NAFLD, the

secretion of inflammatory cytokines, including TNF-a by Kupffer

cells, NK cells and NKT cells in the liver, increases, and those

cytokines are released into the circulation (78). On the one hand,

NAFLD further aggravates liver damage, promoting the progression

of NAFLD to NASH (79); on the other hand, these inflammatory

cytokines released in NAFLD will also cause an inflammatory

response or damage in other parts of the body.
2.5.2 TNF-a induces bone loss
Extensive studies have shown that TNF-a is a key molecule that

causes osteoclastogenesis and inflammatory bone resorption during

inflammatory arthritis. Systemic administration of TNF-a has been

shown to promote robust osteoclast formation by directly targeting

macrophages in the stromal environment and this occurs only in

the presence of permissive level of RANKL (80, 81). TNF-a also
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enhances M-CSF-induced osteoclastogenesis. In addition, TNF-a
suppresses recruitment of osteoblasts from progenitor cells and

inhibits osteoblast differentiation (82, 83). It has been demonstrated

that estrogen deficiency promoted the production of TNF-a as well,

which induced bone loss (84). Given the effect of TNF-a on bone

resorption and bone destruction, as well as the inflammatory

characteristics of NAFLD, we speculate that TNF-a also plays a

role in NAFLD-induced osteoporosis.

2.5.3 Anti-TNF-a treatment
Currently, there are anti TNF-a agents on the market, such as

etanercept and infliximab, approved for anti-inflammatory

indications. Some studies have found that the increase in OCPs

caused by TNF-a can be reversed by anti TNF-a treatment. In

addition, other studies have shown that RBP-J, a key upstream

negative regulator of osteoclastogenesis, can inhibit excessive bone

resorption caused by TNF-a (85). However, whether these reagents

can also improve osteoporosis caused by NAFLD remains to be

fully investigated.
2.6 Fetuin-A

Fetuin-A is a systemic inhibitor of extraosseous calcification

that acts as a transporter of calcium and phosphate to promote bone

mineralization (86). Fetuin-A is associated with coronary artery

disease, ischemic cardiomyopathy, and aortic stenosis and may also

function as a positive or negative acute phase protein. Fetuin-A is

produced only by the liver, and, in people with fatty liver or

hepatitis, fetuin-A is secreted in high concentrations into serum;

therefore, fetuin-A may be a useful marker for obesity and fatty liver

with insulin resistance.

2.6.1 Elevated serum fetuin-A level in abnormal
glycolipid metabolism

Mathews et al. found that, when fed a HFD, fetuin-A knockout

mice did not experience significant weight gain and remained

insulin sensitive; This suggests that fetuin-A may play an

important role in glycolipid metabolism and may be a new

therapeutic target for the treatment of type 2 diabetes, obesity,

and other insulin-resistant diseases (87). Then, in a cross-sectional

study, Stefan et al. found that fetuin-A serum levels were negatively

correlated with insulin sensitivity, and fetuin-A serum levels were

positively correlated with liver fat in longitudinal studies (88). In

another clinical study, adult patients with biopsy-confirmed

NAFLD were found to have serum fetuin-A levels that were

significantly elevated and positively associated with insulin

resistance (89).
2.6.2 Reduced serum fetuin-A levels in patients
with osteoporosis

Özkan et al. tested the serum fetuin-A levels of 50

postmenopausal women—25 with osteoporosis and 25 healthy

controls—and showed that the serum levels of fetuin-A in the
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osteoporosis group were generally lower than those in the healthy

control group (90).
2.6.3 Decreased fetuin-A levels cause abnormal
bone metabolism

A study in fetuin-A-deficient Ahsg−/− mice reported that long

bone growth was impaired, and the growth plates closed

prematurely in this background. Fetuin-A mediates the formation

of stable colloidal mineral–protein complexes called calciprotein

particles (CPPs). Effectively clearing CPPs, thereby removing excess

minerals from the circulation, can prevent local accumulation of

minerals and calcification of soft tissues. In addition to binding to

calcium phosphate, fetuin-A acts as a carrier for lipids, including

steroid hormones, which are potent regulators of bone growth and

may affect calcification (91). Therefore, if fetuin-A targeting is to be

pursued to treat obesity or type 2 diabetes, the potentially

deleterious effects fetuin-A on bone homeostasis need to be

considered, similar to the case for FGF21 therapy.
2.6.4 Therapeutic potential of fetuin-A
Presently, we are not aware of any drugs based on fetuin-A,

which may be because it has such a wide range of physiological

activities. High concentrations of fetuin-A can damage pancreatic b
cells and cause insulin resistance, but low concentrations of fetuin-A

cause osteoporosis and cardiovascular disease by affecting

mineralization. In fact, fetuin-A could be considered as a

biomarker of NAFLD (92, 93), but how to rationally use fetuin-A

for clinical treatment requires further study.
3 Conclusion and perspectives

Liver is the center of metabolism, and it is also considered an

endocrine organ. In past decades, the crosstalk between liver and

heart and between liver and adipose tissue has been widely studied,

but the link between liver and bone remains poorly characterized.

With the increasing incidence of NAFLD, an improved

understanding of the pathophysiological effects of NAFLD that

extend beyond the liver is needed to guide patient care. Clinical

evidence demonstrates that NAFLD is associated with type 2

diabetes mellitus, cardiovascular disease, chronic kidney disease,

and polycystic ovarian syndrome. Currently, there is no consensus

regarding whether NAFLD is an independent risk factor

for osteoporosis, and the potential role of liver stiffness in

osteoporosis development also remains unclear. Additional large

prospective studies of well-characterized cohorts of patients with

NAFLD are needed to settle the issue of NAFLD as an independent

risk factor for osteoporosis.

In this review, we discussed several endocrine factors and

metabolites secreted by liver and involved in the regulation of bone

metabolism, including IGF-1, FGF21, IGFBP1, fetuin-A, TNF-a, and
OPN (Figure 5). Most are studies performed in rodents, and the

clinical implications need to be further assessed, as it has become

clear that the crosstalk between liver and bone is much more
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complicated than currently appreciated. Powerful multi-omics

approaches are creating new opportunities to annotate the proteins

and metabolites secreted by liver in non-pathological and disease

contexts. Mining of these data, together with functional studies and

disease modeling, are likely to rapidly advance our understanding of

liver−bone crosstalk in the coming years and to inform clinical

strategies to manage bone disease in patients with NAFLD.
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FIGURE 5

Some molecules secreted by liver are associated with bone
metabolism. A summary of mechanisms of some of the enzymes
and metabolites secreted by liver that are associated with bone
metabolism, including IGF-1, FGF21−IGFBP1, TNF-a, and OPN.
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